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Abstract 

Speaker diarization is the task of distinguishing and segmenting 
speech from multiple speakers in an audio recording, a critical 
component for various applications such as meeting 
transcription, voice activated systems, and audio indexing. 
Traditional clustering-based methods have been widely 
adopted, but face challenges in real-world scenarios, including 
noisy environments, overlapping speech, speaker variability and 
variable recording conditions. This research addresses these 
limitations by examining deep learning-based approaches, 
which have demonstrated notable advancements in enhancing 
multi-speaker diarization accuracy. This study provides a 
comprehensive comparison between traditional clustering 
algorithms and contemporary deep learning approaches, 
including Time-Delay Neural Networks (TDNN), End-to-End 
Neural Diarization (EEND), and Fully Supervised UIS-RNN. By 
evaluating their performance on the CallHome dataset, the 
study highlights the limitations of traditional methods and the 
significant advancements offered by deep learning techniques. 
Results show that TDNN achieves slight improvements in non-
overlapping speech, EEND demonstrates notable performance 
gains in overlapping speech scenarios, achieving a Diarization 
Error Rate (DER) of 12.6% compared to 23.7% for traditional 
methods. The UIS-RNN model outperforms all other techniques 
with a DER of 7.6%, showcasing its efficacy in handling complex 
acoustic conditions. This study underscores the transformative 
potential of deep learning in addressing the multifaceted 
challenges of speaker diarization and lays the foundation for 
future research in this evolving domain. 
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Öz 
Konuşmacı günlüğü oluşturma, bir ses kaydında birden fazla 
konuşmacıdan gelen konuşmayı ayırt etme ve bölümlere ayırma 
görevidir ve toplantı transkripsiyonu, sesle etkinleştirilen 
sistemler ve ses indeksleme gibi çeşitli uygulamalar için çok kritik 
bir bileşendir. Geleneksel kümeleme tabanlı yöntemler yaygın 
olarak kullanılmaktadır, ancak gürültülü ortamlar, örtüşen 
konuşma, konuşmacı değişkenliği ve değişken kayıt koşulları gibi 
gerçek dünya senaryolarındaki zorluklarla karşılaşmaktadır. Bu 
araştırma, birden fazla konuşmacının bulunduğu senaryolarda 
diarizasyon doğruluğunu artırmada dikkate değer gelişmeler 
gösteren derin öğrenme tabanlı yaklaşımlara odaklanarak bu 
sınırlamaları ele almaktadır. Bu çalışma, geleneksel kümeleme 
algoritmaları ile Zaman Gecikmeli Sinir Ağları (TDNN), Uçtan Uca 
Sinirsel Diarizasyon (EEND) ve Tam Denetimli UIS-RNN gibi 
çağdaş derin öğrenme yaklaşımlarını kapsamlı bir şekilde 
karşılaştırmaktadır. Performanslarını CallHome veri seti 
üzerinde değerlendirerek, geleneksel yöntemlerin 
sınırlamalarını ve derin öğrenme tekniklerinin sağladığı önemli 
ilerlemeleri vurgulamaktadır. Sonuçlar, TDNN'nin örtüşmeyen 
konuşma durumlarında hafif iyileştirmeler sağladığını, EEND'in 
örtüşen konuşma senaryolarında dikkate değer performans 
kazançları göstererek, geleneksel yöntemlerin %23,7'lik oranına 
kıyasla %12,6'lık bir Diarizasyon Hata 0ranı (DER) elde ettiğini 
ortaya koymaktadır. Tam Denetimli UIS-RNN modeli, %7,6'lık bir 
DER ile tüm teknikler arasında en iyi performansı sergileyerek 
karmaşık akustik koşulları yönetmedeki etkinliğini 
göstermektedir. Bu çalışma, konuşmacı diarizasyonunun çok 
yönlü zorluklarını ele almadaki derin öğrenmenin dönüştürücü 
potansiyelini vurgulamakta ve bu gelişen alandaki gelecekteki 
araştırmalar için bir temel oluşturmaktadır. 
 
Anahtar Kelimeler: Konuşmacı Diarizasyonu; Geleneksel Kümeleme 
Algoritması; Derin Öğrenme; Örtüşen Konuşma; Hesaplama Karmaşıklığı 

  

 

1. Introduction 

Speaker Diarization (SD) refers to the process of 
segmenting a multi-speaker speech into homogeneous 
segments, allowing the identification and differentiation 
of speakers. This task is pivotal in many applications, such 
as meeting transcription, media playback, voice-activated 

systems, and audio indexing (Fiscus et al, 2006). By 
attributing speech to individual speakers, SD enhances 
speaker-specific voice search, improves the accuracy of 
automatic speech recognition (ASR), and facilitates 
transcript readability. Despite its growing importance, 
speaker diarization remains a challenging problem, 
especially in real-world scenarios characterized by 
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overlapping speech, speaker variability, and variable 
recording conditions (Raj, 2021). 

The evolution of speaker diarization methodologies has 
witnessed significant transitions, from traditional 
statistical approaches to contemporary deep learning 
solutions. Traditional speaker diarization techniques have 
long been the foundation of this field. These methods 
often rely on statistical modeling approaches, such as 
Gaussian Mixture Models (GMMs) combined with Hidden 
Markov Models (HMMs). These models operate on 
manually crafted features and predefined statistical 
assumptions, which makes them effective in controlled 
environments (Anguera et al., 2012). Additionally, 
clustering-based techniques, including spectral clustering 
and agglomerative hierarchical clustering (AHC), have 
been widely adopted for segmenting speech. The 
incorporation of i-vector embeddings further refined the 
performance of these methods by offering a compact 
representation of speaker characteristics. However, these 
traditional approaches exhibit substantial limitations 
when confronting real-world scenarios characterized by 
overlapping speech, speaker variability, and inconsistent 
recording conditions (Park et al., 2022). To overcome 
these challenges, x-vector embeddings introduced by 
TDNNs marked a significant improvement in speaker 
representation (Snyder et al., 2018). Unlike previous 
handcrafted features, x-vectors leverage neural network 
architectures to extract robust speaker embeddings, 
improving the ability of clustering algorithms to 
accurately separate speakers. Nonetheless, these 
advancements remain insufficient when applied to 
overlapping speech scenarios or environments with high 
speaker variability. 

Recent years have witnessed a paradigm shift in speaker 
diarization with the advent of deep learning-based 
methods. These models automate the feature extraction 
process, enabling a more nuanced understanding of 
speaker characteristics. EEND exemplifies this innovation 
by integrating feature extraction, speaker classification, 
and diarization into a unified framework. By utilizing 
mechanisms like self-attention and bidirectional long 
short-term memory (BLSTM) networks, EEND effectively 
addresses overlapping speech and achieves significant 
reductions in DER (Fujita et al., 2019a). Similarly, the Fully 
Supervised UIS-RNN model represents another milestone 
in the field. This model employs a recurrent neural 
network (RNN)-based architecture combined with 
supervised learning techniques to dynamically manage 
speaker transitions. The UIS-RNN leverages high-quality 
speaker annotations to learn speaker-specific 
characteristics, achieving state-of-the-art DER 
performance in benchmark datasets (Zhang et al., 2019). 
Unlike traditional methods that rely heavily on clustering, 
UIS-RNN directly models speaker sequences, making it 
particularly effective for scenarios involving overlapping 
speech and dynamic speaker changes. 

The transition from traditional methodologies to deep 
learning frameworks in speaker diarization presents 

significant implementation challenges. While these 
advanced models demonstrate superior feature 
extraction capabilities and complex pattern recognition, 
they necessitate substantial computational infrastructure 
and comprehensive annotated datasets. Moreover, these 
systems exhibit limitations in out-of-domain scenarios, 
particularly when confronted with data sparsity and 
acoustic interference (Fujita et al., 2019b; Hamza et al., 
2023). Such constraints emphasize the imperative for 
continued methodological advancement to enhance the 
accessibility, interpretability, and environmental 
adaptability of deep learning-based diarization systems, 
especially in scenarios involving multiple speakers and 
overlapping speech patterns. 

This study aims to provide a comprehensive comparison 
between traditional methods and deep learning models 
in addressing the multifaceted challenges of speaker 
diarization, including speaker variability, overlapping 
speech, computational complexity, scalability, and 
adaptability in real-world scenarios. Through this 
comparative analysis, this research contributes to a 
broader discourse on the evolution of speaker diarisation 
techniques, specifically by highlighting the transformation 
from heuristic-driven frameworks to data-driven learning 
models. It provides a foundation for future research in 
this dynamic and evolving field.  

The remainder of this paper is organized as follows: 
Section 2 reviews related work, examining both 
traditional and deep learning-based diarization methods. 
Section 3 details recent advancements in SD techniques 
using deep learning, with dataset specifications and 
evaluation metric. Section 4 discusses the results and 
provides an in-depth analysis of the performance of 
different approaches.  Finally, Section 5 concludes with 
insights into future research directions aimed at 
addressing the current challenges in speaker diarization. 

2. Related Work 

This literature review explores the evolution of 

methodologies and techniques in multi-speaker 

diarization, with an emphasis on the transition from 

traditional statistical approaches to deep learning-based 

solutions. The developments in this domain reflect 

ongoing efforts to address critical challenges such as 

overlapping speech, speaker variability, and scalability in 

real-world applications. 

Traditional speaker diarization techniques have primarily 

relied on statistical approaches and handcrafted features. 

Early methods, such as Gaussian Mixture Models (GMMs) 

paired with Hidden Markov Models (HMMs), were 

effective in controlled acoustic environments but 

struggled with overlapping speech and dynamic variability 

in speaker characteristics (Reynolds et al., 2000; Anguera 

et al., 2012). Other traditional methods include spectral 

clustering and agglomerative hierarchical clustering, 

which rely on distance metrics to separate speech 
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segments based on their spectral properties. These 

methods achieved moderate success when integrated 

with i-vector embeddings, which provided compact 

statistical representations of speaker characteristics. 

While i-vectors improved scalability, their performance 

was constrained in settings involving overlapping speech 

and noisy environments (Park et al., 2022). 

Deep learning models has revolutionized speaker 

diarisation by automating feature extraction and learning 

directly from data. A significant milestone in this 

transition was the introduction of DNN-based features, 

known as D-vectors, which demonstrated superior 

performance over traditional i-vectors, particularly in 

noisy conditions (Variani et al., 2014). Subsequent work 

has continued to develop the new paradigm of using 

DNNs to extract speaker identity discriminative features. 

In particular, the invention of the x-vector extractor has 

led to a major improvement. This extractor uses a TDNN 

and a statistical pooling layer to obtain low-dimensional 

speaker identity representations (Snyder et al., 2018). 

This innovation enabled clustering algorithms to more 

effectively distinguish between speakers, even in 

challenging environments with moderate variability. 

Other studies have focused on refining training strategies 

and loss functions to improve the discriminative power of 

speaker embeddings. Techniques such as metric learning 

and angular-softmax loss were proposed to enhance the 

robustness of deep learning models in capturing speaker-

specific features (Bredin, 2017; Chung et al., 2020; Li et 

al., 2018). Despite these improvements, the predominant 

reliance on clustering in these systems continued to limit 

their efficacy in scenarios involving overlapping speech or 

high speaker variability.  

Speech diarization technology has evolved over time with 

the development of automatic speech recognition (ASR) 

technologies. Tools like Amazon Transcribe illustrate how 

diarization can enhance transcription tasks such as call 

analytics, medical documentation, and media subtitling. 

However, traditional frameworks often treat ASR and 

speaker diarization as separate tasks, leading to 

inefficiencies and suboptimal performance in real-time 

applications. To address these challenges, researchers 

have proposed joint ASR and speaker diarization models. 

For example, Mao et al. (2020) demonstrated that 

merging these tasks improves performance by exploiting 

audio-verbal dependencies. This approach proved 

particularly effective when utterance boundaries were 

unknown, with attention-based decoding algorithms and 

data augmentation techniques further enhancing 

accuracy. These integrated models represent a shift 

towards holistic frameworks that streamline diarization 

and transcription processes. 

Specifically, a method has been developed to manage 

speaker identity discriminative features from overlapping 

speech regions in the clustering phase (Raj et al., 2021b). 

Methods such as the VBx approach introduced overlap 

detection mechanisms to mask speaker posterior 

matrices, improving clustering accuracy in overlapping 

regions (Bullock et al., 2020). The effectiveness of these 

models is commonly evaluated using standardized 

metrics such as DER and character error rate (CER Recent 

advancements underscore the potential of end-to-end 

systems in addressing the complexities of real-world 

scenarios. For instance, a novel system designed for an in-

vehicle multi-channel ASR competition achieved a 49.58% 

reduction in DER compared to baseline models, 

highlighting the effectiveness of integrated frameworks in 

challenging acoustic environments (Tian et al., 2024).  

However, significant challenges persist in accurately 

segmenting speech and attributing it to the correct 

speakers, particularly in scenarios characterized by noisy 

or overlapping speech. Both approaches exhibit unique 

advantages and limitations, in addressing critical issues 

such as speaker variability, overlapping speech, 

computational complexity, scalability and adaptability to 

diverse real-world conditions. These challenges 

necessitate continued methodological advancements to 

enhance the robustness and applicability of speaker 

diarization systems. 

3. Materials and Methods 

Deep learning models can be computationally intensive, 

requiring significant resources for training and inference. 

This complexity may present a significant obstacle to the 

practical deployment of diarization systems, particularly 

in real-time applications. There are no standardized 

benchmarks and evaluation metrics in this area, leading 

to inconsistencies in performance evaluation between 

different studies. Establishing common data sets and 

metrics will facilitate better comparisons and progress in 

this field (Kshirod, 2020). 

Advanced speech recognition and speaker separation 

technologies are leveraged to transcribe a multi-speaker 

audio file separately for each speaker. In order to perform 

this process, the following operations are required: 

• Pre-processing of the audio file, 

• Cleaning up the sound by reducing background noise, 

• Normalization to ensure consistent sound levels 

throughout the recording. 
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3.1 Dataset 

The CallHome dataset is as a standard for the evaluation 

of speaker diarization models. The dataset comprises 

multilingual telephone conversations gathered from 

natural everyday settings. The English subset is the most 

widely used (Canavan et al., 1997). The dataset is suitable 

for testing scenarios with overlapping speech or varying 

acoustic conditions, as it contains multiple speakers. Each 

recording is manually labelled with speaker labels and 

timestamps, providing a ground truth reference for 

assessing logging accuracy.  

The CallHome dataset comprises approximately 120 

audio recordings, with individual file durations ranging 

from 2 to 15 minutes. These recordings consist of 

telephone conversations collected in naturalistic settings, 

incorporating realistic acoustic challenges including 

background noise, varying speech dynamics, and 

overlapping speaker transitions. The dataset's key 

characteristics include: 

• Total Duration: In excess of 100 hours of annotated 

audio content 

• Speaker Population: Approximately 500 distinct 

speakers 

• Demographic Distribution: Balanced representation 

with approximately 55% male and 45% female 

speakers 

• Linguistic Diversity: Multilingual recordings, with the 

English subset serving as the primary corpus for 

analysis 

• Acoustic Variability: Integration of both clean and 

noisy recordings, including ambient sounds and 

background conversations, ensuring evaluation under 

realistic and challenging conditions. 

The diverse characteristics of the CallHome dataset 

provide a comprehensive evaluation framework for 

assessing the efficacy of traditional clustering methods 

and advanced deep learning approaches. The dataset's 

incorporation of realistic acoustic conditions challenge 

models to adapt to overlapping speech, speaker 

variability, and varying recording environments. These 

attributes make it particularly valuable for conducting 

comparative analyses between different diarization 

approaches. 

3.2. Diarization Error Rate (DER) 

DER is the primary metric for assessing both traditional 

and deep learning-based diarization methods. By 

analyzing DER values across overlapping and non-

overlapping speech scenarios, the study compares the 

robustness and accuracy of approaches like End-to-End 

Neural Diarization (EEND) and Fully Supervised UIS-RNN 

with traditional clustering-based methods. A lower DER 

indicates better performance. For example, traditional 

clustering methods generally exhibit higher DER, 

particularly in overlapping speech conditions, due to their 

limited ability to handle speaker ambiguity. In contrast, 

advanced models like EEND achieve significantly lower 

DER by integrating neural architectures specifically 

designed to address overlap and speaker variability. 

It quantifies the system’s accuracy in attributing speech 

segments to the correct speakers within an audio 

recording. DER is a composite error metric, expressed as 

a percentage, and is calculated as in Formula 1.      

𝐷𝐸𝑅 =
Missed Speech+False Alarm Speech+Speaker Confusion

Total Speech Duration
 × 100  (1) 

where: 

• Missed Speech: Segments of speech that the system 

fails to identify as spoken. 

• False Alarm Speech: Non-speech segments or noise 

incorrectly identified as speech. 

• Speaker Confusion: Segments of speech attributed to 

the wrong speaker. 

3.3 Clustering Based Algorithms 

Clustering-based methods have long been the backbone 

of speaker diarization. Segments belonging to the same 

speaker are grouped together and each speaker is 

assigned a unique identity. While effective, traditional 

clustering methods often struggle with overlapping 

speech and rapid speaker changes. GMM, mean shift, 

hierarchical, k-means and spectral algorithms are most 

common clustering approaches for speaker diaries. 

Recent research has demonstrated that deep learning 

methodologies have significantly transformed the field of 

multi-speaker diarization, offering substantial 

improvements in performance and accuracy compared to 

traditional approaches. 

3.4 Deep Learning Models: The New Frontier 

3.4.1 EEND: End-to-End Neural Diarization 

The End-to-End Neural Diarization (EEND) model 

leverages deep learning to process the audio input 

directly and generate speaker labels requiring traditional 

pre-processing steps. This method can accommodate 

varying numbers of speakers and is particularly effective 

in complex acoustic environments (Al-Hadithy et al., 

2022). EEND-vector clustering represents a 

groundbreaking methodology that integrates neural 

networks and clustering-based diarization techniques 

into a unified framework. By simultaneously learning 

speaker separation and classification from audio input, 
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EEND-based methods have achieved competitive 

performance across multiple speaker diarization 

benchmarks. Combining deep learning-based techniques 

with clustering algorithms, EEND facilitates efficient 

diarization and management of overlapping speech in 

extended recordings (Fiscus, J., et al., 2006).  

EEND was initially proposed by Fujita. This initial version 

integrated voice diarization methods using a bidirectional 

long short-term memory (BLSTM) network. Subsequently, 

EEND has been extended over time with networks based 

on the self-attention mechanism. This extension has 

demonstrated state-of-the-art diarisation error rate (DER) 

results on two-speaker data. In particular, the 

methodology yielded successful results on two speaker 

samples from the Spontaneous Japanese Corpus and the 

CALLHOME dataset (Fujita, Y., et al., 2019a). The EEND's 

architecture consists of four self-attention encoder 

blocks, each containing 256 attention units with a 

dropout rate of 0.1 for regularization. The model 

processes 40-dimensional log-mel filterbank features 

extracted from audio segments of 25ms with a 10ms shift. 

Its training protocol includes data augmentation 

techniques such as speed perturbation (0.9x, 1.0x, 1.1x) 

and artificial creation of overlapping segments. The 

training utilizes an Adam optimizer with a learning rate of 

1e-4, processing batches of 64 sequences over 100 

epochs, with binary cross-entropy loss function for 

speaker activity detection.  

EEND offers several distinct advantages. First, it 

effectively handles overlapping utterances, a critical 

challenge in speaker diarization. Second, the network’s 

design prioritizes diarization accuracy, enabling high 

performance. Thirdly, the system can be retrained using 

real data, simply by incorporating a reference diarization 

label. Nevertheless, EEND is not without its limitations. 

The model architecture restricts the maximum number of 

speakers it can support, and its reliance on self-attention-

based neural networks or BLSTM presents challenges for 

online processing. Additionally, experimental results 

indicate that EEND tends to overfit the training data 

distribution, limiting its generalizability in out-of-domain 

scenarios (Fujita et al., 2019b).  

In conclusion, the EEND algorithm has emerged as a 

significant innovation in the field of speaker diarization, 

evolving over time to become increasingly effective and 

efficient. This evolution has been driven by the advances 

of deep learning techniques and neural networks in the 

field of audio processing. 

In recent years, EEND has solidified its status as a 

powerful alternative to traditional clustering-based 

speaker diarisation methods, particularly for managing 

overlapping speech and simplifying the diarization 

pipeline. The EEND approach consistently demonstrates 

superior performance compared to traditional clustering-

based methods, especially in scenarios involving 

overlapping speech and complex acoustic environments. 

 
Figure 1. Comparison of X-Vector Clustering-Based and EEND 

Methods. (Fujita, Y., et al., 2019a). 

3.4.2 Time-Delayed Neural Network (TDNN) 

Time-delayed neural network (TDNN) constitute a 

specialized artificial neural network architecture designed 

specifically for sequential data processing, particularly in 

speech signal analysis. The feature of a TDNN is its ability 

to model temporal relationships between inputs using 

time-delayed connections. This makes it particularly 

useful in situations where the temporal sequence of 

inputs is of significance. In a TDNN, the input of each 

neuron can contain not only the data of the current time 

step, but also data from previous time steps. The TDNN 

employs weight sharing mechanisms similar to 

Convolutional Neural Networks (CNNs) to reduce 

parameter complexity while maintaining temporal 

pattern detection capabilities. The TDNN architecture 

consists of five sequential layers, with the input layer 

processing 40-dimensional MFCC features through a 

context window of 15 frames. The subsequent layers 

implement specific temporal contexts: the initial layer 

employs 512 units with context {-2,-1,0,1,2}, followed by 

three layers maintaining 512 units with varying temporal 

spans (-2,0,2; -3,0,3; -4,0,4), and culminating in a 1500-

unit layer with context {0}. This hierarchical structure 

incorporates a statistical pooling layer for mean and 

standard deviation computation, followed by two 512-

unit fully connected layers, generating 512-dimensional x-

vector embeddings crucial for speaker discrimination in 

multi-speaker environments. The network's training 

utilizes a natural gradient stochastic gradient descent 

optimizer, implementing an initial learning rate of 0.001 

with exponential decay, processing 64-sample batches 
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across three epochs under L2 regularization (weight: 

0.001).  

A pre-trained TDNN model processes audio frames to 

extract x-vectors, which serve as fixed-length embeddings 

representing speaker features in each segment. The 

model can use several layers with time-delayed 

connections to capture temporal information. A similarity 

matrix is calculated using the extracted x-vectors, where 

each element represents the similarity between two 

segments. A clustering algorithm, such as Agglomerative 

Hierarchical Clustering (AHC) or Spectral Clustering, is 

employed to group similar x-vectors together. Each 

cluster is associated with a distinct speaker. The system 

assigns a unique speaker identity to each segment. This 

facilitates the identification of instances where one 

speaker stops speaking and another begins(Snyder, D., 

2018).  While TDNNs are effective in generating robust 

speaker embeddings, they fail to address the challenge of 

overlapping speech, which persists as a limitation during 

the clustering phase. 

3.4.3 Fully Supervised UIS-RNN Model 

The UIS-RNN represents a significant advancement in fully 

supervised speaker diarization, offering a sophisticated 

framework for temporal data partitioning and clustering 

through sample-based learning. Operating within a fully 

supervised paradigm, the model leverages high-quality, 

time-stamped speaker annotations to establish precise 

relationships between acoustic features and speaker 

identities, resulting in demonstrably superior 

performance compared to traditional unsupervised 

approaches. This supervised methodology enables direct 

learning of speaker-specific characteristics, facilitating 

more effective pattern recognition and temporal 

segmentation.   

The architectural implementation of UIS-RNN comprises 

three LSTM layers with 256 hidden units, incorporating 

256-dimensional speaker embedding vectors for robust 

speaker representation. The model implements a 

distance-dependent Chinese restaurant process for 

modeling speaker transitions, enabling dynamic speaker 

modeling without requiring prior knowledge of the 

number of speakers. The training protocol utilizes the 

Adam optimizer with a learning rate of 1e-3, processing 

data across 50 epochs with 32-sample batches. Speaker 

transitions are managed through a 0.5 probability 

threshold, while speaker similarity assessments employ 

cosine similarity metrics for precise discrimination.  

The system achieved impressive results on the NIST SRE 

2000 CALLHOME dataset, outperforming state-of-the-art 

methods with a diarization error rate of 7.6% (Zhang, A., 

et al., 2019). Parameter sharing across RNNs enhances 

the model's ability to generalize to new speakers while 

improving computational efficiency. This architectural 

approach offers significant advantages, particularly in 

terms of dynamically modeling speaker transitions and 

effectively handling overlapping speech scenarios. The 

model's implementation of unbounded interleaved states 

allows it to adapt to varying numbers of speakers, making 

it particularly effective for real-world applications where 

the number of speakers is not known in advance. 

The diarization system utilises the same segmentation 

module and embedding extraction module as in another 

study, but replaces the clustering module with an infinite 

interval state RNN (Wang, Q., et al., 2018). This 

modification enables real-time processing capabilities 

while maintaining the quality standards typically 

associated with offline methods. The Figure 2 illustrates 

the generative process of the UIS-RNN model. In the 

diagram, 𝑥𝑡 represents the input sequences provided to 

the model at each time step, while ℎ𝑡 denotes the hidden 

states, which capture the temporal dependencies learned 

from the input sequences. 𝑚𝑡 indicates the intermediate 

states or transitions of the model, determining which 

state is active at a given time step. 𝑦𝑡  represents the 

predicted labels at each time step, with different labels 

(𝑦𝑡  =1,2,3,4) illustrated using distinct colors. The lines and 

arrows depict the flow of information between inputs and 

hidden states, as well as the transitions of hidden states 

over time. Solid lines represent deterministic 

connections, whereas dashed lines indicate probabilistic 

dependencies. 

 
Figure 2. The UIS-RNN generation process. Colours indicate 

labels for speaker segments (Zhang, A., et al., 2019). 

These systems leverage detailed temporal labels during 

the training phase, enabling the extraction of speaker-

specific characteristics from unambiguous exemplars. 

This approach demonstrates particular efficacy in 

domains where annotated training data is readily 

accessible, facilitating the establishment of robust 

speaker identification frameworks. Empirical evidence 

indicates that supervised approaches achieve 
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substantially lower error rates in terms of data dispersion 

compared to their unsupervised counterparts, primarily 

due to their capacity to establish direct correlations 

between acoustic features and speaker identities. The 

architectural sophistication of fully supervised systems 

enables automatic determination of speaker cardinality 

while implementing advanced modeling techniques, 

specifically recurrent neural networks (RNNs), to address 

the inherent complexities of speaker diarization tasks. 

This integration of supervised learning paradigms with 

sophisticated neural architectures facilitates more precise 

speaker discrimination and temporal segmentation, 

establishing a robust framework for complex speaker 

diarization scenarios. 

3.5 Experimental Setup 

The experimental anlayses were conducted on a 

computer system equipped with an 11th Gen Intel(R) 

Core(TM) i7-1165G7 2.80GHz processor and 16GB RAM. 

The software environment and tools were configured as 

follows: 

The system operated on Windows 10 Pro, with Python 3.8 

serving as the primary programming language. PyTorch 

framework was employed for the implementation of 

deep learning models. Audio data processing and feature 

extraction were performed using the Librosa library. For 

data preprocessing and analysis phases, NumPy, Pandas 

and SciPy libraries. 

The model training and evaluation processes leveraged 

GPU support provided by the Google Colab Pro platform. 

The training duration varied across models, with EEND 

requiring approximately 36 hours, UIS-RNN requiring 18 

hours, and TDNN-based systems completing in 8 hours. 

Performance evaluations and comparative analyses were 

conducted on the local computer system. 

Audio file preprocessing and segmentation were 

accomplished using PyDub and Wave libraries, while 

custom Python scripts were developed for calculating 

evaluation metrics. All code development processes were 

carried out in the Visual Studio Code integrated 

development environment.  

This setup enabled efficient implementation and 

evaluation of the speaker diarization models while 

maintaining reproducibility of results. This detailed 

specification of the experimental infrastructure enhances 

the reproducibility of our research and provides readers 

with a thorough understanding of the computational 

resources utilised in this study. 

4. Results and Discussions 

In this investigation, a comprehensive comparative 

analysis was conducted between traditional clustering 

methods and new deep learning models on the CallHome 

dataset. DER and key challenges metrics were used to 

compare the traditional and deep learning models for 

speaker diarization. The data presented in Tables 1, 2, 3 

and 4 demonstrate the performance values for each deep 

learning model in comparison to traditional methods.  

Table 5 illustrates the comparative summary of all the 

discussed techniques on challenges of speaker 

diarization. 

In comparison, EEND significantly reduces the DER, 

particularly in overlapping speech where it achieved 

14.6%. The overall DER for EEND on CallHome is 12.6%, 

representing a substantial improvement over the 23.7% 

DER observed with traditional clustering methods. This 

enhancement in performance can be attributed to EEND's 

end-to-end architecture and sophisticated attention 

mechanisms, enabling more effective speaker separation 

in complex acoustic environments. 

Table 1. Performance of traditional clustering-based methods and EEND on the CallHome dataset. 

Method 
DER 

(Oveall) 
DER 

(Overlapping Speech) 
DER 

(Non-overlapping Speech) 

Traditional Clustering Methods (x-vector + Spectral Clustering) 23.7% 35% 13-15% 
EEND (End-to-End Neural Diarization) 
 

12.6% 14.6% 10-12% 

 

Table 2. Performance of traditional clustering-based methods and TDNN on the CallHome dataset. 

Method 
DER 

(Oveall) 
DER 

(Overlapping Speech) 
DER 

(Non-overlapping Speech) 

Traditional Clustering Methods (x-vector + Spectral 

Clustering+AHC) 
23.7% 35% 13-15% 

TDNN (Time-delayed neural network) 23% 35% 12-14% 

 

While TDNN-based methods improve the quality of 

speaker embeddings (e.g., through x-vectors), they still 

encounter limitations due to the traditional clustering 

step. The overall DER remains approximately 23% for both 

traditional clustering-based methods and TDNN-based 

methods when applied to the CallHome dataset, with the 
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DER for overlapping speech hovering ranging 35%. 

Systems based on TDNNs demonstrated slight 

improvements in performance for non-overlapping 

speech scenarios, with DER around 12-14%, compared to 

13-15% for traditional clustering-based systems. 

Consequently, the overall DER and overlapping speech 

DER figures are analogous to those of traditional x-vector 

systems. The Fully Supervised UIS-RNN model 

significantly outperformed traditional clustering-based 

diarization methods on the CallHome dataset, achieving a 

much lower DER of 7.6% overall. Its ability to handle 

overlapping speech and dynamically manage speaker 

transitions gives it a clear advantage, particularly in 

complex, real-world scenarios with multiple speakers. 

This result further demonstrates that fully supervised, 

sequence-aware models like UIS-RNN represent a 

substantial advancement in speaker diarisation 

technology. 

Comparative analysis of performance across diverse 

acoustic conditions reveals distinct patterns in 

methodological efficacy. In non-overlapping speech 

scenarios, all deep learning approaches demonstrated 

measurable improvements over traditional methods, 

with the UIS-RNN architecture achieving particularly 

significant enhancements in accuracy. For overlapping 

speech conditions, both EEND and UIS-RNN architectures 

substantially outperformed traditional methodologies 

and TDNN-based approaches, demonstrating their 

superior capability in managing simultaneous speaker 

scenarios.  The comparative performance across different 

methodologies and scenarios is illustrated in Figure 3, 

which presents the evolution of DER across various 

methods and acoustic conditions, clearly demonstrating 

the superior performance of deep learning approaches, 

particularly in challenging overlapping speech scenarios.

Table 3. Performance of traditional clustering-based methods vs. Fully Supervised UIS-RNN on the CallHome dataset. 

Method 
DER 

(Oveall) 
DER 

(Overlapping Speech) 

DER  

(Non-overlapping Speech) 

Traditional Clustering Methods (x-vector + Spectral 

Clustering) 
23.7% 35% 13-15% 

Fully Supervised UIS-RNN 7.6% 10-12% 5-7% 

 

 
Figure 3. Evolution of Diarization Error Rate (DER) by methods and scenario. 

 

Table 4. Performance of Traditional Clustering-Based Methods and Deep Learning Models on the CallHome Dataset. 

Method Overall DER DER (Overlapping Speech) DER (Non- Overlapping Speech) 

Traditional 
Methods 

Automatically adapts to 
speaker variations 

Relies on x-vectors to handle speaker 
variability 

Handles speaker variability well, 
especially for known speakers 

TDNN-based 
systems 

Computationally 
expensive training phase 

Efficient but clustering is computationally 
expensive with larger datasets or many 

speakers 

RNNs and supervision add high 
complexity 

EEND 
Excellent performance to 

handle overlaps 
Struggles with overlaps. 

More effective than TDNN, but 
not as effective as EEND 

UIS-RNN 
Training is resource-

intensive 
Scalable but clustering slows RNNs harder to scale 
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Table 5. Comparison of traditional methods and new deep learning models on the key challenges of speaker diarization. 

Metric 
Traditional Clustering 

Methods 
EEND TDNN (x-vectors + Clustering) 

Fully Supervised  
(UIS-RNN) 

Speaker 
Variability 

Prone to errors with 
speaker variability. 

Automatically adapts 
to speaker variations 

Relies on x-vectors to handle 
speaker variability 

Handles speaker 
variability well, 

especially for known 
speakers 

Computational 
Complexity 

Clustering is 
moderate,but 

struggles with large 
datasets. 

Computationally 
expensive training 

phase 

Efficient but clustering is 
computationally expensive 

with larger datasets or many 
speakers 

RNNs and supervision 
add high complexity 

Overlapping 
Speech Handling 

High DER in 
overlapping speech 

scenarios. 

Excellent 
performance to 
handle overlaps 

Struggles with overlaps. 
More effective than 

TDNN, but not as 
effective as EEND 

Scalability 
Struggles with large 
datasets and a high 
number of speakers 

Training is resource-
intensive 

Scalable but clustering slows RNNs harder to scale 

Real-Time 
Applicability 

Relatively lightweight 
and applicable in real-

time systems 

High computational 
cost 

Efficient but clustering delays 
Real-time performance 

limited with longer 
conversations by RNNs 

 

4.1. Computational Complexity and Real-time 

Implementation Considerations 

The implementation of advanced deep learning 

architectures including EEND, TDNN, and UIS-RNN 

introduces significant computational considerations that 

warrant careful examination, particularly for real-time 

applications. While EEND demonstrates superior 

performance in managing overlapping speech with a DER 

of 12.6%, its neural network architecture and self-

attention mechanisms require substantial computational 

resources. The model's performance advantages are 

accompanied by increasing processing demands, 

particularly in scenarios involving multiple speakers and 

extended conversations. 

TDNN architectures, despite offering improved speaker 

embeddings through x-vector extraction, present 

substantial computational demands during both training 

and inference phases. The time-delayed layers, while 

effective for capturing temporal dependencies, require 

significant memory resources for maintaining multiple 

time-steps of speech features. The computational 

complexity increases linearly with the number of time-

delay layers and the dimension of the feature 

representations, potentially impacting real-time 

processing capabilities. 

Similarly, while the UIS-RNN model achieves optimal 

performance with a DER of 7.6%, this enhanced 

performance necessitates significant computational 

overhead. The model's implementation of parameter-

sharing RNNs and distance-dependent Chinese restaurant 

processes for speaker clustering adds complexity to real-

time processing capabilities. These computational 

demands become particularly evident in scenarios 

involving multiple speakers and variable acoustic 

conditions. For real-time applications, considerations 

emerge regarding the latency effects of processing 

overlapping speech segments, resource allocation for 

maintaining speaker embeddings, computational 

scalability with increasing numbers of speakers, and the 

balance between model processing efficiency. 

5. Conclusions 

Traditional speaker diarization methods are effective in 

controlled environments and scenarios when 

computational resources are limited. However, these 

methods often encounter challenges in terms of 

scalability and accuracy in more complex, real-world 

scenarios, particularly in the context of overlapping 

speech or variable acoustic conditions. While traditional 

techniques can be beneficial in constrained situations, 

their limitations become apparent in dynamic or noisy 

environments. 

Conversely, deep learning methods have made notable 

advancements by utilising neural networks to 

automatically extract features from data, which enhances 

accuracy in these challenging scenarios. These 

approaches stand out for their flexibility and ability to 

generalize well across varied datasets. However, deep 

learning models require significant amounts of labelled 

data, considerable computational power, and extended 

training durations. 

TDNNs provides better speaker representation, resulting 

in clearer speaker separation when speech segments do 

not overlap. However, the improvements achieved by 

TDNN-based systems are incremental, particularly when 

dealing with overlapping speech and multispeaker 

interactions. To overcome these challenges, more 
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advanced techniques such as End-to-End Neural 

Diarization (EEND) and UIS-RNN have proven to be more 

effective. These models have been developed to address 

the issue of overlapping speech and to manage dynamic 

speaker transitions more effectively. They have been 

demonstrated to perform significantly better than 

traditional and TDNN-based systems in complex 

environments. 

Overlapping speech presents a significant and persistent 

challenge in speaker diarization, as it requires the 

accurate separation of simultaneously occurring vocal 

signals. Traditional clustering-based methods, which rely 

handcrafted features and statistical assumptions, leading 

to high Diarization Error Rates (DER). While Time Delay 

Neural Networks (TDNN) enhance speaker embeddings 

through x-vectors, the clustering phase remains 

inadequate for resolving the complexities of overlapping 

speech. In contrast, End-to-End Neural Diarization (EEND) 

signifies a notable advancement by employing self-

attention mechanisms to directly model and differentiate 

overlapping signals. This approach reduces the DER for 

overlapping speech substantially. However, its scalability 

is limited, particularly in scenarios involving a greater 

number of speakers than the network is trained to 

accommodate. The Fully Supervised UIS-RNN further 

enhances performance by dynamically managing speaker 

transitions and modeling overlapping speech with high 

precision, achieving the lowest DER among the methods 

evaluated. Nevertheless, its computational intensity and 

reliance on detailed, time-stamped annotations constrain 

its applicability in large-scale or real-time contexts. These 

findings underscore the critical need for diarization 

approaches that effectively address overlapping speech 

while maintaining a balance between computational 

efficiency, scalability, and accuracy. 

The future direction of speaker diarisation research 

necessitates investigation of several critical domains. The 

integration of sophisticated neural network architectures, 

particularly hybrid attention mechanisms and graph 

neural networks, emerges as fundamental to enhancing 

system performance in overlapping speech scenarios. 

These architectures demonstrate significant potential for 

modeling inter-speaker dynamics and facilitating real-

time detection of overlapping speech patterns. 

Furthermore, the integration of multimodal approaches, 

specifically the utilization of visual cues and spatial audio 

information, presents promising avenues for advancing 

speaker identification and localization performance. 

The scalability dimension presents another crucial area 

for investigation, necessitating the development of 

computationally efficient models capable of processing 

multiple speakers while maintaining adaptability across 

diverse acoustic environments. In this context, the 

optimization of computational resources through model 

compression techniques and enhanced inference 

methodologies has emerged as a critical consideration. 

Moreover, the development of unified frameworks that 

integrate complementary tasks, such as automatic speech 

recognition and diarization, demonstrates potential for 

both performance enhancement and resource 

optimization, representing a significant advancement in 

system architecture. 

Finally, the establishment of standardised evaluation 

frameworks, encompassing novel metrics for assessing 

overlapping speech performance and implementing 

consistent testing protocols, constitutes a fundamental 

requirement for rigorous assessment of technological 

advancements in this domain. These research trajectories 

collectively aim to enhance the robustness and practical 

applicability of speaker diarization systems in real-world 

implementations while addressing current technological 

limitations. The systematic progression in these areas is 

anticipated to facilitate the development of more 

sophisticated and adaptable speaker diarization systems, 

capable of effectively managing increasingly complex 

acoustic scenarios in real-world applications. 
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