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INTRODUCTION

Phenotypic plasticity has been defined as the ability of 
a single genotype to produce more than one alterna-
tive morphological form in response to environmental 
conditions (1). This process allows organisms to adapt 
to environmental alternations by modification of mor-
phological, physiological, and behavioral traits (2,3). 
Environmental parameters have been demonstrated to 
have crucial effects on the morphology of fishes (4-7); 
especially, temperature plays a critical function during 
the early development (8,9). 

Temperature influences the rate of metabolism, which 
subsequently affects the growth and survival rates (10-
12). Different fish species have various temperature 
requirements (13,14); increasing water temperature 
can increase fish growth rate, whereas in other species, 
this may have a negative effect (15). In addition, tem-
perature alterations may change the morphology. The 
relationships between body shape and environmen-
tal temperature have been well-documented in fishes 

(16-18). For example, Georgakopoulou et al. (18) stud-
ied the effects of temperature on the morphological 
characteristics of sea bass (Dicentrarchus labrax) during 
early developmental stages and found body shape dif-
ferentiation due to temperature changes. Anatomical 
deformities also occur due to temperature alterations 
(19-21). The response of fish body to environmental 
parameters, particularly temperature, allows more effi-
cient utilization of available resources, thereby improv-
ing fitness and performance.

Geometric morphometrics (GM) is a tool to study shape 
and size, offering powerful analytical and graphical 
mean for the quantification and visualization of mor-
phological variations within and among organisms. 
GM analysis is performed using image processing 
techniques, which can be easily reanalyzed and is also 
inexpensive and fast (22). In landmark-based GM, land-
marks are the selected points on the body by which the 
shape can be analyzed (23). Several studies have used 
GM methods in different biological fields (24,25).
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ABSTRACT

This study was conducted to examine the effects of different thermal conditions on the body shape of Aphanius arakensis, a 
eurythermal species in Iranian inland waters. The specimens were collected from Eshtehard Shoor River, Iran, transferred to 
the laboratory, and exposed to 22°C, 25°C, and 28°C for 2 months. After this period, the specimens were photographed and 
landmark points were digitized on the 2D pictures. The extracted coordinates of the landmark points were superimposed 
using the generalized procrustes analysis to remove the effects of size, rotation, and translation. Canonical variate analysis and 
Mahalanobis distance followed by permutation multivariate analysis of variance were used to discriminate the shapes of the 
specimens exposed to the three temperatures. The results indicated that the shape of A. arakensis was significantly affected 
by temperature in both males and females. The specimens exposed to 25°C and 28°C had similar shapes but dissimilar shapes 
compared to those exposed to 22°C. Those exposed to 22°C had shorter head and tail regions and upper position of eyes. 
Males and females showed similar changes to temperature variations.
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Aphanius is the only genus of Aphaniidae reported from Iran 
(26,27). This genus occurs in coastal (brackish) and landlocked 
(freshwater to saline) water bodies in the Mediterranean and 
Persian Gulf basins from the Iberian Peninsula as far eastward 
as Iran and Pakistan (28). The Arak tooth carp Aphanius arakensis  
Teimori, Esmaeili, Gholami, Zarei, & Reichenbacher, 2012, is 
found in the endorheic Namak Lake basin of Iran with wide 
temperature changes (29). The wide distribution of this small-
sized fish suggests its ability to adapt to different environmen-
tal conditions. This species can be easily kept in an aquarium, 
and it also tolerates wide ranges of temperature, which helps 
to understand its response to temperature changes (30). Hence, 
this study was conducted to assess the response of A. arakensis 
to different water temperatures in terms of body shape using 
visualization techniques (i.e., GM) in both males and females.

MATERIALS AND METHODS

A total of 240 juvenile A. arakensis (120 males and 120 females) 
with an average length of 1.6 cm (±0.4 [SD]) were collected in 
one station from Eshtehard Shoor River (Namak Lake basin, Al-
borz Province, Iran; 35°36’32.52”N, 50°48’36.08”E) in June 2011 
using a hand net. During sampling, the salinity, temperature, 
and pH of water were 11-12 g.L−1, 21.85°C±0.22°C, and 7-8.5, 
respectively. The specimens were transported to the laboratory 
using a tank equipped with a battery-operated portable aerator 
and then kept in a 100L glass aquarium filled with dechlorinat-
ed tap water (mixed with marine salt to have a salinity of 12 
g.L−1) having constant aeration for 7 days to be acclimatized to 
the laboratory conditions. During the acclimation period, dis-
solved oxygen (DO), average water temperature, and pH were 8 
mg.L−1, 22°C±0.4°C, and 7.27-8.24, respectively.

Each sex was studied separately due to the presence of sexual di-
morphism. After the acclimation period, each sex of fish was ran-
domly exposed to three temperature treatments (each with 10 
specimens), i.e., 22°C, 25°C, and 28°C, with three replicates in 20-L 
glass aquaria with semi-closed water recirculating systems for 2 
months (pH: 7.4±0.2; 5% water exchange rate day1; salinity: 12 g.L−1). 
The temperature range was selected based on the minimum and 
maximum temperature of the natural habitat of this species during 
summer. The water temperature was regulated using an electrical 
heater. During the experiment, the specimens were fed at 2% of 
their body weight twice a day with 3-mm pellets of commercially 
available feed (Biomar®) and Artemia nauplii. During the experiment, 
the DO and pH were 8.6 ± 0.3 mg.L−1 and 7.8±0.1, respectively. The 
fish were kept under natural photoperiod. The bottom of the tank 
was siphoned every day to remove uneaten feed and feces.

After 2 months of the experimental period, the specimens were 
anesthetized using clove powder solution (200 mg.L−1), and 
their left side was photographed immediately using a Kodak 
digital camera (with 6.2 MP resolution) coupled to a copy stand 
using the same magnification and focal distance. The images 
were stored on the hard disk for later analysis. Then, the fish 
were preserved in 10% buffered formalin and stored in 70% 
ethanol after 48 h for further examinations.

To extract data on shape using GM, 14 homologous landmark 
points were digitized using tpsDig2 software, version 2.16 (31). 
The landmark points were selected at specific points where a 
proper model of the fish body shape could be inferred (Figure 1).  
Correlations between the procrustes and tangent shape dis-
tances were calculated using the software tpsSmall, version 
1.2, to examine whether the original data set correlates with 
the tangent distances to allow statistical analyses (32,33). The 
landmark points were submitted to a generalized procrustes 
analysis (GPA), which was used to remove non-shape data 
(including scale, direction, and position) in the MorphoJ soft-
ware (34). 

Statistical Analysis
Canonical variant analysis (CVA) was performed to investigate 
the power of distinction among the treatments by GM analy-
sis. The p values of significant differences among the thermally 
treated groups were obtained using permutation tests (10,000 
permutations) on the procrustes distances. Data on body shape 
of fish subjected to different treatments were analyzed using 
the MorphoJ and Past (version2 .10) softwares. The changes in 
body shape were illustrated in transformation grids depicting 
in relation to the consensus shape of fish subjected to all treat-
ments in each sex.

RESULTS

A complete significant relationship was observed between 
the procrustes and tangent shape distances (r2=1 and 
h=0.9999); therefore, the original data sets were used for sta-
tistical analyses. Differences were observed among the body 
shape of the specimens exposed to the three temperatures 
as well as between the sexes. The CVA discriminated three 
groups of male specimens exposed to the three tempera-
tures, such that those exposed to 25°C and 28°C had almost 
similar shapes. The individuals exposed to 22°C showed a dif-

Figure 1. Defined landmark points to extract the body shape 
data. (1) anterior-most point of the snout tip on the upper jaw, 
(2) center of the eye, (3) dorsal edge of the head perpendicular 
to the center of the eye, (4) dorsal edge of the body perpendic-
ular to the posterior edge of the operculum, (5) anterior and (6) 
posterior end of the dorsal fin base, (7) posterodorsal end of the 
caudal peduncle at its connection to the caudal fin, (8) posterior 
end of the caudal peduncle, (9) posteroventral end of the cau-
dal peduncle at its connection to the caudal fin, (10) posterior 
and (11) anterior ends of the anal fin base, (12) ventral edge of 
the body perpendicular to the posterior edge of the operculum, 
(13) posterior edge of the operculum, and (14) ventral edge of 
the head perpendicular to the center of the eye.
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ferent shape pattern (Figure 2). The P values obtained from 
the permutation tests among the groups indicated signifi-
cant differences among male specimens exposed to the three 
thermal treatments. Based on the Mahanolobis distances 
(Table 1), the greatest distance was found between those ex-
posed to 22°C and 28°C.

The CVA indicated that the females exposed to 25°C and 
28°C had almost similar shapes, whereas the body shape of 

the specimens exposed to 22°C differed from those of oth-
ers (Figure 3). Furthermore, the Mahalanobis distance con-
firmed the CVA results and classified the specimens of the 
three treatments into two groups (Table 2). The P values from 
the permutation tests among the groups showed significant 
differences among the thermally treated female group. The 
largest difference was found between those exposed to 22°C 
and 25°C.

In males, the body shape in the three groups of A. arakensis 
showed differences that were primarily related to the landmark 
positions on the caudal peduncle, dorsal fin base, and eye posi-
tion (interpreted from changes in the forms of the deformation 
grid and shifting of landmark points), such that the specimens 
exposed to 25°C and 28°C were characterized by a slightly lon-
ger tail region. However, those exposed to 22°C had a deeper 
body at the posterior region of the head, a slightly shorter and 
deeper caudal peduncle, and an upper (dorsal) position of the 
eye (Figure 2). In females, those exposed to both 25°C and 28°C 
had longer caudal peduncles. In addition, those exposed to 
28°C showed a longer head and anterior position of dorsal and 
anal fins compared with those exposed to other temperatures 
(Figure 3).

Figure 2. Scatterplot of the CVA for the morphometric characters in the three groups of males (male1 = 22°C, male2 = 28°C, and male3 
= 25°C). Shape deformations associated with change in centroid size.
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Table 2. Mahalanobis distances and permutation tests (10,000 
permutations) for procrustes distances among thermally 
treated female groups. The p values are shown in parenthesis.

Female1 Female2
Female2 7.3528 (<0.0001)
Female3 7.6914 (<0.0001) 3.8131 (0.0055)

Table 1. Mahalanobis distances and permutation tests (10,000 
permutations) for procrustes distances among thermally 
treated male groups. The p values are shown in parenthesis.

Male1 Male2
Male2 5.8472 (<0.0001)
Male3 5.388 (<0.0001) 3.9423 (=0.0016)
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DISCUSSION

Most of the environmental parameters such as temperature, 
salinity, and food availability may influence the body shape of 
fishes (17). However, environmentally induced morphological 
variations are among the most widespread changes in fishes 
(35,36). Morphology is a useful tool to study the feeding ecology, 
the swimming mode, and even the habitat use (37-39). Several 
studies have assessed the body shape and the effects of external 
factors; however, only a few investigations have been conducted 
on the influences of temperature on fish morphology (40).

Our results indicated that the body shape of A. arakensis was 
significantly affected by temperature in both males and fe-
males, with a clear variation between the three thermally treat-
ed groups. Those exposed to 25°C and 28°C had almost similar 
body shape but different from those exposed to 22°C. Some 

morphometric studies have provided evidence for the effects 
of temperature on fishes (8,17). For example, Sfakianakis et 
al. (8) used 22°C, 25°C, 28°C, and 31°C to study the effects of 
temperature on zebrafish (Danio rerio). They found significant 
variations among the specimens exposed to various tempera-
tures. The changes were attributed to the general morpholog-
ical plasticity in the different environments, being reflected in 
alterations of muscle and bone developmental patterns. Ayala 
et al. (41) studied the effects of temperature on muscle growth 
in two populations (Atlantic and Mediterranean) of sea bass, D. 
labrax. The temperatures were cultivation condition, 15°C, natu-
ral, 15°C/19°C, 17°C/natural, and 17°C/19°C. Their study showed 
that 17°C accelerated embryonic development (hatching), and 
following the hatching, a higher cultivation temperature (19°C) 
accelerated prelarval (mouth opening) and larval development 
(metamorphosis, scaling). 

Figure 3. Scatterplot of the CVA for the morphometric characters in the three groups of females (female1 = 22°C, female2 = 28°C, and 
female3 = 25°C). Shape deformations associated with change in centroid size.
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The results of the present study showed a longer head and cau-
dal peduncle in the groups exposed to higher temperatures. 
Alterations in muscle and bone developmental patterns were 
the response of the specimens to various thermal conditions. As 
addressed by others (42,43), a deeper and longer caudal pedun-
cle provides an adaptation for maneuverability and rapid accel-
eration. Several studies have stated that muscle development 
is extremely dependent on temperature (41,44). In our study, 
the possible explanations for the changes in the caudal pedun-
cle structure could be better feeding conditions in those tem-
peratures. A fusiform shape of the caudal peduncle in the fish 
exposed to 28°C decreases the energetic cost of swimming for 
longer periods (45). Moreover, higher average temperatures in-
crease the fish activity because the rate of metabolism in warm 
waters is high, which may cause a shallower caudal peduncle.

Compared to the specimens exposed to 25°C and 28°C, those 
exposed to 22°C had eyes in the dorsal position of the head. 
Viscosity is a function of temperature and an influencing factor 
on the sinking rate of particles (8). In 25°C, a part of the food ma-
terials may not have been sunk and remained below the water 
surface. Therefore, the fish need their eyes in the dorsal part of 
the body to catch the food materials. Since we had no data on 
particle concentration and sinking rates, another experiment is 
required to scrutinize this speculation.

In conclusion, our study indicated that small changes in wa-
ter temperature can have significant effects on the shape of  
A. arakensis. It is thus possible to use morphological characteris-
tics to differentiate A. arakensis populations experiencing differ-
ent environmental parameters. Meanwhile, our results showed 
that males and females showed similar changes to thermal vari-
ations. Further studies with additional factors to investigate the 
interaction of ambient parameters are suggested.
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