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ABSTRACT  

This paper investigates the influence of external information flows from the 

European Union and the United States on the volatility of the FTSE 100 index, using 

realized variance (RV) data derived from 5-minute intraday intervals. By 

categorizing external factors into UK-specific, neighbouring, and wider 

international groups, the study integrates these variables into the HAR-RV model to 

improve the accuracy of volatility forecasts. The empirical results indicate that 

interntional and neighbouring countries’ factors, particularly US market indicators 

such as the S&P 500 and NASDAQ, significantly impact FTSE 100 volatility, whilst 

domestic UK factors contain no additional information. The international Kitchen-

Sink model, which includes all international variables, proves to be the most 

effective in the in-sample and out-of-sample forecasting. The use of high-frequency 

data is crucial in this context, as it allows for more precise measurement and 

forecasting of market volatility. These findings emphasize the importance of 

incorporating a broad range of external factors in modelling and forecasting the 

volatility of internationally-oriented stock indices such as the FTSE 100.  
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ÖZET 

Bu makale, Avrupa Birliği ve Amerika Birleşik Devletleri'nden gelen dış bilgi 

akışlarının FTSE 100 endeksinin oynaklığı üzerindeki etkisini, 5 dakikalık gün içi 

verilerden türetilen gerçekleşen varyans (RV) verilerini kullanarak araştırmaktadır. 

Dış faktörler, Birleşik Krallık'a özgü, Avrupa bölgesi ve ABD odaklı gruplar olarak 

kategorize edilerek, bu değişkenler HAR-RV modeline entegre edilmiştir ve böylece 

oynaklık tahminlerinin doğruluğu artırılmıştır. Ampirik sonuçlar, küresel ve 

bölgesel faktörlerin, özellikle S&P 500 ve NASDAQ gibi ABD piyasa 

göstergelerinin, FTSE 100 oynaklığı üzerinde önemli bir etkisi olduğunu, ancak 

Birleşik Krallık'a özgü yerel faktörlerin ek bilgi içermediğini göstermektedir. Tüm 

ABD odaklı değişkenleri içeren ABD odaklı Kitchen-Sink modeli, hem örnek içi hem 

de örnek dışı tahminlerde en etkili model olduğunu kanıtlamıştır. Yüksek frekanslı 

verilerin kullanımı bu bağlamda kritik öneme sahiptir, çünkü piyasa oynaklığının 

daha hassas bir şekilde ölçülmesine ve tahmin edilmesine olanak tanımaktadır. Bu 

bulgular, FTSE 100 gibi uluslararası yönelimli hisse senedi endekslerinin 

oynaklığını modelleme ve tahmin etmede geniş bir dış faktör yelpazesinin dahil 

edilmesinin önemini vurgulamaktadır.  
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1. INTRODUCTION 

Employing tick-by-tick data is quite important for generating more accurate measurement and forecasting of stock 

market volatility. However, the use of high frequency data in volatility estimation without aggregating it to a daily 

level has several challenges, such as market microstructure noise, large data volumes, timestamp accuracy, model 

selection, and computational complexity. To address these issues, Andersen & Bollerslev (1998) propose a method 

that aggregates intraday data to an inter-daily level, creating a volatility measure known as Realized Variance 

(RV), which is calculated by summing the squared intraday returns. 

When it comes to analyzing stock market volatility, it is influenced not only by domestic factors but also by 

neighbouring and wider international factors, largely due to the growing internationalization and financialization 

of markets. Incorporating these external factors into volatility forecasting is essential for producing accurate 

forecasts, particularly for a international index such as the FTSE 100, which includes the largest and most 

internationally-focused companies in the United Kingdom (UK).  

The HAR-RV specification, developed by Corsi (2009), is the prevailing approach for modelling and forecasting 

realized volatility. Most of the advancements in this field have focused on the baseline HAR-RV model, without 

incorporating any external variables (Gkillas, Gupta, & Pierdzioch, 2019; Wang et al., 2020; Christensen, 

Siggaard, & Veliyev, 2023). However, the role of various parameters in improving the forecasting performance of 

the HAR-RV model is quite important to obtain better volatility forecasts. Additionally, prior studies (Liang, Wei, 

Lei, & Ma, 2022; Asai et al., 2020; Bonato et al., 2020; Demirer et al., 2021; Bouri et al., 2021; Salisu et al., 2022; 

Luo et al., 2022) have shown the importance of macroeconomic, financial, behavioral, and climate-related factors 

in influencing market behaviour, yet the specific context of the FTSE 100 remains unaddressed as a internationally 

interconnected but UK-centric index. The innovative aspect of this paper lies in its ability to bridge this gap through 

a detailed integration of external volatilities, providing novel insights into volatility forecasting within the context 

of a major European stock market index.  

In this regard, this paper uniquely contributes to the literature by adapting the HAR-RV model specifically to the 

FTSE 100 index and exploring its sensitivity to external volatilities categorized as local, neighbouring, and 

international. In doing so, the HAR-RV model with an exogenous parameter (i.e. HAR-RV-X) is employed to 

integrate these external factors into the baseline HAR-RV model for the FTSE 100. By analysing the in-sample 

and out-of-sample performance of various combinations of these variables, including individual factors, simple 

averages of group forecasts, and the comprehensive Kitchen-Sink approach, the research seeks to determine the 

most effective methods for forecasting FTSE 100 volatility. Domestic factors pertain specifically to the UK and 

include elements such as bond yields, the UK Economic Policy Uncertainty (UKEPU) index, and LIBOR rates. 

Neighbouring factors consist of key European stock indices, including Germany's GDAXI, France's FCHI, Italy's 

FTMIB, and the broader STOXX Europe index. The international category largely includes US indicators, such 

as the S&P 500 (SPX), Dow Jones Industrial Average (DJI), NASDAQ (IXIC), the CBOE Volatility Index (VIX), 

and commodity prices like oil and gold. 

While existing research extensively explores the role of both international and neighbouring market information 

channels in shaping the dynamics of various stock market indices, a comprehensive investigation into how these 

external factors influence the FTSE 100 remains limited. Most studies have primarily focused on other major 

indices, often neglecting a detailed examination of the cross-market effects specifically affecting the FTSE 100. 

As a result, there exists a significant gap in the literature regarding the extent to which external information flows—

originating from both geographically proximate and globally dominant financial markets—contribute to the 

predictability and volatility of this key index. Addressing this research gap is crucial for advancing the 

understanding of the FTSE 100’s response to external financial shocks and market developments. 

This study aims to fill this void by systematically formulating and empirically testing two key hypotheses. The 

first hypothesis posits that incorporating local, neighbouring, and international information channels into 

forecasting models significantly enhances the predictive accuracy of the Heterogeneous Autoregressive Realized 

Volatility (HAR-RV) model when applied to the FTSE 100 index. In particular, the inclusion of these external 

information flows is expected to refine volatility forecasts, capturing the spillover effects and interdependencies 

that conventional models might overlook. 

The second hypothesis examines the differential impact of various external factors on the FTSE 100’s volatility. 

Specifically, it assesses how the predictive significance of regional market indicators, such as key European stock 

indices, compares to that of broader international influences, including U.S. market indicators and global 

commodity price movements. By dissecting these relationships, the study aims to determine whether 

geographically closer financial centres exert a stronger influence on the FTSE 100 than distant but globally 

dominant markets, such as the U.S. Additionally, it investigates whether specific asset classes—such as 

commodities—play a meaningful role in shaping volatility patterns. 
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By focusing on these hypotheses, this research contributes to the broader literature on cross-market information 

transmission and provides valuable insights into the unique volatility dynamics of the FTSE 100. Understanding 

these interactions is particularly relevant in the context of growing global financial interconnectedness, where 

shocks and market movements in one region can quickly propagate across borders. The findings of this study 

underscore the importance of integrating a diverse set of external information variables when modelling volatility, 

ultimately offering a more comprehensive and nuanced framework for forecasting the behaviour of the FTSE 100 

in relation to international financial developments. 

This paper is organized as follows: Section 2 reviews the pertinent literature, while Section 3 describes the data 

and methodologies used in the research. Following that, Section 4 presents the empirical findings along with their 

analysis. Finally, Section 5 offers the concluding remarks. 

2. LITERATURE REVIEW 

Realized volatility (RV), first introduced by Andersen and Bollerslev in 1998, is calculated as the sum of squared 

intraday returns. This method provides a more accurate estimate of daily volatility compared to traditional 

measures. While early studies used the ARFIMA model to predict RV, Corsi (2009) identified its limitations, 

highlighting the model's lack of economic clarity. To address this, Corsi developed the Heterogeneous 

Autoregressive model of Realized Variance (HAR-RV), based on the Heterogeneous Market Hypothesis (HMH) 

proposed by Muller et al. (1997). The HAR-RV model has become foundational in volatility forecasting, modeling 

daily RV by incorporating past daily, weekly, and monthly components. It effectively captures different volatility 

patterns, reflecting the varied behaviors of market participants and aligning with both short-term and long-term 

trading strategies.  

Recent progress in volatility modelling, particularly within the HAR framework, has emphasized enhancing the 

standard HAR model by integrating realized semi-variances, jump components, asymmetries, and leverage effects, 

which are regarded as being more closely connected to the dependent variable since these explanatory variables 

capture the well-established characteristics of volatility. Research by Barndorff-Nielsen et al. (2010) and Corsi & 

Reno (2012), among others, also points out the significance of these improvements in improving model 

performance. For instance, Gkillas, Gupta, & Pierdzioch (2019) demonstrate the inclusion of realized skewness 

and kurtosis to improve the model's explanatory power. Similarly, Wang et al. (2020) emphasizes leveraging high-

frequency data from international indices, while Christensen, Siggaard, & Veliyev (2023) inspect the role of 

machine learning in enriching HAR models fort he Dow Jones Industrial Average index constituents.  

Another strand of the research is the inclusion of exogenous variables into the HAR-RV model (known as HAR-

RV-X) to improve forecasting accuracy. Studies by Peng et al. (2018) and Wang (2019) examine the benefits of 

incorporating international stock market indices and the CBOE VIX index, respectively, into the HAR-RV 

framework, finding improved volatility forecasts for Chinese stock market. Liu et al. (2019) further advances this 

methodology by employing a time-varying parameter model and combination strategies to address overfitting 

concerns. Similarly, Dutta & Das (2022) integrate time-varying jump information from the VIX into the HAR-RV 

framework, demonstrating a positive impact on the S&P 500 index, and applied it to short-, medium-, and long-

term volatility components. Additionally, research by Duan et al. (2018) and Mei et al. (2017) examine the role of 

economic policy uncertainty (EPU), realized skewness, and kurtosis in improving volatility forecasts. Their 

findings suggest the value of these factors, particularly in the context of regime-switching models and long-term 

forecasting. In the scope of commodity markets, Degiannakis & Filis (2017) apply a similar methodology to 

forecast oil price volatility. Their methodology incorporates various exogenous volatilities from multiple asset 

classes, which informing its superior forecasting performance. 

Kambouroudis et al. (2021) emphasizes the significance of implied volatility (IV) data in forecasting volatility, 

proposing an extended HAR-RV-IV model that enhanced volatility prediction across 10 international stock 

markets. This model outperforms the extended HAR models incorporating other variables such as leverage effects 

and overnight returns. Liang, Wei, Lei, & Ma (2022) bring new comprehensive evidence regarding HAR-RV-

AVERAGE as an outperforming model for forecasting international equity market realized volatility. Liang, Li, 

Ma, & Zhang (2022) utilize the exponentially weighted moving average (EWMA) to redefine the weekly and 

monthly components of the HAR model, thereby increasing the use of both recent and historical information. They 

develop the EWMA-HAR-RV model to predict realized volatility (RV) in the international equity investment 

market. Korkusuz et al. (2023) uses various range estimators within the HAR-RV-X framework to forecast 

volatility in the Group of Seven (G7) stock markets, where the inclusion of exogenous overnight volatility variables 

improve forecasts for nearly all markets. One another study (Nishimura & Sun, 2024) employs HAR-RV model 

to analyze whether newly select U.S. President Trump’s tweets influence the EU stock market volatility. Their 

work finds that Trump's tweets significantly amplify stock market volatility in Germany and France, while their 

impact on the UK's stock market volatility is considerably weaker.  
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Prior studies have explored the predictive value of information derived from an extensive range of macroeconomic, 

financial, behavioral, and climate-related variables, utilizing a broad array of both linear and nonlinear univariate 

and multivariate models (see, for example, Asai et al., 2019; Asai et al., 2020; Bonato et al., 2020; Demirer et al., 

2020; Demirer et al., 2021; Gkillas et al., 2020; Bouri et al., 2021; Gupta & Pierdzioch, 2021b; Salisu et al., 2022; 

Luo et al., 2022, along with references cited therein). Despite the extensive research on volatility forecasting 

models, particularly the advancements in incorporating exogenous variables into the HAR framework, there 

remains a notable gap in the literature regarding the FTSE 100 stock market. Whilst studies successfully improve 

volatility forecasts for various international (mostly Chinese and American) markets by integrating variables such 

as implied volatility, overnight returns, and time-varying jump information, the FTSE 100 has not been thoroughly 

examined in this context. Specifically, the impact of exogenous variables on the volatility forecasting of the FTSE 

100 index is understudied. However, understanding the impact of cross-market information on the FTSE 100, is 

essential for investors, policymakers, and market participants who have certain levels of risk which they can bear. 

This highlights the need for further investigation in this area.  

This study investigates the cross-market information relationships of the FTSE100 from the perspective of local, 

neighbouring, and international information channels. By examining the FTSE 100 stock market, this work aims 

to uncover the unique volatility patterns the UK has and their relationship with international financial markets as 

well as local and neighbouring markets. The analysis provides a comprehensive view of how the FTSE100 reacts 

to and interacts with external market shocks. By doing so, this paper contributes to the ongoing debate in this 

related literature on volatility modelling and forecasting. 

3. METHODOLOGY AND DATA 

3.1. Methods: Realized volatility (RV) and HAR-RV model 

3.1.1. Realized volatility (RV) 

Volatility is not directly observable, making it necessary to use a proxy to estimate true volatility in financial 

markets. Previously, researchers rely on daily squared returns as a simple and accessible proxy. However, this 

measure is found to have significant limitations, particularly in its inability to capture the fluctuations that occur 

within a trading day. In their groundbreaking work, Andersen & Bollerslev (1998) demonstrate that daily squared 

returns are an inadequate representation of market volatility. Therefore, they introduce the idea that cumulative 

intraday squared returns provide a far more accurate and reliable measure of volatility. 

Building on this concept, Andersen, Bollerslev, Diebold, & Labys (2003) formalize the method, known as "realized 

variance," which calculates volatility as the sum of squared intraday returns over a specified period. This 

methodology captures the richness of high-frequency data, providing a more detailed understanding of market 

dynamics. Realized variance effectively accounts for the variability that daily squared returns often miss, such as 

sudden price jumps and intraday trading patterns. 

While both realized variance and daily squared returns are unbiased estimators of volatility, realized variance is 

widely considered far more efficient (Andersen & Bollerslev, 1998). This efficiency arises because realized 

variance incorporates information from high-frequency data, which reduces estimation error and enhances 

precision. Moreover, its reliance on intraday data allows it to respond more dynamically to market events, making 

it especially valuable for applications such as risk management, derivative pricing, and econometric modeling of 

volatility. The adoption of realized variance has thus become a standard in modern volatility research, highlighting 

its superiority over traditional methods. 

𝑅𝑉𝑡 =  ∑ 𝑟𝑡,𝑖
2𝑚

𝑖=1                                                                               (1) 

As shown in Equation 1, realized variance is computed as the sum of squared intraday returns, where m represents 

the number of intraday observations for day t. In theory, increasing the value of m improves the accuracy of daily 

volatility estimates. However, if m becomes too large, the efficiency of high-frequency data can be compromised 

due to the microstructure noise effect. Andersen, Bollerslev, Diebold, & Labys (2003) along with Hol & Koopman 

(2002) suggest an optimal frequency interval between 5 and 30 minutes. In a more recent study, Liu, Patton, & 

Sheppard (2015) compared over 400 realized measures and found that it is difficult to outperform five-minute 

realized variance. Additionally, Barndorff-Nielsen et al. (2010) introduced the decomposition of realized variance 

into positive and negative semivariances, or "good" and "bad" volatilities. 

Barndorff-Nielson et al. (2010) decompose the realized variance into positive and negative realized semivariances 

or good and bad volatilities.  

                                                       𝑅𝑆𝑉𝑡
+ =  ∑ 𝑟𝑡,𝑖

2  𝐼 {𝑚
𝑖=1 𝑟𝑡,𝑖 > 0}                                                       (2) 

                                                       𝑅𝑆𝑉𝑡
− =  ∑ 𝑟𝑡,𝑖

2  𝐼 {𝑚
𝑖=1 𝑟𝑡,𝑖 < 0}                                                       (3) 
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where  𝐼 {∙} is an indicator function. We should also note that 𝑅𝑉𝑡 = 𝑅𝑆𝑉𝑡
+ + 𝑅𝑆𝑉𝑡

−. 

3.1.2. HAR-RV model 

The HAR-RV model stems from the heterogeneous market hypothesis introduced by Müller, Dacorogna, Dave, 

Olsen, Pictet, & von Weizsäcker (1997). This hypothesis suggests that there are three distinct types of investors, 

each with varying risk preferences and reactions to the same market information. Building on this hypothesis, the 

same researchers developed the Heterogeneous Autoregressive Conditional Heteroskedasticity (HARCH) model. 

Inspired by the HARCH model and its foundational hypothesis, Corsi (2009) introduced the HAR-RV model, 

which functions as an additive cascade model, incorporating different components of volatility. The model is 

formally defined as follows: 

                𝑅𝑉𝑡+ℎ
𝑑 =  𝛽0 + 𝛽𝑑𝑅𝑉𝑡

𝑑 + 𝛽𝑤𝑅𝑉𝑡
𝑤 + 𝛽𝑚𝑅𝑉𝑡

𝑚 + 𝜀𝑡+ℎ                                      (4) 

where 𝑅𝑉𝑡
𝑑 is daily realized volatility; 𝑅𝑉𝑡

𝑤 refers to weekly realized volatility, and then 𝑅𝑉𝑡
𝑚 indicates monthly 

realized volatility. 𝑅𝑉𝑡
𝑤 and 𝑅𝑉𝑡

𝑚 can easily be calculated as follows: 

𝑅𝑉𝑡
𝑤 =

1

5
(𝑅𝑉𝑡−5

𝑑 + 𝑅𝑉𝑡−4
𝑑 + ⋯ + 𝑅𝑉𝑡−1

𝑑 ) 

                                                         𝑅𝑉𝑡
𝑚 =

1

22
(𝑅𝑉𝑡−22

𝑑 + 𝑅𝑉𝑡−21
𝑑 + ⋯ + 𝑅𝑉𝑡−1

𝑑 ) 

The main point of the HAR-RV model is to predict future volatility using three different volatility components: a 

daily (𝑅𝑉𝑡
𝑑), a weekly (𝑅𝑉𝑡

𝑤), and a monthly (𝑅𝑉𝑡
𝑚) components. The HAR-RV model can simply be estimated 

by the ordinary least square (OLS) method. The model is such a good alternative to the ARFIMA model. The 

HAR-RV model can also capture long memory characteristics of volatility even though it is not in the class of long 

memory models. In practice, the HAR-RV model is found to be such a promising model as the model performance 

is remarkably good in spite of its simple structure.    

In financial markets, different types of investors pursue various objectives. Some are primarily hedgers, while 

others focus on speculation. The HAR-RV model aims to capture these differing investor reactions through a 

straightforward autoregressive process. This model categorizes investors into three groups: short-term, medium-

term, and long-term, represented by the components, 𝑅𝑉𝑡
𝑑, 𝑅𝑉𝑡

𝑤, and 𝑅𝑉𝑡
𝑚, respectively. Each of these components 

reflects how different investors influence current realized volatility. Essentially, the model's coefficients offer 

insight into how various market participants perceive and respond to volatility. Additionally, the HAR-RV model 

effectively captures the persistence of realized volatility.  

In the HAR-RV-X framework, exogenous variables are incorporated in several ways, such as using each variable 

individually, combining forecasts, or employing the Kitchen-Sink approach, which includes a set of exogenous 

variables in the same model. The model specifications for individual forecasts and the Kitchen-Sink method are 

provided in Equations 5 and 6, respectively. 

                               𝑅𝑉𝑡+1
𝑑 =  𝛽0 + 𝛽𝑑𝑅𝑉𝑡

𝑑 + 𝛽𝑤𝑅𝑉𝑡
𝑤 + 𝛽𝑚𝑅𝑉𝑡

𝑚 + 𝜷𝑿𝑿𝒕
𝒅 + 𝜀𝑡+1                                         (5)                                       

                              𝑅𝑉𝑡+1
𝑑 =  𝛽0 + 𝛽𝑑𝑅𝑉𝑡

𝑑 + 𝛽𝑤𝑅𝑉𝑡
𝑤 + 𝛽𝑚𝑅𝑉𝑡

𝑚 + ∑ 𝜷𝒊
𝑲
𝒊=𝟏 𝑿𝒊,𝒕

𝒅 + 𝜀𝑡+1                                (6) 

In Equation 5, the exogenous component, 𝛽𝑋𝑋𝑡
𝑑, refers to the 𝑖𝑡ℎ individual exogenous volatility at day 𝑡. We can 

obtain 13 different individual HAR-RV-X model using this formula. For example, the HAR-RV-GDAXI, HAR-

RV-FCHI, HAR-RV-SPX, HAR-RV-VIX, HAR-RV-GOLD, HAR-RV-BOND, HAR-RV-EPU … are obtained 

from the abovementioned Formula 5. Equation 6 implies the Kitchen-Sink models where ∑ 𝛽𝑖
𝐾
𝑖=1 𝑋𝑖,𝑡

𝑑 , represents 

the multi-exogenous variables. 

The combination method simply takes the average of all the individual forecasts in groups. The forecast 

combinations are the simple average of all included forecasts, which can be calculated as follows: the sum of 

individual forecasts is divided to the numbers of individual forecasts.  

3.1.3. Rolling Window and Forecast Evaluation Criteria 

The rolling window technique is widely used in forecasting, and this study adopts it to generate volatility forecasts 

for stock markets. To begin, the entire dataset is divided into two parts: an initial sample and an out-of-sample 

window. There is no established consensus in the literature on the optimal selection of a forecasting window. 

However, given the primary aim of assessing out-of-sample model performance, we arbitrarily select the initial 

and out-of-sample windows, ensuring a length that allows for a proper regression fit while also maximizing the 

out-of-sample period. The rolling window method operates by sequentially adding a new observation and 

removing the oldest one, thus keeping the size of the estimation sample consistent. We focus on producing only 



KORKUSUZ 

474 

one-step-ahead volatility forecasts, as multi-step-ahead forecasts are more likely to be less accurate due to the 

reduced availability of information for further predictions.  

For evaluating the out-of-sample accuracy of the models, we utilize three widely recognized loss functions: quasi-

Gaussian log-likelihood (QLIKE), heteroskedasticity-adjusted mean squared error (HMSE), and 

heteroskedasticity-adjusted mean absolute error (HMAE), aligning with recent research practices. (e.g. Zhou, Pan, 

and Wu, 2019; Ma et al., 2018; Liu et al, 2019).  

                  𝑄𝐿𝐼𝐾𝐸 =
1

𝜏
∑ [𝑙𝑜𝑔𝑅𝑉𝑡

2̂𝑇+𝜏
𝑡=𝑇+1 +

𝑅𝑉𝑡
2̂

𝑅𝑉𝑡
2]                                                               (7)  

                  H𝑀𝑆𝐸 =
1

𝜏
∑ [1 − 𝑅𝑉𝑡

2/̂𝑇+𝜏
𝑡=𝑇+1 𝑅𝑉𝑡

2]2                                                             (8)  

                  H𝑀𝐴𝐸 =
1

𝜏
∑ |𝑇+𝜏

𝑡=𝑇+1 1 −
𝑅𝑉𝑡

2̂

𝑅𝑉𝑡
2 |                                                                          (9) 

where 𝑅𝑉𝑡
2̂  denotes the out-of-sample volatility forecast from competing models and 𝑅𝑉𝑡

2 is a proxy for true market 

volatility. 𝜏 is the number of out-of-sample forecasting days. Each one of the loss functions have a specific 

calculation method to measure the forecast error. According to Patton (2011), these three well-established loss 

functions can provide consistent rankings for competing volatility models in the case of a noisy volatility proxy. 

3.1.4. MCS procedure 

Hansen et al. (2011) introduce the well-known Model Confidence Set (MCS) procedure, which employs a specific 

elimination algorithm to identify a set of superior models. This algorithm evaluates models within a competitive 

group at a designated confidence level, determining which ones remain robust when tested against a particular loss 

function, all without relying on a predetermined benchmark model. Models that exhibit weak predictive 

capabilities are systematically excluded from the initial pool of candidates. Among the six statistics available for 

identifying superior models, Hansen et al. (2003) particularly advocate for using the range and semi-quadratic 

statistics. A brief overview of the MCS procedure is provided below. 

Let 𝐿𝑖,𝑘 denote the criterion of model 𝑖 and 𝑑𝑖,𝑗,𝑘 = 𝐿𝑖,𝑘 − 𝐿𝑗,𝑘 is the differential. The null hypothesis of MCS 

procedure is 𝐻0,𝑀 = 𝐸(𝑑𝑖,𝑗,𝑘) = 0, 𝑓𝑜𝑟 𝑖, 𝑗 ∈ 𝑀, 𝑀 ⊂ 𝑀0 and the null is tested against the alternative 𝐻1,𝑀 =

𝐸(𝑑𝑖,𝑗,𝑘) ≠ 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗 ∈ 𝑀.  

3.1.5. Research Hypotheses 

This study investigates the role of external information flows in forecasting the volatility of the FTSE 100 index 

by testing two key hypotheses. These hypotheses are formulated based on the premise that financial markets are 

highly interconnected, with both regional and international factors influencing stock market dynamics. 

Hypothesis-1: 

The inclusion of external market information enhances the forecasting accuracy of the HAR model for FTSE

 100 volatility. 

The first hypothesis examines whether integrating domestic, neighbouring, and international market information 

channels improves the predictive performance of the Heterogeneous Autoregressive Realized Volatility (HAR-

RV) model when applied to the FTSE 100 index. 

To test this hypothesis, different model specifications will be estimated, incorporating various external predictors 

alongside the standard components of the HAR-RV model. The predictive accuracy of each specification is 

evaluated using out-of-sample forecasting metrics, such as the Root Mean Squared Error (RMSE) and the Mean 

Absolute Error (MAE). Improvements in forecast performance indicate the relevance of cross-market information 

in modelling the FTSE 100’s volatility. 

Hypothesis-2:  

The predictive significance of European market indicators differs from that of U.S. market indicators and co

mmodity prices in forecasting FTSE 100 volatility. 

The second hypothesis assesses whether different categories of external factors—such as regional European 

indices and global market indicators (e.g., U.S. stock indices and commodity prices)—exert varying degrees of 

influence on the FTSE 100’s volatility. 

This hypothesis is tested by incorporating different external variables into the HAR-RV model and assessing their 

relative contributions to volatility prediction. The model's parameters will be evaluated to determine whether 

neighbouring indices or wider international indices (e.g., U.S. stock market) plays a greater role in shaping FTSE 

100 volatility patterns. To test these hypotheses, the study does employ an econometric approach that integrates 
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realized volatility modelling with external market variables. The HAR-RV model will serve as the baseline 

framework, augmented with additional terms representing external spillover effects. Alternative specifications will 

be considered to ensure robustness, and a comparative model performance analysis will be conducted to validate 

the findings. 

3.2. Data 

Daily realized variance series are collected from the Oxford-Man Institute’s Quantitative Finance Realized 

Library. According to the seminal paper of Liu, Patton, & Sheppard (2015), no measure significantly outperforms 

the 5-minute realized variance among a set of 400 different volatility estimators. Therefore, 5-min realized variance 

series are employed, which is a widely accepted robust volatility measure. Of note, employing high-frequency 

data, especially for minute-wise data, brings an important challenge in data curation process such as microstructure 

noise effect caused by bid-ask spreads, order flow irregularities, and latency issues. This difficulty could distort 

realized variance calculations to a certain extent. By adapting a 5-minute frequency that is suggested by the seminal 

paper of Liu, et al. (2015), this work minimises such distortions while ensuring that significant market movements 

are adequately captured. This study also includes a wide range of different financial and economic data.  

A diverse set of financial and economic variables is included to provide a comprehensive analysis. The data 

consists of the following stock market indices, financial variables, and economic indocators. Eight international 

stock market indices are FTSE 100 (UK), GDAXI (Germany), FCHI (France), FTMIB (Italy), STOXX50E (Euro 

Stox 50), SPX (S&P 500), DJI (Dow Jones Industrial Average), and IXIC (Nasdaq 100). Additional financial 

variables are collected from the Federal Reserve Bank of St. Louis (FRED) database, which contains the data of 

the CBOE volatility index (VIX), the Crude Oil Prices (WTI; West Texas Intermediate), the CBOE Gold ETF 

Volatility Index, the UK Government 10-year Treasury Bond Yields, and the London 12-month Interbank offered 

rates based on POUND (LIBOR-POUND). The economic indicator, the index of UK Economic Policy Uncertainty 

(EPU), is provided by the webpage of the Economic Policy Uncertainty.   

Table 1. Descriptive statistics of the series  
 Mean Std. Dev. Skew. Ex. Kur. Jarque-Bera Q(5) ADF 

Indices        

S
to

ck
 M

a
rk

et
s 

 

1. FTSE 9.91E-05 0.00024 14.986*** 314.99*** 1.09E+07*** 2602.15*** -7.975*** 

2. GDAXI 0.000110 0.00017 7.7620*** 87.446*** 863110*** 5541.95*** -7.163*** 

3. FCHI 0.000112 0.00020 10.123*** 150.49*** 2.52E+06*** 5376.08*** -7.934*** 

4. FTMIB 0.000122 0.00017 6.2168*** 58.473*** 390868*** 4748.29*** -6.651*** 

5. STOXX50E 0.000131 0.00026 10.683*** 156.23*** 2.71E+06*** 4174.94*** -9.508*** 

 6. SPX 8.31E-05 0.00021 10.834*** 154.84*** 2.67E+06*** 4770.71*** -9.261*** 

 7. DJI 8.50E-05 0.00024 12.721*** 224.01*** 5.55E+06*** 3718.72*** -9.684*** 

 8. IXIC 7.45E-05 0.00019 15.448*** 353.84*** 1.37E+07*** 4368.95*** -9.128*** 

 9. VIX 17.908 7.3291 2.7481*** 13.057*** 21950.5*** 11127.8*** -5.664*** 

 10. OIL -7.52E-06 0.01265 1.4177*** 45.893*** 231243*** 104.958*** -10.28*** 

 11. GOLD  17.555 5.2736 1.0482*** 2.0058*** 920.793*** 11536.8*** -4.377*** 

 12. BOND -0.00109 0.03915 -0.8040*** 33.515*** 123090*** 15.8668*** -9.577*** 

 13. UKEPU 331.66 206.34  2.4136*** 14.328*** 25003.1*** 4862.01*** -4.916*** 

 14. LIBOR -0.00042 0.01175 -1.0463*** 85.886*** 806962*** 255.72*** -8.677*** 

Source: GRETL software’s output. Note: Asterisk *,**, and *** denote rejections of null hypothesis at 10%, 5%, and 1% significance levels, 
respectively. The null hypothesis of the third and fourth moments are “Skewness = 0” and “Excess Kurtosis = 3”. Indices; Neighbouring (1-

5), International (6-10), Local (12-14). 

The study spans the period from July 1, 2009, to April 10, 2020. Given that stock markets in different regions 

operate on different trading calendars, it is necessary to align the datasets to shared trading days across all series. 

To address this, the following data-cleaning and alignment procedures are applied: Firstly, unmatched trading days 

(i.e., days where any market or variable lacks data) were removed, ensuring that each row corresponds to the same 

date point across all series. Secondly, cleaning procedure deals with missing or anomalous data points, which is 

addressed by cross-verification of data sources to ensure reliability. Outliers caused by sudden market closures or 

extreme events are carefully evaluated for their inclusion or exclusion to maintain dataset integrity.After alignment 

and data cleaning procedure, the final dataset consists of 2,600 observations across 12 variables, ensuring 

uniformity and consistency in analysis.  

Table 1 presents the descriptive statistics of the dataset. The data show significant skewness and leptokurtosis at 

the 99% confidence level, indicating that all the series have fat-tailed distributions. The Jarque-Bera test statistics 

confirm the non-normality of the series, also at the 99% confidence level. Additionally, the Ljung-Box statistic 
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reveals the presence of autocorrelation, as the null hypothesis of no autocorrelation up to the 5th order is rejected 

across all series. The Augmented Dickey-Fuller (ADF) test results suggest that each series is stationary, with the 

null hypothesis of a unit root being rejected for all. These results are also supported by the KPSS test, which is not 

given in the table but available upon request from the author. Line graphs are provided in Figure 1 to visually 

demonstrate these findings. 

 

Figure 1. Line graphs of the series 
Source: Figure 1 is illustrated using GRETL software, (Line graphs of the series between 2009-2020). 

4. EMPIRICAL RESULTS 

The study examines how information flows from the EU and US stock markets influence volatility forecasts of 

FTSE 100 index. The external factors are categorized as local, neighbouring, and international. Local factors 

include BOND, UKEPU, and LIBOR, whilst neighbouring factors are represented by EU stock indices (GDAXI, 

FCHI, FTMIB, and STOXX). International factors are mainly based on US data (SPX, DJI, IXIC, VIX, OIL, and 

GOLD). This classification helps determine the importance of these external volatilities in enhancing the accuracy 

of stock market predictions.  

4.1. In-Sample Analysis of FTSE 100 Using HAR-RV-X Models 

This section presents the in (full) sample volatility estimation results of various HAR-RV-X models for the FTSE 

100 stock market index. In this regards, various combinations of these external factors are integrated into the 

baseline HAR-RV model, including individual variables, a simple average of group forecasts, and Kitchen-Sink 

model that includes all additional variables at once.  

Table 2. Full sample volatility estimation results of various HAR-RV-X models  

Models 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝑿               𝑨𝒅𝒋. 𝑹𝟐 

HAR-RV (Benchmark)  2.01E-05***  0.772*** -0.017  0.041          -                  0.35 

 

Neighbouring information 

HAR-RV-GDAXI  9.06E-06*** -0.024  0.621*** -0.018  0.296***                  0.37 

HAR-RV-FCHI  1.29E-05*** -0.027  0.601*** -0.011  0.270***                  0.37 

HAR-RV-FTMIB  5.42E-06  0.0002  0.648*** -0.003  0.241***                  0.37 

HAR-RV-STOXX  1.11E-05*** -0.211***  0.611***  0.018  0.353***                  0.38 

International information 

HAR-RV-SPX  2.06E-05*** -0.082**  0.530***  0.031  0.371***                  0.39 

HAR-RV-DJI  2.07E-05*** -0.062  0.623***  0.013  0.252**                  0.38 

HAR-RV-IXIC  1.84E-05*** -0.028  0.537***  0.038  0.354***                  0.39 

HAR-RV-VIX -0.00012***  0.011  0.626*** -0.249*  1.06E-05***                  0.38 

HAR-RV-WTI  2.02E-05***  0.027  0.769*** -0.002 -0.001                  0.35 

HAR-RV-GOLD -3.31E-05**  0.037  0.756*** -0.069  3.44E-06***                  0.36 
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Domestic information 

HAR-RV-BOND  2.01E-05***  0.019 0.809*** -0.038 -0.0005                  0.36 

HAR-RV-UKEPU  3.73E-05**  0.044 0.772***  0.008 -6.08E-08                  0.35 

HAR-RV-LIBOR  2.06E-05***  0.044 0.763*** -0.014  0.0005                  0.35 
 Source: GRETL software’s estimation output. Note: Asterisk *,**, and *** denote rejections of null hypothesis at 10%, 5%, and 1% 
significance levels, respectively. Therefore, the parameters with the asterisk (***) mean the significance of the corresponding coefficients at 

1% significance level.  

4.1.1. Benchmark Model (HAR-RV) 

The benchmark HAR-RV model provides a foundation for understanding the volatility dynamics of the FTSE 100 

without considering any exogenous variables. The constant term is significant at the 1% level, and the model 

indicates that daily volatility (βd) has a strong and significant impact on the overall volatility, with a coefficient of 

0.772. However, the weekly and monthly (βw and βm) components are not statistically significant. The adjusted 

R-squared (Adj. R²) value of 0.35 suggests that the baseline model explains 35% of the variance in FTSE 100 

volatility. The equation for the HAR-RV model is as follows: 

                                              𝑅𝑉𝑡+ℎ
𝑑 =  𝛽0 + 𝛽𝑑𝑅𝑉𝑡

𝑑 + 𝛽𝑤𝑅𝑉𝑡
𝑤 + 𝛽𝑚𝑅𝑉𝑡

𝑚 + 𝛽𝑋𝑋𝑡
𝑑 + 𝜀𝑡+ℎ                           (10) 

where βd stands for daily volatility part; βw denotes to weekly component, and lastly βm is monthly volatility 

component. 

4.1.2. The impact of Domestic, Neighbouring and International Information on FTSE index 

The models in the local information group focus on UK-specific factors, including bond yields, UK economic 

policy uncertainty (EPU) index, and LIBOR rates. Table 2 indicates that the local group factors such as Bond, the 

UKEPU and LIBOR do not significantly impact FTSE 100 volatility in the in-sample results.  

The neighbouring information group incorporates information from other European stock markets, including 

GDAXI (Germany), FCHI (France), FTMIB (Italy), and STOXX (Europe). Each of these cross-market 

information is represented by an exogenous variable (𝛽𝑥) in the model, which accounts for the influence of a 

specific neighbouring market on the FTSE 100. The GDAXI, FCHI, FTMIB, and STOXX indices all significantly 

impact FTSE 100 volatility, but their effects vary. When the GDAXI, FCHI and FTMIB indices attached to the 

benchmark model, the weekly component has a significant impact on to the extended models. However, their daily 

and monthly effects become less significant. The STOXX index, however, has the strongest overall effect in the 

group of neighbouring information, notably on a daily and weekly basis, though its daily impact is negative. The 

model's accuracy improves slightly better with the STOXX index (38 per cent), whilst it remains consistent with 

the other indices (37 per cent). 

The group of the international information contains information from major international indices, including SPX 

(US), DJI (US), IXIC (US), VIX (US), WTI (Oil prices), and gold prices. The SPX index has the strongest 

influence on FTSE 100 volatility with the coefficient 0.371. It also improves the model's explanatory power with 

39 per cent. Similarly, The IXIC index also has a significant positive effect, though slightly less impactful than 

SPX. The DJI index shows a similar pattern to SPX and IXIC, but its influence is not much notable as the other 

two American stock indices. The VIX index, which measures market volatility in the US, has a lesser effect than 

the American stock indices, though its impact is based on the results of full-sample estimation. Oil prices (WTI) 

does not significantly affect to FTSE 100 volatility, whilst gold prices (gold) have a significant but little effect. 

This would indicate a possible hedging behaviour of oil and gold prices to FTSE 100 volatility. 

4.1.3. Kitchen-Sink Approach 

The best results come from the Kitchen-Sink model that combines various neighbouring, international, and local 

factors. These combined models in Table 3 ensure the most comprehensive explanation of FTSE 100 volatility, 

with the international model providing the strongest fit amongst the others. The neighbouring group also shows 

notable improvements in explaining volatility, whereas the local factors do not have a significant impact on FTSE 

100 volatility. For example, the final (overall) model combines neighbouring, international, and local information 

to provide a comprehensive view of volatility drivers. The overall model shows the highest adjusted R² values of 

42 per cent. However, HAR-RV-INTERNATIONAL is at 0.41 per cent alone, indicating that a mix of factors 

from different regions and markets provides the best explanation of FTSE 100 volatility, whilst majority of this 

improvement seems to stem from the international factors.  

Table 3. Full sample volatility estimation results for various Kitchen Sink models 

                                               
                                   𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕         𝜷𝟏               𝜷𝟐                𝜷𝟑         𝜷𝑮𝑫𝑨𝑿𝑰         𝜷𝑭𝑪𝑯𝑰       𝜷𝑭𝑻𝑴𝑰𝑩       𝜷𝑺𝑻𝑶𝑿𝑿                       𝑨𝒅𝒋. 𝑹𝟐                                         

HAR-RV-

NEIGHBOURING 

6.14e-06       -0.174**     0.593***     0.011       0.136*       -0.074        0.065         0.268                           0.37 

 



KORKUSUZ 

478 

                                  𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕          𝜷𝟏           𝜷𝟐            𝜷𝟑       𝜷𝑺𝑷𝑿         𝜷𝑫𝑱𝑰        𝜷𝑰𝑿𝑰𝑪      𝜷𝑽𝑰𝑿            𝜷𝑶𝑰𝑳        𝜷𝑮𝑶𝑳𝑫 𝑨𝒅𝒋. 𝑹𝟐                                                                                          

HAR-RV-INTERNAT.   -7.03E-05*** -0.062*  0.436*** -0.101  0.507**  -0.289**  0.119  7.15E-06***  -0.0008  -6.76E-07   0.41 

 

                                  𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕          𝜷𝟏             𝜷𝟐                   𝜷𝟑            𝜷𝑩𝑶𝑵𝑫           𝜷𝑬𝑷𝑼             𝜷𝑳𝑰𝑩𝑶𝑹                                  𝑨𝒅𝒋. 𝑹𝟐 

HAR-RV-

DOMESTI

C 

               3.84E-05**     0.025      0.800***       -0.008       -0.0006        -6.23E-08       0.0007                                    0.36 

 

                                  𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕           𝜷𝟏              𝜷𝟐            𝜷𝟑    𝜷𝑮𝑫𝑨𝑿𝑰  𝜷𝑭𝑪𝑯𝑰     𝜷𝑭𝑻𝑴𝑰𝑩  𝜷𝑺𝑻𝑶𝑿𝑿     𝜷𝑺𝑷𝑿      𝜷𝑫𝑱𝑰     𝜷𝑰𝑿𝑰𝑪 

HAR-RV-

OVERAL

L 

               -6.63E-05***  -0.209***  0.473**  -0.089   0.022   -0.196**  0.049   0.240***  0.328*  -0.159   0.133      ⇒ 

                      𝜷𝑽𝑰𝑿              𝜷𝑶𝑰𝑳            𝜷𝑮𝑶𝑳𝑫          𝜷𝑩𝑶𝑵𝑫         𝜷𝑬𝑷𝑼         𝜷𝑳𝑰𝑩𝑶𝑹                                              𝑨𝒅𝒋. 𝑹𝟐                                         

                          ⇒                  6.96E-06***   -0.0006     -6.17E-07      -0.0005     -2.32E-08      0.0005                                                 0.42 

Source: GRETL software’s estimation output. Note: Asterisk *,**, and *** denote rejections of null hypothesis at 10%, 5%, and 1% 
significance levels, respectively. Therefore, the parameters with the asterisk (***) mean the significance of the corresponding coefficients at 

1% significance level.  

The analysis of the FTSE 100 using HAR-RV-X models highlights the significant role of exogenous volatilities. 

Notably, neighbouring and international markets are important in determining the volatility of the FTSE 100. The 

models suggest that cross-market information from major European and US indices are crucial in explaining FTSE 

100 dynamics, especially with the inclusion of STOXX and SPX that provide the most substantial improvements 

in model fit. Local factors, while important for the country, play a less dominant role in this modelling study. 

These findings underline the cross-market information flow of international financial markets and the importance 

of considering a wide range of factors in volatility modelling.  

4.2. Out-of-sample Analysis of FTSE 100 Using HAR-RV-X Models 

The dataset, consisting of 2,600 trading days, is divided into in-sample and out-of-sample periods. The in-sample 

period is 400 observations, selected to provide a solid foundation for model fitting while leaving a significant out-

of-sample period, which is the primary focus of this study. The out-of-sample period covers 2,200 days, offering 

an extensive timeframe for testing. To produce one-step-ahead volatility forecasts for the FTSE 100, a rolling 

window method is employed. In this approach, the in-sample data size remains constant as new data points are 

added, and the oldest ones are removed (with the estimation sample rolling forward each time to generate new 

forecasts). This method enables a consistent assessment of the model’s out-of-sample performance. The evaluation 

of forecast accuracy is conducted using three established loss functions—QLIKE, HMSE, and HMAE—as well 

as the MCS procedure, to identify the best-performing models. To ensure robustness, this forecasting exercise is 

also repeated using two additional forecasting windows of 200 and 600 observations.  

The purpose of the MCS test is to evaluate the forecasting accuracy of a set of competing models using a specific 

elimination algorithm. This algorithm identifies, at a given confidence level, which models remain in the selection. 

Models with poor predictive performance are excluded from the initial set, as indicated by the term ‘eliminated’ 

in the tables below. There are six different statistics used to identify the superior models, with the range statistic 

being chosen based on the recommendation of Hansen et al. (2003). The results are interpreted by noting that 

models with the lowest loss function values should have higher p-values (a p-value of one) and lower ranks, 

signifying often superior predictive models. If the outcomes of the loss functions and the MCS test are entirely 

contradictory, the results may be unreliable, though minor discrepancies do not necessarily matter.  

The top-performing extended forecasting model for the FTSE 100 index based on the selected evaluation criteria 

is the international Kitchen-Sink model, which incorporates all members of the international group simultaneously. 

The inclusion of (international group) variables such as SPX, DJI, IXIC, VIX, WTI, and GOLD enhances 

performance compared to individual models. This is because the simultaneous inclusion of variables contains more 

comprehensive information. After the international Kitchen-Sink model, the next best performers for the FTSE 

index are the gold model, the international combination model, and the VIX model, respectively. 

Individually, the gold volatility index and the VIX, both part of the international information class, contain valuable 

information for forecasting UK stock market volatility. These two factors are recognized as significant influences 

on international stock markets. Typically, gold prices inversely correlate with stock markets; when stock prices 

fall, gold prices tend to rise. As a result, during periods of market risk, investors might diversify into gold to offset 

potential losses in stocks. The leverage effect also plays a crucial role during stock market declines, as negative 

returns often lead to sharper volatility spikes than positive returns. The asymmetric downside risks in the markets 

can be captured by including gold volatility as an exogenous variable in the model, which helps improve the 

predictive accuracy of FTSE 100 volatility. 

This indicates that U.S. market information significantly impacts UK stock market volatility. SPX, DJI, and IXIC 

individually perform well for FTSE forecasting. Therefore, their joint information content contributes to the 
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effectiveness of the international Kitchen-Sink model. Overall Kitchen-Sink and Overall combination methods 

provide relatively better forecast accuracy for the FTSE index, even though they are not among the top competing 

models. 

Table 4. Out-of-sample one-step-ahead rolling window forecasting and MCS results 

FTSE 100   QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 

    

HAR-RV (Benchmark) -8.5838     0.0000    20 2.3436     0.0842    16 0.9087     eliminated      – 

NEIGHBOURING INFORMATION 

HAR-RV-GDAXI -8.5947     0.4578      9 2.1983     1.0000      6 0.8341     eliminated      – 

HAR-RV-FCHI -8.4747     0.8848      4 1.8077     1.0000      7 0.7933     0.4756            5     
HAR-RV-FTMIB -8.5993     0.5268      6 1.8782     1.0000    10 0.8056     0.3862            6     

HAR-RV-STOXX50E -8.5166     0.1938    12 1.9507     1.0000    12 0.8369     eliminated      – 

NEIGHBOURING K.S. -8.5866     0.4022    10 2.1549     1.0000      8 0.8318     eliminated      – 
NEIGHBOURING COMB. -8.6082     0.7980      5 1.8041     0.0000      9 0.8028     0.3520            7     

INTERNATIONAL INFORMATION 

HAR-RV-SPX -8.6003     0.0110    17 2.5611     0.0244    21 0.8773     eliminated      – 

HAR-RV-DJI -8.5810     0.1988    11 2.5441     eliminated 0.8943     eliminated      – 
HAR-RV-IXIC -8.6081     0.1052    13 2.4727     1.0000    15 0.8647     eliminated      – 

HAR-RV-VIX -7.7259     0.4862      8 1.7674     1.0000      4 0.7546     0.7306            4     

HAR-RV-WTI -8.5527     0.0002    19 2.4896     0.0286    20 0.9262     eliminated      – 
HAR-RV-GOLD -8.3386     0.0734    15 1.4750     1.0000      2 0.7434     0.9872            2     

INTERNATIONAL K.S. -8.2100     0.4950      7 1.1990     1.0000      1 0.7034     1.0000            1     

INTERNATIONAL 

COMB.  

-8.6326     1.0000      1 1.7744     1.0000      3 0.7568     0.9094            3 

DOMESTIC INFORMATION 

HAR-RV-BOND -8.5381     0.0912    14 2.4231     0.0410    19 0.9378     eliminated      – 

HAR-RV-UKEPU -8.5759     0.0004    18 2.2753     1.0000    14 0.8826     eliminated      – 

HAR-RV-LIBOR -8.5843     0.0000    21     2.3346     0.0774    17 0.9045     eliminated      – 

LOCAL K.S. -8.4818     0.0294    16 2.2989     0.0542    18 0.9177     eliminated      – 
LOCAL COMB. -8.5464     0.0000    22     2.2336     1.0000    13 0.8895     eliminated      – 

OVERALL INFORMATION 

OVERALL K.S. -6.6819     0.9970      2 1.8931     1.0000    11 0.8220     0.0036            9 

OVERALL COMB.  -8.6358     0.9312      3 1.7861     1.0000      5 0.7878     0.1076            8 

Source: GRETL software’s estimation output. Note: “K.S.” stands for Kitchen-Sink model and “COMB.” denotes combination model. The 

respective p-values which are higher and closer to one mean the models with higher forecasting power, where their ranks are indicated in the 

rank column.   

International information plays a crucial role in influencing the volatility of the FTSE 100 stock market, given that 

it is composed of large companies with an international focus. This suggests that the FTSE 100 is highly responsive 

to international news, and incorporating various international data sources can be beneficial for forecasting the 

market's future volatility. The neighbouring information, particularly from Germany and France, emerges as the 

second most important group after international information. Germany is the UK's second-largest export market 

after the US, while France, as a neighbouring country and significant trading partner, also plays a key role. These 

econometric findings align with the real-world economic relationships of the UK. Local UK data might be expected 

to have a direct impact on the FTSE 100, whereas the performance of the local information group seems to be poor 

with forecasting the market's future volatility.  

Figure 2 illustrates a significant rise in cumulative forecast errors in June 2016, attributed to the Brexit referendum. 

Another sharp increase is observed in 2018, likely due to concerns about a potential no-deal Brexit and the Bank 

of England’s recession warning. Notably, the figure indicates that the HAR-RV-INTERNATIONAL-KITCHEN-

SINK model is more resilient during turbulent periods compared to the HAR-RV-GOLD and HAR-RV-

INTERNATIONAL-COMBINATION models. Conversely, the cumulative forecast errors for the benchmark 

HAR-RV model are higher than those of the other models throughout this time interval. 
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Figure 2. Cumulative HMSE line graph for different models. 

Source: GRETL software’s plot, (2009-2020). 

5. CONCLUSION 

This study addresses the significant role of external information, particularly from international and neighbouring 

markets, in forecasting the volatility of the FTSE 100 index. The empirical analysis reveals that the FTSE 100, 

being composed of large, internationally-focused companies, is highly sensitive to international news, especially 

from the U.S. stock markets. Models incorporating international information, such as the HAR-RV-

INTERNATIONAL-KITCHEN-SINK model, demonstrate superior performance in forecasting volatility, 

pointing out the importance of a comprehensive approach that includes a wide range of international factors. 

Neighbouring information, particularly from Germany and France, also plays a crucial role, reflecting the deep 

economic ties between the UK and these European nations. The findings suggest that while local UK-specific 

factors such as bond yields and economic policy uncertainty have no significant impact on FTSE 100 volatility, 

neighbouring and international factors provide more substantial predictive power. 

The resilience of the HAR-RV-INTERNATIONAL-KITCHEN-SINK model during turbulent periods, such as the 

Brexit referendum and subsequent economic uncertainties, further emphasizes the value of integrating 

international data in volatility forecasting. This model's ability to maintain lower cumulative forecast errors 

compared to others, including the benchmark HAR-RV model, suggests that a broader, more inclusive approach 

to information gathering yields more accurate and robust predictions. 

Overall, the study stresses the importance of the cross-market information amongst international financial markets. 

This further necessities incorporating diverse information sources to improve the predictive accuracy of stock 

market volatility models. The insights gained from this research have important implications for investors and 

policymakers, particularly in understanding the dynamics that drive the volatility of internationally-focused stock 

indices such as the FTSE 100. 
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