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Graphical/Tabular Abstract (Grafik Özet) 

This study applies a SWARA–weighted Pythagorean Fuzzy MULTIMOORA framework to 

evaluate AI-based energy management strategies for electric vehicles, with the results 

validated through sensitivity and comparative analyses. / Bu çalışmada, elektrikli araçlar için 

yapay zekâ tabanlı enerji yönetim stratejilerini değerlendirmek amacıyla SWARA–ağırlıklı 

Pisagor Bulanık MULTIMOORA yöntemi uygulanmakta ve elde edilen sonuçlar, duyarlılık ve 

karşılaştırmalı analizler ile doğrulanmaktadır. 

 

Figure A:Hierarchical Structure /Şekil A:.Hiyerarşi Yapısı  

Highlights (Önemli noktalar)  

 Development of a SWARA–weighted Pythagorean Fuzzy MULTIMOORA framework 

for evaluating AI-based energy management strategies in electric vehicles. / Yapay 

zekâ tabanlı EV enerji stratejileri için SWARA–ağırlıklı Pisagor Bulanık 

MULTIMOORA yönteminin geliştirilmesi 

 Top strategies: Smart Battery Management, Predictive Energy Optimization, AI-

Enabled Smart Charging / En iyi stratejiler: Akıllı Batarya Yönetimi, Tahmine 

Dayalı Enerji Optimizasyonu, Yapay Zekâ Tabanlı Akıllı Şarj 

 Validation of results through 21-scenario sensitivity analysis and comparative 

analysis with the Pythagorean Fuzzy TOPSIS method. / Sonuçlar 21 senaryolu 

duyarlılık analizi ve Pisagor Bulanık TOPSIS kullanılarak yapılan karşılaştırma 

analizi ile doğrulanmıştır.  

Aim (Amaç): The aim of this study is to comprehensively evaluate AI-based energy 

management strategies for electric vehicles to enhance efficiency, extend battery life, and 

promote the use of sustainable energy sources. / Bu çalışmanın amacı, elektrikli araçlarda 

yapay zekâ tabanlı enerji yönetim stratejilerini değerlendirerek verimliliği artırmak, batarya 

ömrünü uzatmak ve sürdürülebilir enerji kaynaklarının kullanımını teşvik etmektir. 

Originality (Özgünlük): This study is original in providing a comprehensive framework that 

prioritizes AI-based energy management strategies for electric vehicles using a structured 

hybrid method, addressing the gap left by most studies that focus only on isolated aspects 

without in-depth AI strategy evaluation. / Bu çalışma, yapay zekâ tabanlı enerji yönetimi 

stratejilerini önceliklendiren yapılandırılmış bir hibrit yöntem sunarak, çoğu çalışmanın 

yalnızca tekil alanlara odaklanıp AI stratejilerini derinlemesine değerlendirmemesi nedeniyle 

oluşan boşluğu doldurmaktadır. 

Results (Bulgular): Smart Battery Management Systems emerged as the top AI-based energy 

strategy, followed by Predictive Energy Optimization and AI-Enabled Smart Charging, with 

21-scenario sensitivity analysis and PF-TOPSIS comparison confirming the robustness, 

stability, and reliability of the proposed hybrid framework. / Akıllı Batarya Yönetimi ilk sırada 

öne çıkarken, Tahmine Dayalı Enerji Optimizasyonu ve Yapay Zekâ Tabanlı Akıllı Şarj ikinci 

ve üçüncü sırada yer almakta; 21 senaryolu duyarlılık analizi ve PF-TOPSIS karşılaştırması, 

önerilen hibrit yöntemin sağlamlığını ve güvenilirliğini doğrulamaktadır.  

Conclusion (Sonuç): This study provides actionable insights to guide engineering 

professionals and promote the adoption of sustainable energy solutions. / Bu çalışma, 

mühendislik profesyonellerine yol gösteren ve sürdürülebilir enerji çözümlerinin 

benimsenmesini destekleyen uygulanabilir bilgiler sunmaktadır. 
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Abstract 

The growing adoption of electric vehicles (EVs) has formed a pressing need for intelligent energy 

management systems to extend battery life, improve efficiency and encourage the use of 

sustainable energy sources. As the complexity of energy optimization increases, the integration 

of artificial intelligence (AI) has become essential for enabling real-time decision-making and 

adaptive control. However, a significant gap remains in the literature regarding the 

comprehensive evaluation and prioritization of AI-based energy management strategies for EVs. 

This study addresses this gap by developing a multi-criteria decision-making (MCDM) 

framework that combines the Stepwise Weight Assessment Ratio Analysis (SWARA) method to 

determine the importance of evaluation criteria with the Pythagorean Fuzzy MULTIMOORA 

method to rank alternative strategies. The results show that Smart Battery Management Systems 

is the most critical strategy, followed by Predictive Energy Optimization and AI-Enabled Smart 

Charging and Grid Integration. A sensitivity analysis involving 21 weight variation scenarios 

confirms the robustness and stability of the suggested model. The findings offer practical insights 

for policymakers and professionals in engineering and present a flexible methodological 

framework that can be applied to other complex decision-making problems in sustainable energy 

and transportation systems.  
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Öz 

Elektrikli araçların yaygınlaşması, verimliliği artırmak, batarya ömrünü uzatmak ve yenilenebilir 

enerji kaynaklarını entegre etmek amacıyla akıllı enerji yönetim sistemlerine olan ihtiyacı 

artırmıştır. Artan karmaşıklık karşısında, yapay zekâ entegrasyonu gerçek zamanlı karar verme 

ve uyarlanabilir kontrol açısından büyük önem taşımaktadır. Ancak literatürde, elektrikli araçlar 

için yapay zekâ tabanlı enerji yönetim stratejilerinin kapsamlı şekilde değerlendirilmesine 

yönelik sınırlı çalışma bulunmaktadır. Bu çalışmada, değerlendirme kriterlerinin önemini 

belirlemek için SWARA, stratejileri önceliklendirmek için Pisagor Bulanık MULTIMOORA 

yöntemlerinin entegre edildiği çok kriterli karar verme tabanlı bir model geliştirilmiştir. 

Bulgulara göre, “Akıllı Batarya Yönetim Sistemleri” en öncelikli strateji olarak belirlenmiş, 

ardından “Tahmine Dayalı Enerji Optimizasyonu” ve “Yapay Zekâ Tabanlı Akıllı Şarj ve Şebeke 

Entegrasyonu” gelmiştir. Yirmi bir senaryoda yapılan duyarlılık analizi, modelin sağlamlığını 

ortaya koymuştur. Elde edilen sonuçlar, politika yapıcılar ve mühendislik uzmanları için stratejik 

karar alma süreçlerinde yol gösterici niteliktedir. 

1. INTRODUCTION (GİRİŞ) 

The transportation sector remains one of the largest 

consumers of energy globally, with a significant 

portion of this demand being met by fossil fuels 

such as natural gas, oil, coal. This substantial fossil 

fuel dependence is a major contributor to 

greenhouse gas emissions, air pollution, and the 

acceleration of climate change. The growing 

scarcity of fossil fuels has led to increased energy 

costs and raised concerns about long-term economic 

stability, particularly for nations heavily dependent 

on energy imports [1]. In response to these 

challenges, the global focus has shifted toward 

cleaner, more energy-efficient alternatives, with 
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electric vehicles (EVs) emerging as a key solution. 

By decreasing the release of carbon and making 

possible to include sources of clean energy, EVs 

play a vital role in reshaping the future of 

transportation toward greater sustainability and 

energy independence. 

According to recent data from Eurostat (2025) [2], 

the transportation industry accounted for 31.0% of 

the EU’s ultimate energy usage in 2022, 

highlighting its significant role in overall energy 

demand. Within this sector, road transport alone 

consumed 73.6% of the total energy used, with the 

vast majority—90.6%—originating from fossil 

fuels such as motor oil with gasoline or diesel. As 

shown in Figure 1, the dominance of gas/diesel oil 

has steadily increased since 1990, overtaking motor 

gasoline as the primary energy source in road 

transport. Although electricity usage remains 

marginal at just 0.3% in 2022, it has seen a 

noticeable upward trend, increasing more than six-

fold between 2018 and 2022. This modest but 

promising growth indicates a gradual shift toward 

electrification in transport. Simultaneously, 

electricity prices across the EU have shown mixed 

trends—with some countries like Ireland 

experiencing steep increases, while others, such as 

the Netherlands, have seen notable reductions. For 

non-household consumers, the average electricity 

price dropped by 13% in the first half of 2024 

compared to the same period in 2023, signaling 

improved conditions for commercial and industrial 

electric vehicle usage [3].  

Figure 1. Energy product-based changes in road transport's final energy usage, EU, 1990–2022 (PJ) 

(Karayolu taşımacılığında nihai enerji kullanımındaki enerji ürününe dayalı değişimler, AB, 1990–2022 (PJ)) [4]

These statistics clearly demonstrate the urgent need 

to accelerate the transition toward electric vehicles 

as a means to minimize environmental effects and 

dependence on fossil fuels. However, the benefits of 

electrification can only be fully realized through the 

implementation of intelligent energy management 

systems. As electricity becomes a more central 

energy source in transport, optimizing its use 

through AI-based strategies is essential—not only 

to ensure energy efficiency and cost-effectiveness, 

but also to support the stability of the electricity 

grid. In this context, the development and 

evaluation of advanced energy management 

solutions for electric vehicles becomes a critical 

step toward achieving sustainable, resilient, and 

future-ready transportation systems.  

Recent studies have underscored the increasing 

significance of intelligent energy management 

strategies for electric vehicles, particularly with the 

integration of artificial intelligence. Lin et al. [5] 

emphasize the advantages of hybrid energy storage 

systems—such as combinations of batteries and 

supercapacitors—in addressing key challenges like 

vehicle autonomy, battery degradation, and 

performance optimization. In broader energy 

networks, Shakeel and Malik [6] explore the 

application of artificial intelligence in energy 

microgrids, demonstrating its role in improving 

energy production and demand management when 

electric vehicles are integrated into distributed 

systems. Energy management optimization with the 

use of reinforced learning and machine learning, as 

discussed by Pardhasaradhi and Shilaja [7], offers 

potential for real-time control, operational cost 

reduction, and enhanced system responsiveness. 

Similarly, Badran and Toha [8] highlights artificial 

intelligence in battery management systems for 

monitoring, cell balancing, and state estimation—

critical functions for maintaining battery health and 

extending lifespan. 

Additional advancements have expanded the scope 

of artificial intelligence across other critical areas of 



Bakioğlu / GU J Sci, Part C, 13(3): 1137-1156 (2025) 

1139 
 

energy management in electric vehicles. Ghalkhani 

and Habibi [9] investigate its impact on thermal 

regulation and lithium-ion battery performance, 

while other studies highlight the role of edge 

computing in enabling faster, vehicle-level 

decision-making. Research has also addressed 

intelligent regenerative braking and the use of 

harvesting energy mechanically in traffic settings. 

The transition toward autonomous, connected and 

shared vehicles has further accelerated the adoption 

of artificial intelligence in mobility systems. Deep 

learning, artificial neural networks, and 

reinforcement learning have been effectively 

applied in microgrids to optimize energy dispatch 

and integrate renewable sources. Moreover, genetic 

optimization algorithms have been developed to 

manage energy storage in residential solar-powered 

systems, minimizing costs and increasing self-

consumption. Integrated models for forecasting 

photovoltaic energy and EV charging platforms 

have also been proposed, aiming to support carbon 

neutrality and sustainable energy transitions [9].  

Given the complexity and multi-dimensional nature 

of energy management in electric vehicles, 

evaluating and prioritizing AI-based strategies 

requires a structured and comprehensive approach. 

These strategies often involve trade-offs between 

technical performance, economic feasibility, 

environmental impact, and integration challenges, 

making simple decision rules insufficient. In this 

context, multi-criteria decision-making (MCDM) 

methods have proven to be highly effective, 

particularly when used in combination with fuzzy 

set theory to deal with ambiguity and subjectivity in 

expert evaluations. The integration of fuzzy logic 

allows for more realistic modeling of human 

judgment, which is especially valuable in complex 

engineering and energy systems. For instance, 

Alrifaie et al. [10] employed a hybrid Fuzzy 

Analytical Hierarchical Process and Multi-Attribute 

Decision-Making approach to support user-centric 

electric vehicle charging station selection. 

Similarly, Ghoushchi et al. [11] applied an 

integrated MCDM model to improve effectiveness 

in networked self-driving vehicles by incorporating 

artificial intelligence and IoT-based criteria. Stecyk 

and Miciuła [12] utilized fuzzy AHP and TOPSIS 

to evaluate collaborative AI-based platforms for 

energy optimization, while Imran et al. [13] 

leveraged fuzzy decision-making techniques to 

formulate strategies aimed at maximizing electric 

vehicle utility. 

Despite growing interest in electric vehicle 

technologies and energy optimization, a notable gap 

exists in the literature concerning the 

comprehensive identification and evaluation of AI-

based energy management strategies specifically for 

electric vehicles. Most existing studies have focused 

on isolated aspects, such as selecting optimal 

charging stations, enhancing the efficiency of 

autonomous or connected vehicles, or reviewing 

general energy management systems, without 

providing an in-depth prioritization of AI-driven 

strategies. Furthermore, the integration of SWARA-

weighted MULTIMOORA methods has not been 

explored within the electric vehicle industry, 

particularly in the context of evaluating complex, 

AI-enabled decision alternatives. This study fills 

that methodological and thematic gap by 

introducing a novel framework that combines these 

decision-making tools with Pythagorean Fuzzy 

Sets, enabling more accurate and flexible modeling 

of expert judgment under uncertainty. This 

integrated approach offers a significant 

advancement in supporting strategic decision-

making for intelligent, sustainable energy 

management in electric vehicles.  

This study aims to bridge the current research gap 

by establishing a broad evaluation framework for 

AI-based energy management strategies in electric 

vehicles. Specifically, the study defines key 

evaluation criteria and introduces a structured 

multi-criteria decision-making approach by 

integrating the Stepwise Weight Assessment Ratio 

Analysis (SWARA) and Multi-Objective 

Optimization by Ratio Analysis plus Full 

Multiplicative Form (MULTIMOORA) methods 

within a Pythagorean Fuzzy set environment. This 

integrated framework enables a more robust and 

uncertainty-aware assessment of AI-driven energy 

strategies. The primary contributions of this 

research are summarized as follows: 

 Conducting a thorough expert consultation and 

literature review to identify and define the main 

AI-based energy management strategies 

relevant to electric vehicles. 

 Employing the SWARA method ascertain the 

proportional significance of evaluation criteria 

based on expert judgment. 

 Implementing the Pythagorean Fuzzy 

MULTIMOORA method to rank and prioritize 

the identified strategies under conditions of 

uncertainty. 

 Performing a sensitivity analysis by 

systematically altering the weights derived 

from the SWARA method and recalculating the 

Ratio System (RS) scores. A total of 21 distinct 

scenarios are examined to test the robustness of 

the results. 
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The findings of this study offer valuable guidance 

for policy makers and professionals in computer 

engineering and electrical and electronics fields. For 

policy makers, the prioritization of AI-based energy 

management strategies provides a data-driven 

foundation for shaping supportive policies, 

investment plans, and infrastructure development 

aimed at accelerating the transition to sustainable 

electric mobility. Meanwhile, professionals and 

researchers in technical fields can benefit from the 

study’s insights to guide the design, development, 

and implementation of advanced AI algorithms, 

battery systems, and smart charging technologies—

ultimately contributing to more efficient, reliable, 

and intelligent electric vehicle ecosystems. 

 

2. METHODOLOGY (YÖNTEM) 

The evaluation of AI-based energy management 

strategies for electric vehicles involves multiple, 

often conflicting factors like cost, flexibility, and 

energy efficiency, and technological integration. 

These factors require a multi-criteria decision-

making (MCDM) approach to ensure a balanced 

and systematic assessment. In this research, an 

integrated methodology combining the SWARA 

and Pythagorean Fuzzy MULTIMOORA methods 

is employed to address the complexity and 

uncertainty inherent in strategic evaluations. The 

SWARA method is utilized to specify the relative 

importance of evaluation criteria based on expert 

judgments. Its strength lies in its simplicity, 

efficiency, and reduced number of pairwise 

comparisons, making it especially suitable for 

expert-driven weighting processes. On the other 

hand, the MULTIMOORA method, known for its 

robustness and stability, offers a comprehensive 

evaluation framework by incorporating three 

distinct models—Ratio System, Reference Point, 

and Full Multiplicative Form—to ensure 

consistency and reliability in ranking alternatives. 

By embedding these methods in a Pythagorean 

fuzzy environment, the approach effectively 

captures the ambiguity and vagueness present in 

human assessments, thus enhancing decision 

quality. For this study, SWARA and Pythagorean 

Fuzzy MULTIMOORA were selected because of 

their capacity to combine mathematical precision 

with expert knowledge, offering a flexible and 

reliable framework for ranking AI-based tactics in 

the electric vehicle industry. 

There are three primary phases to the methodology 

used in this study. In the first stage, a 

comprehensive set of evaluation criteria and AI-

based energy management strategies for electric 

vehicles is identified through an extensive literature 

review and expert consultation. These components 

are then organized into a hierarchical decision 

framework. In the second stage, a hybrid multi-

criteria decision-making (MCDM) approach is 

applied. The Stepwise Weight Assessment Ratio 

Analysis (SWARA) method is used to determine the 

relative importance (weights) of each criterion 

based on expert evaluations. These weights are then 

utilized in the single-valued Pythagorean Fuzzy 

MULTIMOORA method, which evaluates and 

ranks the identified strategies by incorporating the 

Ratio System, Reference Point, and Full 

Multiplicative Form models to ensure a robust and 

comprehensive prioritization. In the third stage, a 

sensitivity analysis is conducted to test the 

robustness of the model. This is achieved by 

systematically altering the criterion weights derived 

from the SWARA method and recalculating the 

Ratio System scores across 21 distinct scenarios. 

The results highlight the ranking stability of top-

performing strategies and provide insight into how 

changes in evaluation perspectives affect the overall 

decision. The schematic figure shown in Figure 2 

depicts the specific procedures and integration of 

the suggested methodology. 
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Figure 2. Schematic diagram of methodology (Yöntemin şematik gösterimi)

 

2.1. Pythagorean Fuzzy Sets  (Pisagor Bulanık 

Kümeler) 

Decision-makers evaluating energy management 

strategies face various uncertainties and subjective 

judgments, making the analysis of such problems 

more complex. To handle uncertain information and 

derive specific outcomes, Zadeh [14] introduced 

fuzzy set theory and linguistic variables. Recent 

studies in the literature have expanded on these 

concepts by incorporating extended fuzzy sets, such 

as Pythagorean fuzzy sets and intuitionistic fuzzy 

sets, to more accurately reflect the ambiguity in 

decision-makers' perspective. 

Developed by Atanassov, intuitionistic fuzzy sets 

(IFSs) incorporate membership, non-membership, 

and hesitation degrees, with the constraint that 

degrees of membership and non-membership added 

together cannot be greater than one. However, since 

IFSs sometimes fail to adequately model complex 

uncertainty in practical applications, generalized 

fuzzy sets such as Pythagorean fuzzy sets (PFSs) 

have been introduced [15]. The total of the 

membership and non-membership degrees in PFSs 

may be greater than one, but the sum of their squares 

cannot. A geometric comparison between the 

Pythagorean fuzzy set space and the intuitionistic 

fuzzy set space reveals that the latter has a wider 

coverage. As a result, Pythagorean fuzzy sets are 

more effective in representing uncertainty and 

imprecision than intuitionistic fuzzy sets. 

Definition 1: Let x be an element of the universal 

set X. A Pythagorean fuzzy set 𝑃̃ in X is defined as 

follows [15]: 

𝑃̃ = {〈𝑥,𝑃(𝜇𝑃(𝑥), 𝑣𝑃(𝑥))〉|𝑥 ∈ 𝑋}                    (1)       

          

where 𝜇𝑃(𝑥) ϵ [0,1] represents the membership 

degree, and 𝑣𝑃(𝑥) ϵ [0,1] denotes the non-

membership degree. These membership degrees 

must satisfy the following condition, given in 

Equation (2): 

 

0 ≤ (𝜇𝑃(𝑥))
2

+ (𝑣𝑃(𝑥))
2

≤ 1.    (2)                                   
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The hesitation degree of a Pythagorean fuzzy 

number in 𝑃̃ is identified in Equation (3) as follows: 

𝜋𝑃(𝑥) = √1 − (𝜇𝑃(𝑥))
2

− (𝑣𝑃(𝑥))
2
       (3)                                   

                 

Definition 2: Let 𝑃̃1 =  𝑃(𝜇𝑃1
, 𝑣𝑃1

) and 𝑃̃2 =  

𝑃(𝜇𝑃2
, 𝑣𝑃2

) be two Pythagorean fuzzy numbers, and 

let λ be a positive number. The fundamental 

operations in Pythagorean fuzzy sets are shown 

below: 

𝑃̃1 ⊗ 𝑃̃2 = P 

( 𝜇𝑃1
𝜇𝑃2

, √(𝑣𝑃1
)

2
+ (𝑣𝑃2

)
2

− (𝑣𝑃1
)

2
(𝑣𝑃2

)
2

)    (4)                         

           

𝜆𝑃̃1 = (√1 − (1 − (𝜇𝑃1
)

2
)𝜆, (𝑣𝑃1

)𝜆     ) ,    𝜆 > 0, 

      (5)                                              

          

(𝑃̃1)
𝜆
= ((𝜇𝑃1

)𝜆, √1 − (1 − (𝑣𝑃1
)

2
)𝜆) ,    𝜆 > 0.                                    

                          (6) 

𝑃̃1 Ө 𝑃̃2 = (√
𝜇1

2− 𝜇2
2

1−𝜇2
2 ,

𝑣1

𝑣2
)   if 𝜇𝑃1

≥ 𝜇𝑃2
, 𝑣𝑃1

 ≤ min 

{𝑣𝑃2
,

𝑣𝑃2π𝑃1  

π𝑃2

  }                                          (7) 

𝑃̃1 

𝑃̃2
 = (

𝜇1

𝜇2
, √

𝑣1
2− 𝑣2

2

1−𝑣2
2  )    if 𝜇𝑃1

≤ min {𝜇𝑃2
,

𝜇𝑃2π𝑃1  

π𝑃2

  }, 

𝑣𝑃1
 ≥ 𝑣𝑃2

                                              (8) 

Definition 3: Let 𝑃̃𝑖=𝑃(𝜇𝑖 , 𝑣𝑖), 𝑖 =  (1,2, … , 𝑛) be a 

group of Pythagorean fuzzy sets. The Pythagorean 

fuzzy weighted averaging (PFWA) formula, given 

in Equation (9), is used to aggregate this set.   

PFWA (𝑃̃1, 𝑃̃2, … . 𝑃̃𝑛) = ((1 − ∏ (1 −𝑛
𝑖=1

𝜇𝑖
2)

𝑤𝑖
)

1/2
, (∏ (𝑣𝑖)𝑤𝑖𝑛

𝑖=1 ))                        (9)       

         

where 𝑤𝑖 = (w1, w2, …,wn) be the weight vector of 

𝑃̃𝑖, 𝑖 =  (1,2, … , 𝑛) with 𝑤𝑖  ϵ [0, 1] and ∑ 𝑤𝑖
𝑛
𝑖=1  = 1.  

Definition 4: Let 𝑃̃1 =  𝑃(𝜇𝑃1
, 𝑣𝑃1

) and 𝑃̃2 =  

𝑃(𝜇𝑃2
, 𝑣𝑃2

) be two Pythagorean fuzzy numbers. To 

compare and rank these two numbers, score 

functions are used. The formula for the score 

function is shown in Equation (10): 

s(𝑃̃1) = (𝜇𝑃1
)

2
 - (𝑣𝑃1

)
2
.                     (10)                                                                           

                     

2.2. SWARA Method  (SWARA Yöntemi) 

The Stepwise Weight Assessment Ratio Analysis 

(SWARA) method was introduced by Kersuliene et 

al. [16] to determine subjective criterion weights. 

One key advantage of SWARA is its simplicity, as 

it involves fewer computational steps and requires a 

minimal number of pairwise comparisons compared 

to other weighting techniques like Analytic 

Hierarchy Process (AHP). Another strength of 

SWARA lies in its reliance on decision-makers' 

judgments, where initial prioritization and relative 

importance are established based on expert 

opinions. The following are the steps involved in the 

SWARA method's process: 

Step 1: Identify alternatives (𝑖 = 1,2, … , 𝑚) and 

criteria (𝑗 = 1,2, … , 𝑛).  

Step 2: Experts' preferences are used to rank the 

criteria from most to least important. 

Step 3: Criteria are compared with each other to 

determine their relative importance levels. The (j)th 

criterion is compared to the (j-1)th criterion, and a 

value (𝑆𝑗) is assigned within the 0-1 range. 

Step 4: Compute the proportional significance of 

every criterion (𝑆𝑗) by comparing it with the 

previous criterion, and calculate the comparative 

coefficient (𝑘𝑗) using Equation (11). 

𝑘𝑗 = {
1, 𝑗 = 1

𝑆𝑗 + 1, 𝑗 > 1                 (11) 

Step 5: The initial weight for every factors (𝑞𝑗) is 

determined utilizing the Equation (12).  

 𝑞𝑗 = {
1, 𝑗 = 1

𝑞𝑗−1

𝑘𝑗
, 𝑗 > 1                    (12)      

Step 6: Final criterion weight (ωi) is computed with 

Equation (13).   

ωi =
𝑞𝑗

∑ 𝑞𝑗
𝑛
𝑗=1

                           (13) 

2.3. Pythagorean Fuzzy MULTIMOORA  
(Pisagor Bulanık MULTIMOORA) 

In this study, the MULTIMOORA (Multi-Objective 

Optimization by Ratio Analysis plus Full 

Multiplicative Form) method is employed to 

evaluate and rank AI-based energy management 

strategies for electric vehicles. Initially, Brauers and 

Zavadskas [17]  introduced as an enhancement of 

the MOORA method, MULTIMOORA combines 
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three distinct approaches—Ratio System (RS), 

Reference Point (RP), and Full Multiplicative Form 

(FMF)—to improve the robustness and accuracy of 

multi-criteria decision-making (MCDM). This 

integrated framework is recognized for its ability to 

address conflicting objectives, handle a wide range 

of criteria, and provide consistent evaluations even 

in complex decision environments. To further 

strengthen its capacity to cope with vagueness and 

imprecise expert judgments often encountered in 

real-world evaluations, the method is extended 

using Pythagorean Fuzzy Sets, resulting in the 

Pythagorean Fuzzy MULTIMOORA (PF-

MULTIMOORA) approach. This extension 

enhances the model's ability to represent uncertainty 

more flexibly, thereby offering a more reliable and 

realistic framework for prioritizing energy 

management strategies in electric vehicle systems. 

The steps of PF-MULTIMOORA are as follows:  

Step 1: Construct Pythagorean fuzzy decision 

matrix 𝐷 = (𝐶𝑗(𝑥𝑖))
𝑚×𝑛

using Equation (14), 

where 𝐶𝑗(𝑗 = 1,2, … , 𝑛) and 𝑥𝑖(𝑖 = 1,2, … , 𝑚) be 

the criteria and alternatives respectively.   
 

      𝐶1   ⋯     𝐶𝑛 

𝐷 = (𝐶𝑗(𝑥𝑖))
𝑚×𝑛

=

𝑥1

⋮
𝑥𝑚

[
𝑃11 ⋯ 𝑃1𝑛

⋮ ⋱ ⋮
𝑃𝑚1 ⋯ 𝑃𝑚𝑛

]    (14)                    

        

Step 2: Combine the Pythagorean fuzzy decision 

matrix by applying the Pythagorean Fuzzy 

Weighted Averaging (PFWA) method, as outlined 

in Equation (9). 

Step 3: Construct the Pythagorean fuzzy score 

matrix S = (𝑋𝑖𝑗)
𝑚×𝑛

 using Equation (10).  

Step 4: Build the normalized decision matrix N = 

(𝑛𝑖𝑗)
𝑚×𝑛

, where the normalization is performed 

using Equation (15). In this step, 𝑋𝑖𝑗
+ and 𝑋𝑖𝑗

− 

represent the maximum and minimum values of 

each criterion across all alternatives, respectively. 
 

𝑛𝑖𝑗 = {

𝑋𝑖𝑗−𝑋𝑖𝑗
−

𝑋𝑖𝑗
+−𝑋𝑖𝑗

−         𝑖𝑓 𝑗 ∈ 𝐶𝑏 ,

𝑋𝑖𝑗
+−𝑋𝑖𝑗

𝑋𝑖𝑗
+−𝑋𝑖𝑗

−           𝑖𝑓𝑗 ∈ 𝐶𝑐

                     (15)

               

where Cb and Cc show the benefit criteria and cost 

criteria.  

Step 5: Establish the normalized weighted matrix 

using Equation (16): 
 

 𝑛𝑖𝑗 =̇ 𝑛𝑖𝑗 ×  𝜔𝑗                     (16)

       

Step 6: Determine the ranking of the alternatives 

using the Ratio System (RS) model. In the 

MULTIMOORA method, the RS model is applied 

to establish the relative priority of each alternative 

and identify the most appropriate option. The scores 

for the alternatives within the ratio system 

framework are computed using Equation (17): 

𝑦𝑖 =  𝑦𝑖
+ - 𝑦𝑖

−  = ∑ nij̇
𝑔
𝑗=1 − ∑ nij̇

𝑛
𝑗=𝑔+1           (17)

           

In this case, 𝑦𝑖 is the normalized value of the i-th 

choice across all criteria, g is the number of criteria 

to be maximized, and n is the number of criteria to 

be minimized. The optimal option is the one with 

the highest rating after the 𝑦𝑖  values are arranged in 

descending order.  

Step 7: Assess the alternatives using the reference 

point (RP) approach. The Tchebycheff Min-Max 

metric is computed using Equation (18). 

𝐷𝑖 = min
(𝑖)

{max
𝑗

|𝑛𝑗 −  nij̇ |}               (18)

            

The reference point (𝑛𝑗) for each criterion is chosen 

from the greatest values of the alternatives in the 

case of maximizing and the lowest values in the case 

of minimization. For every option, the greatest 

value (𝐷𝑖) is computed. Next, the options are 

arranged in ascending order of preference.  

Step 8: Determine the ranking of the alternatives by 

applying the Full Multiplicative Form (FMF) 

technique. The overall utility score for each 

alternative is calculated using Equation (19): 

𝑈𝑖 =  ∏ nij̇  /
𝑔
𝑗=1  ∏ nij̇

𝑛
𝑗=𝑔+1                  (19)

            

In this context, the benefit criteria are indexed from 

j = 1 to g, while the cost criteria are represented from 

j = g + 1 to n.  

Step 9: Rank the alternatives and compare the 

outcomes derived from the Reference Point (RP) 

approach, Ratio System (RS) model, and the Full 

Multiplicative Form (FMF) technique. 

3. CASE STUDY  (VAKA ÇALIŞMASI) 

As electric vehicles become more widespread, 

efficient energy management is essential for 

maximizing performance and sustainability. AI-

based strategies offer innovative solutions by 

enabling smart, adaptive control of energy use. 

However, due to the complexity of these 

approaches, a structured evaluation is needed. This 
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study is important as it provides a comprehensive 

assessment of key AI-driven energy management 

strategies, helping stakeholders identify the most 

effective and practical solutions for advancing 

intelligent and sustainable mobility. 

This study aims to evaluate and prioritize AI-based 

energy management strategies for electric vehicles 

using multi-criteria decision-making approaches. 

By assessing their energy efficiency, economic 

viability, environmental impact, and technological 

adaptability, the research offers a structured 

framework to guide stakeholders in identifying and 

adopting the most effective strategies. The primary 

AI-based energy management strategies are 

determined through a comprehensive literature 

review and expert consultations as follows:  

Predictive Energy Optimization (A1): AI-driven 

predictive models analyze real-time traffic, weather 

conditions, and historical driving patterns to 

optimize energy consumption [7]. Machine learning 

algorithms anticipate energy needs and dynamically 

adjust power distribution between the battery, 

motor, and auxiliary systems, ensuring extended 

range and reduced energy waste. 

Smart Battery Management Systems (A2): AI 

enhances battery performance by continuously 

monitoring charge levels, temperature, and health 

indicators. It predicts battery degradation, optimizes 

charging cycles, and balances cell voltages to 

extend battery lifespan while ensuring efficiency 

and safety [8]. Advanced deep learning techniques 

help prevent overcharging and overheating issues. 

AI-Optimized Route and Driving Assistance (A3): 

AI integrates GPS, traffic data, and energy 

consumption models to suggest the most energy-

efficient routes. By considering road gradients, 

congestion, and charging station availability, AI-

powered navigation helps EVs minimize energy use 

[5]. Additionally, AI-based driving assistants adjust 

acceleration and braking patterns to improve 

efficiency. 

AI-Powered Regenerative Braking Optimization 

(A4): Regenerative braking systems use AI to 

maximize energy recovery by adapting braking 

intensity based on road conditions and driver 

behavior [7]. AI optimally distributes the recovered 

energy back to the battery, reducing reliance on 

external charging and improving overall efficiency. 

AI-Enabled Smart Charging and Grid Integration 

(A5): AI synchronizes EV charging with smart grids 

by analyzing electricity demand, price fluctuations, 

and grid stability. It schedules charging during low-

demand hours to reduce costs and enables Vehicle-

to-Grid (V2G) technology, where EVs improve grid 

resilience by returning power to the grid during 

periods of peak demand [9]. 

AI-Driven Thermal Management (A6): AI regulates 

the vehicle’s thermal systems, optimizing battery 

cooling and cabin climate control to minimize 

unnecessary energy usage [18]. By predicting 

external temperature changes and driver 

preferences, AI efficiently distributes energy 

between the ventilation, heating and air 

conditioning (HVAC) system and other power 

needs, increasing overall vehicle efficiency. 

The evaluation of AI-based energy management 

strategies for electric vehicles requires a 

comprehensive and multidimensional approach, as 

these strategies directly affect the performance, 

sustainability, and practicality of electric vehicles. 

To ensure a thorough assessment, seven critical 

criteria are identified, capturing the most essential 

aspects of energy management in EVs. These 

criteria encompass technical, economic, 

environmental, and regulatory dimensions, enabling 

decision-makers to objectively compare and 

prioritize different AI-based strategies. The selected 

criteria and their detailed explanations are provided 

below: 

Energy Efficiency (C1): This criterion assesses how 

well the AI-based strategy optimizes energy 

consumption to extend the driving range. It 

considers intelligent power distribution, 

regenerative braking efficiency, and predictive 

energy management to minimize waste and improve 

overall vehicle performance. 

Economic Feasibility (C2): This evaluates the 

financial viability of the strategy, including 

implementation costs, operational expenses, and 

potential long-term savings. AI-driven solutions 

that reduce electricity consumption, optimize 

charging costs, and provide a favorable return on 

investment rank higher in this category. 

Time Efficiency & Performance (C3): This aspect 

considers how AI strategies impact charging time, 

route optimization, and overall operational 

efficiency. Strategies that reduce charging duration, 

minimize energy loss during transmission, and 

optimize real-time power management are rated 

more favorably. 

Adaptability & Scalability (C4): This measures the 

flexibility of AI strategies in handling different 

driving environments, vehicle models, and traffic 

conditions. AI systems that can be easily integrated 

into diverse EV fleets, adjust to dynamic energy 

demands, and scale with technological 

advancements receive a higher score. 
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Environmental Sustainability (C5): This criterion 

evaluates the extent to which the AI strategy reduces 

greenhouse gas emissions, promotes renewable 

energy integration, and minimizes environmental 

impact. AI solutions that enable smart grid 

interactions, prioritize clean energy sources, and 

support eco-friendly driving behavior perform 

better in this category. 

Technological Integration (C6): This assesses the 

compatibility of AI-based energy management with 

existing EV infrastructures, including smart 

charging systems, IoT devices, and cloud-based 

platforms. Solutions that ensure seamless 

integration with vehicle control systems, maintain 

high reliability, and minimize disruptions are 

prioritized. 

Regulatory Compliance (C7): This criterion 

examines whether the AI strategy aligns with 

government regulations, safety standards, and 

energy policies. Strategies that adhere to evolving 

legal frameworks, data privacy laws, and electric 

mobility regulations while ensuring cybersecurity 

are considered more effective. 

In this study, a hierarchical framework is developed 

to clearly structure the decision-making process for 

evaluating AI-based energy management strategies 

for electric vehicles. At the top level of the hierarchy 

lies the main objective—to prioritize and evaluate 

the most effective AI-driven strategies in the 

context of electric vehicle energy management. The 

second level comprises the evaluation criteria, 

which reflect key factors such as energy efficiency, 

economic feasibility, technological integration, and 

environmental sustainability. At the final level, the 

specific AI-based strategies identified through 

literature review and expert input are positioned as 

the alternatives to be assessed. This hierarchical 

structure provides a transparent and logical 

foundation for applying the integrated SWARA and 

Pythagorean Fuzzy MULTIMOORA methodology. 

The complete hierarchical decision model is 

visually represented in Figure 3.  

 

Figure 3. Hierarchical decision model of this study (Çalışmanın hiyerarşi karar modeli)

 

3.1. Application  (Uygulama) 

This study applies SWARA-weighted 

MULTIMOORA methodology under Pythagorean 

fuzzy environment to evaluate artificial 

intelligence-driven energy optimization strategies 

for electric vehicles. By reviewing the literature and 

consulting with academic and industry decision-

makers, evaluation criteria and strategies are 

established.  

In the initial stage of the methodology, the expert 

team evaluated and compared the criteria to 

determine their relative importance. In the third step 

of the SWARA method, each criterion is compared 

with the preceding one to determine its relative 

importance. The (𝑆𝑗) values in Table 1 reflect the 

comparison of criterion j with criterion (j–1). For 

example, Technological Integration (C6) is 

compared with Energy Efficiency (C1), and 

Regulatory Compliance (C7) is evaluated against 

Environmental Sustainability (C5). This sequential 

structure is consistent with the standard SWARA 

procedure, where each criterion is assessed relative 

to the one ranked just before it. Subsequently, the 

comparative coefficient (𝑘𝑗) was calculated using 

Equation (11), followed by the computation of the 

initial weight for each criterion (𝑞𝑗) using Equation 

(12). Finally, the final weights of the criteria (ωi) 

were obtained using Equation (13). The results of 

the SWARA approach are presented in Table 1.  
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Table 1. SWARA Method Results (SWARA yöntemi sonuçları) 

Criteria Sj Kj qj wj 

Energy Efficiency (C1) - 1.000 1.000 0.379 

Technological Integration (C6) 0.650 1.650 0.606 0.229 

Economic Feasibility (C2) 0.450 1.450 0.418 0.158 

Adaptability & Scalability (C4) 0.700 1.700 0.246 0.093 

Time Efficiency & Performance (C3) 0.350 1.350 0.182 0.069 

Environmental Sustainability (C5) 0.650 1.650 0.110 0.042 

Regulatory Compliance (C7) 0.400 1.400 0.079 0.030 

 

The results of the SWARA method reveal that 

Energy Efficiency (C1) is the most critical criterion 

in evaluating AI-based energy management 

strategies for electric vehicles, holding the highest 

weight of 0.379. This is followed by Technological 

Integration (C6) with a weight of 0.229, and 

Economic Feasibility (C2) with 0.158, reflecting 

their strong influence on decision-making. 

Adaptability & Scalability (C4) ranks fourth with 

0.093, while Time Efficiency & Performance (C3) 

holds a moderate importance at 0.069. 

Environmental Sustainability (C5) and Regulatory 

Compliance (C7) are considered less significant, 

with weights of 0.042 and 0.030, respectively. 

These results indicate a clear emphasis on technical 

performance and cost-effectiveness over regulatory 

or environmental aspects in the context of electric 

vehicle energy strategies.  

In the second phase, the single-valued Pythagorean 

Fuzzy MULTIMOORA method is applied using the 

criterion weights obtained from the first phase. To 

implement this approach, a decision matrix is 

established on the basis of linguistic variables 

represented by Pythagorean fuzzy numbers, as 

outlined in Table 2. 

 

Table 2. Pythagorean fuzzy number linguistic variables (Pisagor bulanık sayıların dilsel terimleri) 

Linguistic term  Corresponding Pythagorean Fuzzy Member (u,v) 

Very Low (VL) (0.15, 0.85) 

Low (L) (0.25, 0.75) 

Moderately Low (ML) (0.35, 0.65) 

Medium (M) (0.50, 0.45) 

Moderately High (MH) (0.65, 0.35) 

High (H) (0.75, 0.25) 

Very High (VH) (0.85, 0.15) 

The decision matrix, presented in Table 3, was 

developed based on evaluations provided by a panel 

of three experts, comprising one academic and two 

professionals from the automotive industry. During 

the evaluation process, the experts reached a 

consensus through direct discussion, eliminating the 

need for aggregating differing opinions using 

operators such as the Pythagorean Fuzzy Weighted 

Averaging (PFWA). Nevertheless, the PFWA 

operator is introduced conceptually in Section 2.1 to 

inform readers and support future studies that may 

require the integration of diverse expert judgments. 

After constructing the Pythagorean fuzzy decision 

matrix, a Pythagorean fuzzy score matrix was 

established using Equation (10) to transform fuzzy 

sets into crisp values. This transformation was 

carried out by applying a score function that 

quantifies each Pythagorean fuzzy number into a 

real number between 0 and 1, thereby enabling 

numerical comparison between alternatives. The 

resulting crisp values reflect the relative 

performance of each strategy under each criterion 

and are essential for subsequent normalization and 

aggregation steps. 
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Table 3. Decision matrix (Karar matrisi) 

Alternative/Criteria 

Energy 

Efficiency 

(C1) 

Economic 

Feasibility 

(C2) 

Time 

Efficiency 

& 

Performan

ce (C3) 

Adaptabili

ty & 

Scalabilit

y (C4) 

Environ

mental 

Sustainab

ility (C5) 

Technolog

ical 

Integratio

n (C6) 

Regulator

y 

Complian

ce (C7) 

Predictive Energy 

Optimization (A1) 
VH ML M H H H H 

Smart Battery 

Management 

Systems (A2) 

VH L ML VH VH VH H 

AI-Optimized 

Route and Driving 

Assistance (A3) 

H ML MH MH MH H MH 

AI-Powered 

Regenerative 

Braking 

Optimization (A4) 

MH M M M MH MH M 

AI-Enabled Smart 

Charging and Grid 

Integration (A5) 

H ML ML H VH H MH 

AI-Driven Thermal 

Management (A6) 
M ML H M MH M ML 

Following the transformation of expert evaluations 

into crisp values using the score function, the 

normalization process is carried out using Equation 

(15), followed by the construction of the normalized 

weighted decision matrix using Equation (16). As 

part of the normalization step, benefit-type 

criteria—such as Energy Efficiency (C1), 

Adaptability & Scalability (C4), Environmental 

Sustainability (C5), Technological Integration (C6), 

and Regulatory Compliance (C7)—are normalized 

by assigning higher scores to better-performing 

alternatives. Conversely, for cost-type criteria—

namely Economic Feasibility (C2) and Time 

Efficiency & Performance (C3)—lower values are 

preferred and scored accordingly. This approach 

ensures that all criteria, regardless of their nature, 

are brought onto a unified scale between 0 and 1, 

where 1 represents the most favorable performance 

and 0 the least. As a result, the normalized decision 

matrix presented in Table 4 enables a fair and 

consistent comparison among the alternative 

strategies prior to applying the MULTIMOORA 

method. To enhance the robustness and accuracy of 

the multi-criteria decision-making process, the three 

distinct components of the MULTIMOORA 

method—Ratio System (RS), Reference Point (RP), 

and Full Multiplicative Form (FMF)—are applied 

independently. This comprehensive approach 

ensures a more reliable and consistent evaluation of 

the alternatives. 

 

 

Table 4. Normalized decision matrix (Normalize karar matrisi)  

Alternative/Crit

eria 

Energy 

Efficiency 

(C1) 

Economic 

Feasibility 

(C2) 

Time 

Efficiency 

& 

Performanc

e (C3) 

Adaptabili

ty & 

Scalabilit

y (C4) 

Environm

ental 

Sustainabi

lity (C5) 

Technolo

gical 

Integratio

n (C6) 

Regulatory 

Complianc

e (C7) 

Predictive 

Energy 

Optimization 

(A1) 

1.00 0.63 0.57 0.69 0.50 0.69 1.00 

Smart Battery 

Management 

Systems (A2) 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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AI-Optimized 

Route and 

Driving 

Assistance (A3) 

0.69 0.63 0.25 0.39 0.00 0.69 0.75 

AI-Powered 

Regenerative 

Braking 

Optimization 

(A4) 

0.39 0.00 0.57 0.00 0.00 0.39 0.43 

AI-Enabled 

Smart Charging 

and Grid 

Integration (A5) 

0.69 0.63 1.00 0.75 1.00 0.69 0.75 

AI-Driven 

Thermal 

Management 

(A6) 

0.00 0.63 0.00 0.00 0.00 0.00 0.00 

The RS model is first applied to determine the 

relative priority of each alternative using Equation 

(17). Subsequently, the Tchebycheff Min-Max 

metric is calculated to evaluate the alternatives 

through the RP approach, as defined by Equation 

(18). Finally, the overall utility score for each 

alternative is computed by applying the FMF 

technique using Equation (19) to establish their final 

rankings. The results obtained from the Ratio 

System (RS), Reference Point (RP), and Full 

Multiplicative Form (FMF) approaches are 

presented in Table 5.  In the RS model, the 𝑦𝑖 values 

are ranked in descending order, where a higher 

value indicates a more preferable alternative. For 

the RP approach, the maximum distance value 𝐷𝑖 is 

calculated for each alternative, and the alternatives 

are ranked in ascending order, with lower values 

indicating better performance. In the FMF 

technique, the utility scores 𝑈𝑖 are also ranked in 

descending order, where the highest score reflects 

the most ideal alternative. 

 

Table 5. The results obtained from the RS, RP, and FMF approaches (RS, RP ve FMF yaklaşımlarından elde 

edilen sonuçlar) 

Alternative yi Di Ui 

Predictive Energy Optimization (A1) 0.51 0.10 4.68 

Smart Battery Management Systems (A2) 0.55 0.12 6.37 

AI-Optimized Route and Driving Assistance (A3) 0.36 0.12 4.08 

AI-Powered Regenerative Braking Optimization (A4) 0.21 0.23 3.40 

AI-Enabled Smart Charging and Grid Integration (A5) 0.39 0.12 3.28 

AI-Driven Thermal Management (A6) -0.10 0.38 0.00 

Figure 4 indicates the ranking results of three 

approaches. Smart Battery Management Systems 

(A2) consistently rank as the top-performing 

strategy across all three methods, highlighting its 

critical role in optimizing energy use and 

prolonging battery life. Similarly, AI-Driven 

Thermal Management (A6) ranks lowest in all 

methods, suggesting it may currently offer less 

impact or maturity compared to other strategies. AI-

Optimized Route and Driving Assistance (A3) and 

AI-Powered Regenerative Braking Optimization 

(A4) occupy middle-tier rankings, indicating 

moderate yet stable performance. Minor variances 

across methods, such as the relative positions of 

Predictive Energy Optimization (A1) and AI-

Enabled Smart Charging and Grid Integration (A5), 

suggest that while the overall hierarchy remains 

stable, method-specific criteria can influence the 

finer details of strategy prioritization. 
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Figure 4. Ranking results of three approaches (Üç yaklaşıma ait sıralama sonuçları) 

 

3.2. Sensitivity Analysis (Duyarlılık Analizi) 

Sensitivity analysis is a valuable tool employed to 

evaluate the reliability of a decision-making 

framework by observing how fluctuations in input 

parameters—particularly criteria weights—affect 

the final rankings of alternatives. In this study, 

sensitivity analysis is conducted to investigate the 

impact of changes in the importance levels assigned 

to evaluation criteria on the prioritization of AI-

based energy management strategies for electric 

vehicles. By systematically interchanging the 

weights of each criterion, the analysis reveals 

whether the ranking of strategies remains consistent 

or is significantly altered. A change in the ranking 

order following the modification of a criterion's 

weight indicates that the model is sensitive to that 

specific parameter, highlighting its influence on the 

decision outcome. On the other hand, if the rankings 

remain stable despite weight adjustments, it 

suggests a robust decision-making model. This 

process ensures the consistency and credibility of 

the applied methodology under varying 

assumptions, reinforcing the dependability of the 

results in diverse decision environments.  

In this research, sensitivity analysis is carried out by 

modifying the criterion weights obtained through 

the SWARA method and recalculating the Ratio 

System (RS) scores using the Pythagorean Fuzzy 

MULTIMOORA approach. A total of 21 distinct 

scenarios are analyzed, each involving a pairwise 

swap of weight values between two criteria. For 

instance, the notation 𝑦𝑖1-2 indicates a scenario 

where the weight of Criterion 1 is exchanged with 

that of Criterion 2. Figure 5 shows the heatmap of 

RS model scores (𝑦𝑖 values) for six alternatives 

(A1–A6) across 21 different sensitivity scenarios, 

each representing a weight swap between a pair of 

evaluation criteria. The heatmap highlights how 

each alternative’s performance fluctuates under 

different weighting conditions. Alternative A2 

(Smart Battery Management Systems) consistently 

scores high across all scenarios, indicating strong 

robustness and insensitivity to weight variations. In 

contrast, “AI-Driven Thermal Management (A6)” 

remains consistently low or negative in all cases, 

suggesting weak overall performance and possibly 

unfavorable evaluation under all weighting 

schemes. Alternatives A1, A3, and A5 show 

moderate variability, with A1 and A5 reaching 

relatively high scores in several scenarios, 

indicating they are sensitive but potentially 

competitive depending on the criteria emphasis. A4 

tends to stay on the lower end but shows some 

resilience in select scenarios.   
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Figure 5. RS Model results across 21 scenarios (RS Modeli sonuçlarının 21 senaryo karşısındaki dağılımı)

Figure 6 shows the ranking results of the 

alternatives across all 21 sensitivity analysis 

scenarios, clearly visualizing the dynamic shifts in 

ranking positions and highlighting the stability of 

top-performing strategies under different evaluation 

perspectives. As observed in the data, Alternatives 

A1 and A2 consistently outperform others, 

frequently securing the 1st and 2nd ranks in most 

scenarios, indicating their robustness and reliability 

under changing priority conditions. In contrast,  

Alternative A6 remains fixed at the 6th position 

across all scenarios, suggesting its relatively poor 

performance regardless of weight variation. 

Alternatives A3, A4, and A5 exhibit more 

variability, occasionally reaching middle-tier 

rankings, but never achieving top ranks 

consistently. This variability indicates that their 

effectiveness is more sensitive to the weight 

distribution of the criteria.  

 

Figure 6. Ranking results of the alternatives across all 21 scenarios (Alternatiflerin 21 senaryo boyunca sıralama 

sonuçları) 
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3.3. Comparative Analysis (Karşılaştırma Analizi) 

To validate the robustness and reliability of the 

proposed SWARA–Pythagorean Fuzzy 

MULTIMOORA framework, a comparative 

analysis was performed using the Pythagorean 

Fuzzy TOPSIS (PF-TOPSIS) method. Such 

comparative evaluations are essential in multi-

criteria decision-making (MCDM) studies, as they 

provide a benchmark for assessing the consistency 

of results and the practical applicability of 

alternative approaches under different decision 

environments. 

The Technique for Order Preference by Similarity 

to Ideal Solution (TOPSIS), originally proposed by 

Hwang and Yoon [19], is a widely adopted MCDM 

method that selects the optimal alternative based on 

its geometric proximity to a positive ideal solution 

(PIS) and its distance from a negative ideal solution 

(NIS). To effectively manage uncertainty in 

decision-making, this method has been extended 

into the Pythagorean fuzzy domain, resulting in the 

Pythagorean Fuzzy TOPSIS (PF-TOPSIS) 

approach. 

This method was selected for comparison due to its 

popularity in the literature, ease of interpretation, 

and ability to offer a reliable ranking mechanism in 

fuzzy environments. On the basis of definition 

above, the procedural steps of the PF-TOPSIS 

method are outlined below:  

Step 10: Calculate Pythagorean fuzzy positive ideal 

solution (PIS) and negative ideal solution (NIS) 

using Equations (20) and (21): 

 

𝑥+ = {max
𝑖

〈𝑠((𝑥𝑖))〉|𝑗 = 1,2, ⋯ , 𝑛} =

{〈𝑃(𝑢1
+, 𝑣1

+)〉, 〈𝑃(𝑢2
+, 𝑣2

+)〉, ⋯ , 〈𝑃(𝑢𝑛
+, 𝑣𝑛

+)〉},    (20)           

𝑥− = {min
𝑖

〈𝑠((𝑥𝑖))〉|𝑗 = 1,2, ⋯ , 𝑛} =

{〈𝑃(𝑢1
−, 𝑣1

−)〉, 〈𝑃(𝑢2
−, 𝑣2

−)〉, ⋯ , 〈𝑃(𝑢𝑛
−, 𝑣𝑛

−)〉}.     (21)           

Step 11: Compute distances from Pythagorean 

fuzzy PIS and NIS using Equations (22) and (23): 

𝐷(𝑥𝑖 , 𝑥+) = ∑ 𝑤𝑗𝑑 (𝐶𝑗(𝑥𝑖), 𝐶𝑗(𝑥+))𝑛
𝑗=1 =

1

2
∑ 𝑤𝑗 (|(𝜇𝑖𝑗)

2
− (𝜇𝑗

+)
2

| + |(𝑣𝑖𝑗)
2

− (𝑣𝑗
+)

2
| +𝑛

𝑗=1

|(𝜋𝑖𝑗)
2

− (𝜋𝑗
+)

2
|), 𝑖 = 1,2, ⋯ , 𝑚,                   (22)    

𝐷(𝑥𝑖 , 𝑥−) = ∑ 𝑤𝑗𝑑 (𝐶𝑗(𝑥𝑖), 𝐶𝑗(𝑥−))𝑛
𝑗=1 =

1

2
∑ 𝑤𝑗 (|(𝜇𝑖𝑗)

2
− (𝜇𝑗

−)
2

| + |(𝑣𝑖𝑗)
2

− (𝑣𝑗
−)

2
| +𝑛

𝑗=1

|(𝜋𝑖𝑗)
2

− (𝜋𝑗
−)

2
|), 𝑖 = 1,2, ⋯ , 𝑚.                      (23)   

Step 12: Determine the revised closeness ξ(𝑥𝑖)  of 

the alternative 𝑥𝑖 using Eq. (24): 

ξ(𝑥𝑖) =
𝐷(𝑥𝑖,𝑥−)

𝐷𝑚𝑎𝑥(𝑥𝑖,𝑥−)
−

𝐷(𝑥𝑖,𝑥+)

𝐷𝑚𝑖𝑛(𝑥𝑖,𝑥+)
                        (24)                                                                                    

 

Step 13: Determine the best ranking order of 

alternatives in which the best alternative is the one 

that has the largest revised closeness ξ(𝑥𝑖).   

The implementation of the PF-TOPSIS method 

begins with the calculation of the Pythagorean 

Fuzzy Positive Ideal Solution (PIS) and Negative 

Ideal Solution (NIS) using Equations (20) and (21). 

These reference points represent the best and worst 

possible performance across all criteria, 

respectively. The results of these calculations are 

presented as follows: 

𝑥+ = {P(0.85, 0.15), P(0.50, 0.45), P(0.75, 0.25), 

P(0.85, 0.15), P(0.85, 0.15), P(0.85, 0.15), P(0.75, 

0.25)} 

𝑥− = {P(0.50, 0.45), P(0.25, 0.75), P(0.35, 0.65), 

P(0.50, 0.45), P(0.65, 0.35), P(0.50, 0.45), P(0.35, 

0.65)}.  

Next, the distances of each alternative from the 

Pythagorean Fuzzy PIS and NIS are determined 

using Equations (22) and (23). Based on these 

distances, the revised closeness coefficient ξ(xᵢ) for 

each alternative is computed using Equation (24). 

This coefficient indicates how close each alternative 

is to the ideal solution, with higher values signifying 

better performance. Table 6 provides a comparison 

between the PF-TOPSIS method and the proposed 

SWARA–Pythagorean Fuzzy MULTIMOORA 

framework. It includes the calculated distances from 

the PIS and NIS, as well as the resulting closeness 

coefficients and rankings for each alternative. 
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Table 6. Comparative results between the PF-TOPSIS method and the proposed approach (PF-TOPSIS 

yöntemi ile önerilen yaklaşım arasındaki karşılaştırmalı sonuçlar) 

Alternative 

PF-TOPSIS Proposed method 

Distances 

from fuzzy 

PIS 

Distances 

from 

fuzzy NIS 

Revised 

closeness 
Ranking yi Ranking 

Predictive Energy 

Optimization (A1) 0.047 0.086 -0.205 3 0.514 2 

Smart Battery Management 

Systems (A2) 0.041 0.080 -0.133 1 0.546 1 

AI-Optimized Route and 

Driving Assistance (A3) 0.067 0.092 -0.643 4 0.362 4 

AI-Powered Regenerative 

Braking Optimization (A4) 0.072 0.069 -1.019 5 0.209 5 

AI-Enabled Smart Charging 

and Grid Integration (A5) 0.044 0.082 -0.179 2 0.387 3 

AI-Driven Thermal 

Management (A6) 0.083 0.071 -1.253 6 -0.100 6 

The comparative results presented in Table 6 

demonstrate a high degree of consistency between 

the PF-TOPSIS method and the proposed SWARA–

Pythagorean Fuzzy MULTIMOORA framework. In 

both approaches, Smart Battery Management 

Systems (A2) is ranked as the most critical AI-based 

energy management strategy for electric vehicles, 

highlighting its universal importance across 

different evaluation techniques. 

Additionally, AI-Driven Thermal Management 

(A6) consistently appears in the last position, 

indicating its relatively lower priority among the 

evaluated strategies in both methods. The positions 

of other alternatives, such as Predictive Energy 

Optimization (A1) and AI-Enabled Smart Charging 

and Grid Integration (A5), show slight variations 

(e.g., A1 is ranked second in the proposed method 

but third in PF-TOPSIS), yet the overall trend and 

grouping of alternatives remain largely aligned. 

This alignment validates the robustness and 

reliability of the proposed methodology. The 

similarity in rankings across two distinct 

Pythagorean fuzzy MCDM techniques strengthens 

the credibility of the decision-making framework 

and validates the reliability of the weighting and 

ranking procedures employed in this study. 

 

 

4. DISCUSSION  (TARTIŞMA) 

This study addresses a critical challenge in the 

transition toward sustainable transportation by 

evaluating AI-based energy management strategies 

for electric vehicles. As electric vehicles continue to 

gain prominence in global markets, optimizing their 

energy use through intelligent systems becomes 

increasingly essential for improving efficiency, 

performance, and environmental impact. The 

methodological strength of this study lies in the 

integration of the SWARA method and the 

Pythagorean Fuzzy MULTIMOORA approach. 

SWARA effectively captures expert judgment to 

assign meaningful weights to evaluation criteria, 

while the Pythagorean Fuzzy MULTIMOORA 

method offers a robust framework for handling 

uncertainty and imprecision in multi-criteria 

decision-making [20]. By combining these 

approaches, the study ensures both the reliability of 

the input data and the robustness of the final 

rankings, providing valuable insights for 

stakeholders aiming to adopt the most effective AI-

based solutions in EV energy management.  

As a result of the comprehensive evaluation, “Smart 

Battery Management Systems” emerged as the 

highest-ranked strategy among AI-based energy 

management solutions for electric vehicles. This 

outcome is largely due to the vital role these systems 

play in enhancing energy efficiency, prolonging 
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battery life, increasing safety, and optimizing the 

overall operational performance of electric vehicles. 

Predictive maintenance, intelligent charging and 

discharging cycle control, and real-time monitoring 

are all made possible by smart battery management 

systems, and these features immediately reduce 

energy waste and long-term operating expenses. 

According to Ali et al. [21], a smart battery 

management system is one of the main parts of 

electric vehicles (EVs). It not only accurately 

assesses the battery's status but also ensures safe 

operation and prolongs its lifespan. For policy 

makers, these findings emphasize the importance of 

supporting initiatives and investments that facilitate 

the development and deployment of advanced 

battery technologies. Meanwhile, professionals in 

computer engineering and electrical and electronics 

fields can use this insight to guide innovation in AI 

algorithms, embedded systems, and battery health 

analytics. Focusing on this strategy can significantly 

accelerate the transition toward smarter, more 

sustainable, and user-friendly electric mobility 

solutions.  

Following the computational analysis, “Predictive 

Energy Optimization” and “AI-Enabled Smart 

Charging and Grid Integration” rank as the second 

and third most critical AI-based energy 

management strategies for electric vehicles. 

Predictive energy optimization stands out for its 

ability to anticipate energy consumption based on 

dynamic factors such as driving behavior, road 

characteristics, and environmental conditions, 

allowing for proactive and efficient energy use. This 

strategy has been shown to significantly improve 

route planning and reduce energy consumption 

through data-driven models that combine machine 

learning and statistical approaches for real-world 

application [22]. Meanwhile, AI-enabled smart 

charging and grid integration play a vital role in 

aligning EV charging patterns with grid demands, 

enabling efficient load distribution and supporting 

the integration of renewable energy sources. These 

capabilities contribute to both operational cost 

reduction and enhanced grid stability, making this 

strategy indispensable in scaling EV infrastructure 

[23]. For policy makers, these findings offer a 

roadmap for prioritizing investments in predictive 

and intelligent charging technologies to enhance EV 

performance and sustainability. Professionals in 

engineering can strengthen these insights to drive 

innovation in AI models, smart infrastructure 

systems, and intelligent energy forecasting tools. 

In the process of weighting the criteria for 

evaluating AI-based energy management strategies 

for electric vehicles, “Energy Efficiency” emerged 

as the most important criterion, followed by 

“Technological Integration” and “Economic 

Feasibility”. “Energy efficiency” ranks first because 

it directly impacts the core goal of energy 

management—reducing consumption and 

maximizing the driving range of electric vehicles. 

As electric mobility continues to expand, ensuring 

optimal energy use is essential for both 

sustainability and performance. The importance of 

AI technologies in efficiently integrating with 

infrastructure, sensors, and vehicle systems is the 

reason "technological integration" is rated second. 

Without effective integration, even the most 

advanced AI models cannot be fully utilized. 

“Economic feasibility” takes the third spot, 

reflecting the practical necessity for cost-effective 

solutions that can be scaled and adopted by 

manufacturers and consumers alike. These insights 

are particularly valuable for policy-makers, as they 

highlight the need to support strategies that balance 

performance with technological innovation and 

cost. By prioritizing investments and incentives in 

areas that maximize energy savings and enable 

advanced technology deployment at a reasonable 

cost, policy-makers can drive the widespread 

adoption of efficient and intelligent energy 

solutions in the electric vehicle sector.  

These findings offer valuable insights for both 

policy-makers and stakeholders in the electric 

vehicle industry by highlighting which AI-based 

energy management strategies and evaluation 

criteria are most critical for advancing sustainable 

and intelligent mobility. The prioritization of 

strategies such as smart battery management, 

predictive energy optimization, and intelligent 

charging systems underscores the need for 

supportive policies that encourage innovation in AI 

technologies and infrastructure development. 

Additionally, the emphasis on energy efficiency, 

technological integration, and economic feasibility 

as top evaluation criteria provides a clear 

framework for aligning regulatory actions, 

investment decisions, and research initiatives. For 

the electric vehicle industry, these insights help 

guide the development of next-generation energy 

management solutions that are not only technically 

effective but also economically viable and scalable.     

5. CONCLUSION (SONUÇ) 

This study holds significant importance as it 

addresses a critical and underexplored area in the 

field of electric vehicle development—the 

systematic evaluation and prioritization of AI-based 

energy management strategies. While existing 

literature has focused on individual components 

such as battery management, charging 

infrastructure, or general energy optimization, there 
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remains a lack of comprehensive frameworks that 

assess these strategies in an integrated, comparative 

manner. 

This study addresses that gap by integrating the 

SWARA method for determining the importance of 

evaluation criteria with the Pythagorean Fuzzy 

MULTIMOORA method for ranking alternative 

strategies. This hybrid approach enables a robust, 

flexible, and uncertainty-aware evaluation 

framework. The findings offer actionable insights 

for policy-makers, helping them prioritize 

investments and regulatory efforts that support 

sustainable and intelligent mobility solutions. 

Additionally, professionals in computer engineering 

and electrical and electronic engineering can use the 

results to guide the development of AI-driven 

technologies, including smart battery systems, 

predictive control algorithms, and intelligent 

charging infrastructure, all aimed at enhancing the 

performance and sustainability of electric vehicles. 

The findings of this study reveal that among the 

evaluated strategies, “Smart Battery Management 

Systems” emerged as the most critical AI-based 

energy management solution for electric vehicles. 

This highlights the fundamental importance of 

intelligent battery control in enhancing energy 

efficiency, extending battery life, and ensuring 

overall system reliability. “Predictive Energy 

Optimization” ranked second, underscoring the 

value of AI-driven forecasting in managing energy 

consumption based on real-time driving conditions 

and user behavior. “AI-Enabled Smart Charging 

and Grid Integration” ranked third, reflecting the 

growing relevance of intelligent charging solutions 

that optimize load distribution and support the 

stability of the power grid. These results provide 

decision-makers with a data-driven framework for 

identifying the most impactful areas for policy 

development, research investment, and 

technological deployment. By prioritizing strategies 

with the highest potential for improving energy 

efficiency and system integration, stakeholders can 

make informed decisions that accelerate the 

transition toward intelligent and sustainable electric 

vehicle ecosystems. 

Sensitivity analysis was also conducted to examine 

the robustness of the proposed decision-making 

framework. This involved modifying the criterion 

weights initially determined by the SWARA 

method and recalculating the Ratio System (RS) 

scores within the Pythagorean Fuzzy 

MULTIMOORA approach. A total of 21 distinct 

scenarios were created, each involving a pairwise 

exchange of weight values between two criteria to 

observe the resulting changes in strategy rankings. 

The findings of the sensitivity analysis demonstrate 

that, despite the weight alterations, the overall 

ranking of AI-based energy management strategies 

remained largely consistent. This stability confirms 

the reliability and robustness of the evaluation 

model, reinforcing confidence in the prioritization 

outcomes and supporting its application in real-

world decision-making contexts related to electric 

vehicle energy strategy development. 

This study provides a solid foundation for 

evaluating AI-based energy management strategies 

for electric vehicles; however, there are several 

promising directions for future research. Upcoming 

studies can be expanded by incorporating additional 

evaluation criteria to capture broader technical, 

economic, and social dimensions. Moreover, 

increasing the number and diversity of expert 

participants would enhance the reliability and 

generalizability of the results. The proposed 

methodology can also be applied to other decision-

making problems within the transportation and 

energy sectors, such as evaluating smart grid 

technologies, sustainable mobility solutions, or 

alternative fuel systems. Methodologically, the 

framework can be enhanced by integrating 

alternative fuzzy set theories, such as Fermatean 

fuzzy sets or Spherical fuzzy sets, to better represent 

uncertainty in complex environments. Additionally, 

other multi-criteria decision-making (MCDM) 

methods, including CRITIC (CRiteria Importance 

Through Intercriteria Correlation) for objective 

weighting and MARCOS (Measurement of 

Alternatives and Ranking according to the 

Compromise Solution) for ranking alternatives, can 

be explored to further strengthen the decision-

making process. Expanding the application of the 

proposed methodology across different regional or 

country-specific EV ecosystems could also offer 

valuable comparative insights for policymakers and 

practitioners. Moreover, scenario-based or dynamic 

decision-making frameworks can be incorporated to 

reflect real-world fluctuations in energy demand, 

battery performance, and grid interactions. These 

extensions would provide greater flexibility and 

depth in evaluating technological solutions in the 

evolving landscape of electric vehicle innovation. 
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