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This study applies a SWARA-weighted Pythagorean Fuzzy MULTIMOORA framework to
evaluate Al-based energy management strategies for electric vehicles, with the results
validated through sensitivity and comparative analyses. / Bu ¢alismada, elektrikli araglar igin
yapay zekd tabanli enerji yonetim stratejilerini degerlendirmek amaciyla SWARA—agwrlikh
Pisagor Bulanik MULTIMOORA yéntemi uygulanmakta ve elde edilen sonuglar, duyarlilik ve
karsilagtirmali analizler ile dogrulanmaktadir.
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Highlights (Onemli noktalar)

»  Development of a SWARA-weighted Pythagorean Fuzzy MULTIMOORA framework
for evaluating Al-based energy management strategies in electric vehicles. / Yapay
zekd tabanli EV enerji stratejileri i¢cin SWARA—agwhkly Pisagor Bulamik
MULTIMOORA yénteminin geligtirilmesi

» Top strategies: Smart Battery Management, Predictive Energy Optimization, Al-
Enabled Smart Charging / En iyi stratejiler: Akilli Batarya Yonetimi, Tahmine
Dayali Enerji Optimizasyonu, Yapay Zekda Tabanl Akilli Sarj

» Validation of results through 21-scenario sensitivity analysis and comparative
analysis with the Pythagorean Fuzzy TOPSIS method. / Sonuglar 21 senaryolu
duyarliik analizi ve Pisagor Bulanik TOPSIS kullamilarak yapilan karsilastirma
analizi ile dogrulanmistr.

Aim (Amag): The aim of this study is to comprehensively evaluate Al-based energy
management strategies for electric vehicles to enhance efficiency, extend battery life, and
promote the use of sustainable energy sources. / Bu ¢alismanin amaci, elektrikli araglarda
yapay zekd tabanl enerji yonetim stratejilerini degerlendirerek verimliligi artirmak, batarya
omriinii uzatmak ve stirdiiriilebilir enerji kaynaklarimin kullanimini tesvik etmektir.

Originality (Ozgiinliik): This study is original in providing a comprehensive framework that
prioritizes Al-based energy management strategies for electric vehicles using a structured
hybrid method, addressing the gap left by most studies that focus only on isolated aspects
without in-depth AI strategy evaluation. / Bu ¢alisma, yapay zekd tabanli enerji yonetimi
stratejilerini onceliklendiren yapilandirilmis bir hibrit yontem sunarak, ¢ogu c¢alismanmin
yalnizca tekil alanlara odaklanip Al stratejilerini derinlemesine degerlendirmemesi nedeniyle
olusan boslugu doldurmaktadir.

Results (Bulgular): Smart Battery Management Systems emerged as the top Al-based energy
strategy, followed by Predictive Energy Optimization and Al-Enabled Smart Charging, with
21-scenario sensitivity analysis and PF-TOPSIS comparison confirming the robustness,
stability, and reliability of the proposed hybrid framework. / Akilli Batarya Yonetimi ilk sirada
one ¢ikarken, Tahmine Dayali Enerji Optimizasyonu ve Yapay Zekda Tabanl Alkilli Sarj ikinci
ve tigtincii sirada yer almakta; 21 senaryolu duyarlilik analizi ve PF-TOPSIS karsilastirmasi,
onerilen hibrit yontemin saglamhigini ve giivenilirligini dogrulamaktadur.

Conclusion (Sonug): This study provides actionable insights to guide engineering
professionals and promote the adoption of sustainable energy solutions. / Bu ¢alisma,
miihendislik  profesyonellerine yol gdsteren ve siirdiiriilebilir enerji ¢oziimlerinin
benimsenmesini destekleyen uygulanabilir bilgiler sunmaktadir.
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The growing adoption of electric vehicles (EVs) has formed a pressing need for intelligent energy
management systems to extend battery life, improve efficiency and encourage the use of
sustainable energy sources. As the complexity of energy optimization increases, the integration
of artificial intelligence (Al) has become essential for enabling real-time decision-making and
adaptive control. However, a significant gap remains in the literature regarding the
comprehensive evaluation and prioritization of Al-based energy management strategies for EVs.
This study addresses this gap by developing a multi-criteria decision-making (MCDM)
framework that combines the Stepwise Weight Assessment Ratio Analysis (SWARA) method to
determine the importance of evaluation criteria with the Pythagorean Fuzzy MULTIMOORA
method to rank alternative strategies. The results show that Smart Battery Management Systems
is the most critical strategy, followed by Predictive Energy Optimization and Al-Enabled Smart
Charging and Grid Integration. A sensitivity analysis involving 21 weight variation scenarios
confirms the robustness and stability of the suggested model. The findings offer practical insights
for policymakers and professionals in engineering and present a flexible methodological
framework that can be applied to other complex decision-making problems in sustainable energy
and transportation systems.

Elektrikli Araclar icin Yapay Zeka Tabanh Enerji Yonetim Stratejilerinin

SWARA Agirhikh

Pisagor Bulamk MULTIMOORA Yontemi ile
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Cok Kriterli Karar Verme
Pisagor Bulanik Kiimeler

Elektrikli araglarin yayginlasmasi, verimliligi artirmak, batarya 6mriinii uzatmak ve yenilenebilir
enerji kaynaklarini entegre etmek amaciyla akilli enerji yonetim sistemlerine olan ihtiyact
artirmustir. Artan karmasiklik karsisinda, yapay zeka entegrasyonu ger¢ek zamanli karar verme
ve uyarlanabilir kontrol agisindan biiylik 6nem tasimaktadir. Ancak literatiirde, elektrikli araglar
icin yapay zeka tabanli enerji yonetim stratejilerinin kapsamli sekilde degerlendirilmesine
yonelik smirlt ¢alisma bulunmaktadir. Bu g¢alismada, degerlendirme kriterlerinin Snemini
belirlemek i¢in SWARA, stratejileri dnceliklendirmek i¢in Pisagor Bulanik MULTIMOORA
yontemlerinin entegre edildigi ¢ok kriterli karar verme tabanli bir model gelistirilmistir.
Bulgulara gore, “Akilli Batarya Yonetim Sistemleri” en Oncelikli strateji olarak belirlenmis,
ardindan “Tahmine Dayal1 Enerji Optimizasyonu” ve “Yapay Zeka Tabanl1 Akill1 Sarj ve Sebeke
Entegrasyonu” gelmistir. Yirmi bir senaryoda yapilan duyarlilik analizi, modelin saglamligini
ortaya koymustur. Elde edilen sonuglar, politika yapicilar ve miithendislik uzmanlart i¢in stratejik
karar alma siireglerinde yol gosterici niteliktedir.

1. INTRODUCTION (GiRriS)

The transportation sector remains one of the largest
consumers of energy globally, with a significant
portion of this demand being met by fossil fuels
such as natural gas, oil, coal. This substantial fossil
fuel dependence is a major contributor to
greenhouse gas emissions, air pollution, and the

acceleration of climate change. The growing
scarcity of fossil fuels has led to increased energy
costs and raised concerns about long-term economic
stability, particularly for nations heavily dependent
on energy imports [1]. In response to these
challenges, the global focus has shifted toward
cleaner, more energy-efficient alternatives, with
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electric vehicles (EVs) emerging as a key solution.
By decreasing the release of carbon and making
possible to include sources of clean energy, EVs
play a vital role in reshaping the future of
transportation toward greater sustainability and
energy independence.

According to recent data from Eurostat (2025) [2],
the transportation industry accounted for 31.0% of
the EU’s ultimate energy usage in 2022,
highlighting its significant role in overall energy
demand. Within this sector, road transport alone
consumed 73.6% of the total energy used, with the
vast majority—90.6%—originating from fossil
fuels such as motor oil with gasoline or diesel. As
shown in Figure 1, the dominance of gas/diesel oil
has steadily increased since 1990, overtaking motor

gasoline as the primary energy source in road
transport. Although electricity usage remains
marginal at just 0.3% in 2022, it has seen a
noticeable upward trend, increasing more than six-
fold between 2018 and 2022. This modest but
promising growth indicates a gradual shift toward
electrification in  transport.  Simultaneously,
electricity prices across the EU have shown mixed
trends—with  some countries like Ireland
experiencing steep increases, while others, such as
the Netherlands, have seen notable reductions. For
non-household consumers, the average electricity
price dropped by 13% in the first half of 2024
compared to the same period in 2023, signaling
improved conditions for commercial and industrial
electric vehicle usage [3].

Energy product-based changes in road transport's final energy usage, EU, 1990-2022

(%)
80
70
80
50
40
30
20

10

(NS S8 on an Bn Sn S8 S8 Sn o o o o
ov & & v
o
F & & & & & F
-8—Motor gasoline (excluding biofuel portion)
—=—Liquefied petroleum gases

-s—Natural gas

444444

—+—Gas oil and diesel oil (excluding biofuel portion)
—+—Renewables and biofuels
Electricity

Figure 1. Energy product-based changes in road transport's final energy usage, EU, 1990-2022 (PJ)
(Karayolu tasimaciliginda nihai enerji kullanimindaki enerji tiriiniine dayali degisimler, AB, 19902022 (PJ)) [4]

These statistics clearly demonstrate the urgent need
to accelerate the transition toward electric vehicles
as a means to minimize environmental effects and
dependence on fossil fuels. However, the benefits of
electrification can only be fully realized through the
implementation of intelligent energy management
systems. As electricity becomes a more central
energy source in transport, optimizing its use
through Al-based strategies is essential—not only
to ensure energy efficiency and cost-effectiveness,
but also to support the stability of the electricity
grid. In this context, the development and
evaluation of advanced energy management
solutions for electric vehicles becomes a critical
step toward achieving sustainable, resilient, and
future-ready transportation systems.

Recent studies have underscored the increasing
significance of intelligent energy management
strategies for electric vehicles, particularly with the
integration of artificial intelligence. Lin et al. [5]
emphasize the advantages of hybrid energy storage

systems—such as combinations of batteries and
supercapacitors—in addressing key challenges like
vehicle autonomy, battery degradation, and
performance optimization. In broader energy
networks, Shakeel and Malik [6] explore the
application of artificial intelligence in energy
microgrids, demonstrating its role in improving
energy production and demand management when
electric vehicles are integrated into distributed
systems. Energy management optimization with the
use of reinforced learning and machine learning, as
discussed by Pardhasaradhi and Shilaja [7], offers
potential for real-time control, operational cost
reduction, and enhanced system responsiveness.
Similarly, Badran and Toha [8] highlights artificial
intelligence in battery management systems for
monitoring, cell balancing, and state estimation—
critical functions for maintaining battery health and
extending lifespan.

Additional advancements have expanded the scope
of artificial intelligence across other critical areas of
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energy management in electric vehicles. Ghalkhani
and Habibi [9] investigate its impact on thermal
regulation and lithium-ion battery performance,
while other studies highlight the role of edge
computing in enabling faster, vehicle-level
decision-making. Research has also addressed
intelligent regenerative braking and the use of
harvesting energy mechanically in traffic settings.
The transition toward autonomous, connected and
shared vehicles has further accelerated the adoption
of artificial intelligence in mobility systems. Deep
learning, artificial neural networks, and
reinforcement learning have been effectively
applied in microgrids to optimize energy dispatch
and integrate renewable sources. Moreover, genetic
optimization algorithms have been developed to
manage energy storage in residential solar-powered
systems, minimizing costs and increasing self-
consumption. Integrated models for forecasting
photovoltaic energy and EV charging platforms
have also been proposed, aiming to support carbon
neutrality and sustainable energy transitions [9].

Given the complexity and multi-dimensional nature
of energy management in electric vehicles,
evaluating and prioritizing Al-based strategies
requires a structured and comprehensive approach.
These strategies often involve trade-offs between
technical performance, economic feasibility,
environmental impact, and integration challenges,
making simple decision rules insufficient. In this
context, multi-criteria decision-making (MCDM)
methods have proven to be highly effective,
particularly when used in combination with fuzzy
set theory to deal with ambiguity and subjectivity in
expert evaluations. The integration of fuzzy logic
allows for more realistic modeling of human
judgment, which is especially valuable in complex
engineering and energy systems. For instance,
Alrifaie et al. [10] employed a hybrid Fuzzy
Analytical Hierarchical Process and Multi-Attribute
Decision-Making approach to support user-centric
electric vehicle charging station selection.
Similarly, Ghoushchi et al. [11] applied an
integrated MCDM model to improve effectiveness
in networked self-driving vehicles by incorporating
artificial intelligence and loT-based criteria. Stecyk
and Miciuta [12] utilized fuzzy AHP and TOPSIS
to evaluate collaborative Al-based platforms for
energy optimization, while Imran et al. [13]
leveraged fuzzy decision-making techniques to
formulate strategies aimed at maximizing electric
vehicle utility.

Despite growing interest in electric vehicle
technologies and energy optimization, a notable gap
exists in the literature concerning the
comprehensive identification and evaluation of Al-

based energy management strategies specifically for
electric vehicles. Most existing studies have focused
on isolated aspects, such as selecting optimal
charging stations, enhancing the efficiency of
autonomous or connected vehicles, or reviewing
general energy management systems, without
providing an in-depth prioritization of Al-driven
strategies. Furthermore, the integration of SWARA-
weighted MULTIMOORA methods has not been
explored within the electric vehicle industry,
particularly in the context of evaluating complex,
Al-enabled decision alternatives. This study fills
that methodological and thematic gap by
introducing a novel framework that combines these
decision-making tools with Pythagorean Fuzzy
Sets, enabling more accurate and flexible modeling
of expert judgment under uncertainty. This

integrated  approach  offers a  significant
advancement in supporting strategic decision-
making for intelligent, sustainable energy

management in electric vehicles.

This study aims to bridge the current research gap
by establishing a broad evaluation framework for
Al-based energy management strategies in electric
vehicles. Specifically, the study defines key
evaluation criteria and introduces a structured
multi-criteria  decision-making approach by
integrating the Stepwise Weight Assessment Ratio
Analysis  (SWARA) and  Multi-Objective
Optimization by Ratio Analysis plus Full
Multiplicative Form (MULTIMOORA) methods
within a Pythagorean Fuzzy set environment. This
integrated framework enables a more robust and
uncertainty-aware assessment of Al-driven energy
strategies. The primary contributions of this
research are summarized as follows:

e Conducting a thorough expert consultation and
literature review to identify and define the main
Al-based energy management strategies
relevant to electric vehicles.

e Employing the SWARA method ascertain the
proportional significance of evaluation criteria
based on expert judgment.

e Implementing the Pythagorean  Fuzzy
MULTIMOORA method to rank and prioritize
the identified strategies under conditions of
uncertainty.

e Performing a sensitivity analysis by
systematically altering the weights derived
from the SWARA method and recalculating the
Ratio System (RS) scores. A total of 21 distinct
scenarios are examined to test the robustness of
the results.
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The findings of this study offer valuable guidance
for policy makers and professionals in computer
engineering and electrical and electronics fields. For
policy makers, the prioritization of Al-based energy
management strategies provides a data-driven
foundation for shaping supportive policies,
investment plans, and infrastructure development
aimed at accelerating the transition to sustainable
electric mobility. Meanwhile, professionals and
researchers in technical fields can benefit from the
study’s insights to guide the design, development,
and implementation of advanced Al algorithms,
battery systems, and smart charging technologies—
ultimately contributing to more efficient, reliable,
and intelligent electric vehicle ecosystems.

2. METHODOLOGY (YONTEM)

The evaluation of Al-based energy management
strategies for electric vehicles involves multiple,
often conflicting factors like cost, flexibility, and
energy efficiency, and technological integration.
These factors require a multi-criteria decision-
making (MCDM) approach to ensure a balanced
and systematic assessment. In this research, an
integrated methodology combining the SWARA
and Pythagorean Fuzzy MULTIMOORA methods
is employed to address the complexity and
uncertainty inherent in strategic evaluations. The
SWARA method is utilized to specify the relative
importance of evaluation criteria based on expert
judgments. Its strength lies in its simplicity,
efficiency, and reduced number of pairwise
comparisons, making it especially suitable for
expert-driven weighting processes. On the other
hand, the MULTIMOORA method, known for its
robustness and stability, offers a comprehensive
evaluation framework by incorporating three
distinct models—Ratio System, Reference Point,
and Full Multiplicative Form—to ensure
consistency and reliability in ranking alternatives.

By embedding these methods in a Pythagorean
fuzzy environment, the approach effectively
captures the ambiguity and vagueness present in
human assessments, thus enhancing decision
quality. For this study, SWARA and Pythagorean
Fuzzy MULTIMOORA were selected because of
their capacity to combine mathematical precision
with expert knowledge, offering a flexible and
reliable framework for ranking Al-based tactics in
the electric vehicle industry.

There are three primary phases to the methodology
used in this study. In the first stage, a
comprehensive set of evaluation criteria and Al-
based energy management strategies for electric
vehicles is identified through an extensive literature
review and expert consultation. These components
are then organized into a hierarchical decision
framework. In the second stage, a hybrid multi-
criteria decision-making (MCDM) approach is
applied. The Stepwise Weight Assessment Ratio
Analysis (SWARA) method is used to determine the
relative importance (weights) of each criterion
based on expert evaluations. These weights are then
utilized in the single-valued Pythagorean Fuzzy
MULTIMOORA method, which evaluates and
ranks the identified strategies by incorporating the
Ratio System, Reference Point, and Full
Multiplicative Form models to ensure a robust and
comprehensive prioritization. In the third stage, a
sensitivity analysis is conducted to test the
robustness of the model. This is achieved by
systematically altering the criterion weights derived
from the SWARA method and recalculating the
Ratio System scores across 21 distinct scenarios.
The results highlight the ranking stability of top-
performing strategies and provide insight into how
changes in evaluation perspectives affect the overall
decision. The schematic figure shown in Figure 2
depicts the specific procedures and integration of
the suggested methodology.
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Figure 2. Schematic diagram of methodology (Yéntemin sematik gosterimi)

2.1. Pythagorean Fuzzy Sets (Pisagor Bulanik
Kiimeler)

Decision-makers evaluating energy management
strategies face various uncertainties and subjective
judgments, making the analysis of such problems
more complex. To handle uncertain information and
derive specific outcomes, Zadeh [14] introduced
fuzzy set theory and linguistic variables. Recent
studies in the literature have expanded on these
concepts by incorporating extended fuzzy sets, such
as Pythagorean fuzzy sets and intuitionistic fuzzy
sets, to more accurately reflect the ambiguity in
decision-makers' perspective.

Developed by Atanassov, intuitionistic fuzzy sets
(IFSs) incorporate membership, non-membership,
and hesitation degrees, with the constraint that
degrees of membership and non-membership added
together cannot be greater than one. However, since
IFSs sometimes fail to adequately model complex
uncertainty in practical applications, generalized
fuzzy sets such as Pythagorean fuzzy sets (PFSs)
have been introduced [15]. The total of the

membership and non-membership degrees in PFSs
may be greater than one, but the sum of their squares
cannot. A geometric comparison between the
Pythagorean fuzzy set space and the intuitionistic
fuzzy set space reveals that the latter has a wider
coverage. As a result, Pythagorean fuzzy sets are
more effective in representing uncertainty and
imprecision than intuitionistic fuzzy sets.

Definition 1: Let x be an element of the universal
set X. A Pythagorean fuzzy set P in X is defined as
follows [15]:

P = {(x,P(up(x), vp(x)))|x € X} @

where up(x) € [0,1] represents the membership
degree, and vp(x) € [0,1] denotes the non-
membership degree. These membership degrees
must satisfy the following condition, given in
Equation (2):

0< (1) + (vp ()" < 1. @)
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The hesitation degree of a Pythagorean fuzzy
number in P is identified in Equation (3) as follows:

mp(x) = J 1— (1p(0))° = (vp () 3)

Definition 2: Let P, = P(up,vp, ) and P, =
P(p,, vp,) be two Pythagorean fuzzy numbers, and
let A be a positive number. The fundamental
operations in Pythagorean fuzzy sets are shown
below:

P,®P,=P

(st )+ ) = Y0 ) @

APy = (J 1= (1= (kp,) % (p)? > . A>0,
5)

(ﬁl)lz <(.UP1)A' \/1 -(1- (VP1)2)1> , A>0.
(6)

2 2
5 op = [B=8 m) ~
P19P2—< 12 ,E> if up, > up,, vp, < min

{op, 22 | 7)

’l'[p2

Py U1 V%— sz : . Up,Tp,
—=(= /— if up. <min —2 -1

Py <#2 "\ 1-v3 Hp,= K, Tp, '
Vp, = Vp, 8)

Definition 3: Let ;=P (u;, v;),i = (1,2,..,n) bea
group of Pythagorean fuzzy sets. The Pythagorean
fuzzy weighted averaging (PFWA) formula, given
in Equation (9), is used to aggregate this set.

PFWA (P,,P,, ....B) = <(1 — (1 -

k)", (H?zl(vowo) ©

where w; = (w1, Wo, ...,wn) be the weight vector of
ﬁi! i = (1,2, ,TI,) with Wi € [O, 1] and Z?=1 w; = 1.

Definition 4: Let P, = P(up,vp,) and P, =
P(up,, vp,) be two Pythagorean fuzzy numbers. To
compare and rank these two numbers, score
functions are used. The formula for the score
function is shown in Equation (10):

S(Py) = (up,) - (ve,)" (10)

2.2.SWARA Method (SWARA Yéntemi)

The Stepwise Weight Assessment Ratio Analysis
(SWARA) method was introduced by Kersuliene et
al. [16] to determine subjective criterion weights.
One key advantage of SWARA is its simplicity, as
it involves fewer computational steps and requires a
minimal number of pairwise comparisons compared
to other weighting techniques like Analytic
Hierarchy Process (AHP). Another strength of
SWARA lies in its reliance on decision-makers'
judgments, where initial prioritization and relative
importance are established based on expert
opinions. The following are the steps involved in the
SWARA method's process:

Step 1: ldentify alternatives (i = 1,2,...,m) and
criteria (j = 1,2, ..., n).

Step 2: Experts' preferences are used to rank the
criteria from most to least important.

Step 3: Criteria are compared with each other to
determine their relative importance levels. The (j)th
criterion is compared to the (j-1)th criterion, and a
value (S;) is assigned within the 0-1 range.

Step 4: Compute the proportional significance of
every criterion (S;) by comparing it with the
previous criterion, and calculate the comparative
coefficient (k;) using Equation (11).

1,j=1

kj={5j+1,j>1 (11)

Step 5: The initial weight for every factors (q;) is
determined utilizing the Equation (12).

(12)

Step 6: Final criterion weight (i) is computed with
Equation (13).

el (13)

Wi =55
Zj:lqj

2.3.Pythagorean Fuzzy MULTIMOORA
(Pisagor Bulanik MULTIMOORA)

In this study, the MULTIMOORA (Multi-Objective
Optimization by Ratio Analysis plus Full
Multiplicative Form) method is employed to
evaluate and rank Al-based energy management
strategies for electric vehicles. Initially, Brauers and
Zavadskas [17] introduced as an enhancement of
the MOORA method, MULTIMOORA combines
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three distinct approaches—Ratio System (RS),
Reference Point (RP), and Full Multiplicative Form
(FMF)—to improve the robustness and accuracy of
multi-criteria decision-making (MCDM). This
integrated framework is recognized for its ability to
address conflicting objectives, handle a wide range
of criteria, and provide consistent evaluations even
in complex decision environments. To further
strengthen its capacity to cope with vagueness and
imprecise expert judgments often encountered in
real-world evaluations, the method is extended
using Pythagorean Fuzzy Sets, resulting in the
Pythagorean  Fuzzy = MULTIMOORA  (PF-
MULTIMOORA) approach. This extension
enhances the model's ability to represent uncertainty
more flexibly, thereby offering a more reliable and
realistic framework for prioritizing energy
management strategies in electric vehicle systems.
The steps of PF-MULTIMOORA are as follows:

Step 1: Construct Pythagorean fuzzy decision
matrix D = (Cj(xi)) using Equation (14),
mxXn
where C;(j = 1,2,...,n) and x;(i = 1,2,...,m) be

the criteria and alternatives respectively.

C, - Cp,

P o P,
D = (G(x) S N en

mxn
pe
m

Pml Pmn
Step 2: Combine the Pythagorean fuzzy decision
matrix by applying the Pythagorean Fuzzy
Weighted Averaging (PFWA) method, as outlined
in Equation (9).

Step 3: Construct the Pythagorean fuzzy score
matrix S = (Xij)mxn using Equation (10).

Step 4: Build the normalized decision matrix N =
(nij)mxn’ where the normalization is performed
using Equation (15). In this step, X;;* and X;;~
represent the maximum and minimum values of
each criterion across all alternatives, respectively.

Xij—Xij~ cpo.
Xyt X if j €Cp,
L= 15)
Mij Xij =X fi€c (
— i
Xyt Xy J c

where C, and C. show the benefit criteria and cost
criteria.

Step 5: Establish the normalized weighted matrix
using Equation (16):

nu' = Nngj X wj (16)
Step 6: Determine the ranking of the alternatives
using the Ratio System (RS) model. In the
MULTIMOORA method, the RS model is applied
to establish the relative priority of each alternative
and identify the most appropriate option. The scores
for the alternatives within the ratio system
framework are computed using Equation (17):

Vi = yl'+ Vi = Z}(‘]=1ﬁ1] - Z?=g+1n.1] (17)

In this case, y; is the normalized value of the i-th
choice across all criteria, g is the number of criteria
to be maximized, and n is the number of criteria to
be minimized. The optimal option is the one with
the highest rating after the y; values are arranged in
descending order.

Step 7: Assess the alternatives using the reference
point (RP) approach. The Tchebycheff Min-Max
metric is computed using Equation (18).

D; = rr(lii)n {mjax|nj — ri1]|} (18)

The reference point (n;) for each criterion is chosen
from the greatest values of the alternatives in the
case of maximizing and the lowest values in the case
of minimization. For every option, the greatest
value (D;) is computed. Next, the options are
arranged in ascending order of preference.

Step 8: Determine the ranking of the alternatives by
applying the Full Multiplicative Form (FMF)
technique. The overall utility score for each
alternative is calculated using Equation (19):

U; = H}g:lﬁl] / H?=g+1n.1] 19

In this context, the benefit criteria are indexed from
j=1to g, while the cost criteria are represented from
j=g+1lton.

Step 9: Rank the alternatives and compare the
outcomes derived from the Reference Point (RP)
approach, Ratio System (RS) model, and the Full
Multiplicative Form (FMF) technique.

3. CASE STUDY (VAKA CALISMASI)

As electric vehicles become more widespread,
efficient energy management is essential for
maximizing performance and sustainability. Al-
based strategies offer innovative solutions by
enabling smart, adaptive control of energy use.
However, due to the complexity of these
approaches, a structured evaluation is needed. This
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study is important as it provides a comprehensive
assessment of key Al-driven energy management
strategies, helping stakeholders identify the most
effective and practical solutions for advancing
intelligent and sustainable mobility.

This study aims to evaluate and prioritize Al-based
energy management strategies for electric vehicles
using multi-criteria decision-making approaches.
By assessing their energy efficiency, economic
viability, environmental impact, and technological
adaptability, the research offers a structured
framework to guide stakeholders in identifying and
adopting the most effective strategies. The primary
Al-based energy management strategies are
determined through a comprehensive literature
review and expert consultations as follows:

Predictive Energy Optimization (Al): Al-driven
predictive models analyze real-time traffic, weather
conditions, and historical driving patterns to
optimize energy consumption [7]. Machine learning
algorithms anticipate energy needs and dynamically
adjust power distribution between the battery,
motor, and auxiliary systems, ensuring extended
range and reduced energy waste.

Smart Battery Management Systems (A2): Al
enhances battery performance by continuously
monitoring charge levels, temperature, and health
indicators. It predicts battery degradation, optimizes
charging cycles, and balances cell voltages to
extend battery lifespan while ensuring efficiency
and safety [8]. Advanced deep learning techniques
help prevent overcharging and overheating issues.

Al-Optimized Route and Driving Assistance (A3):
Al integrates GPS, traffic data, and energy
consumption models to suggest the most energy-
efficient routes. By considering road gradients,
congestion, and charging station availability, Al-
powered navigation helps EVs minimize energy use
[5]. Additionally, Al-based driving assistants adjust
acceleration and braking patterns to improve
efficiency.

Al-Powered Regenerative Braking Optimization
(A4): Regenerative braking systems use Al to
maximize energy recovery by adapting braking
intensity based on road conditions and driver
behavior [7]. Al optimally distributes the recovered
energy back to the battery, reducing reliance on
external charging and improving overall efficiency.

Al-Enabled Smart Charging and Grid Integration
(AS5): Al synchronizes EV charging with smart grids
by analyzing electricity demand, price fluctuations,
and grid stability. It schedules charging during low-
demand hours to reduce costs and enables Vehicle-
to-Grid (V2G) technology, where EVs improve grid

resilience by returning power to the grid during
periods of peak demand [9].

Al-Driven Thermal Management (A6): Al regulates
the vehicle’s thermal systems, optimizing battery
cooling and cabin climate control to minimize
unnecessary energy usage [18]. By predicting

external temperature changes and driver
preferences, Al efficiently distributes energy
between the ventilation, heating and air

conditioning (HVAC) system and other power
needs, increasing overall vehicle efficiency.

The evaluation of Al-based energy management
strategies for electric vehicles requires a
comprehensive and multidimensional approach, as
these strategies directly affect the performance,
sustainability, and practicality of electric vehicles.
To ensure a thorough assessment, seven critical
criteria are identified, capturing the most essential
aspects of energy management in EVs. These
criteria  encompass  technical, economic,
environmental, and regulatory dimensions, enabling
decision-makers to objectively compare and
prioritize different Al-based strategies. The selected
criteria and their detailed explanations are provided
below:

Energy Efficiency (C1): This criterion assesses how
well the Al-based strategy optimizes energy
consumption to extend the driving range. It
considers intelligent ~ power  distribution,
regenerative braking efficiency, and predictive
energy management to minimize waste and improve
overall vehicle performance.

Economic Feasibility (C2): This evaluates the
financial viability of the strategy, including
implementation costs, operational expenses, and
potential long-term savings. Al-driven solutions
that reduce electricity consumption, optimize
charging costs, and provide a favorable return on
investment rank higher in this category.

Time Efficiency & Performance (C3): This aspect
considers how Al strategies impact charging time,
route optimization, and overall operational
efficiency. Strategies that reduce charging duration,
minimize energy loss during transmission, and
optimize real-time power management are rated
more favorably.

Adaptability & Scalability (C4): This measures the
flexibility of Al strategies in handling different
driving environments, vehicle models, and traffic
conditions. Al systems that can be easily integrated
into diverse EV fleets, adjust to dynamic energy
demands, and scale with technological
advancements receive a higher score.
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Environmental Sustainability (C5): This criterion
evaluates the extent to which the Al strategy reduces
greenhouse gas emissions, promotes renewable
energy integration, and minimizes environmental
impact. Al solutions that enable smart grid
interactions, prioritize clean energy sources, and
support eco-friendly driving behavior perform
better in this category.

Technological Integration (C6): This assesses the
compatibility of Al-based energy management with
existing EV infrastructures, including smart
charging systems, loT devices, and cloud-based
platforms.  Solutions that ensure seamless
integration with vehicle control systems, maintain
high reliability, and minimize disruptions are
prioritized.

Regulatory Compliance (C7): This criterion
examines whether the Al strategy aligns with
government regulations, safety standards, and
energy policies. Strategies that adhere to evolving
legal frameworks, data privacy laws, and electric

mobility regulations while ensuring cybersecurity
are considered more effective.

In this study, a hierarchical framework is developed
to clearly structure the decision-making process for
evaluating Al-based energy management strategies
for electric vehicles. At the top level of the hierarchy
lies the main objective—to prioritize and evaluate
the most effective Al-driven strategies in the
context of electric vehicle energy management. The
second level comprises the evaluation criteria,
which reflect key factors such as energy efficiency,
economic feasibility, technological integration, and
environmental sustainability. At the final level, the
specific Al-based strategies identified through
literature review and expert input are positioned as
the alternatives to be assessed. This hierarchical
structure provides a transparent and logical
foundation for applying the integrated SWARA and
Pythagorean Fuzzy MULTIMOORA methodology.
The complete hierarchical decision model is
visually represented in Figure 3.

Evaluating Al-based energy management
strategies for electric vehicles

~

v

Energy T Economic ™ Time Efficiency & Adaptability & ~_ Environmental —_ Technological ™~ Regulatu.ry"

Efficiency (C'I) Feasibility (CQ) Performance (IC_:_Q) ~ |Scalability (ca) Suslainability (C5~  Integration (C6Y " |Compliance (C?')
Al A2 A3 A4 A5 AB

Figure 3. Hierarchical decision model of this study (Calismanin hiyerarsi karar modeli)

3.1. Application (Uygulama)

This study applies SWARA-weighted
MULTIMOORA methodology under Pythagorean
fuzzy  environment to evaluate artificial
intelligence-driven energy optimization strategies
for electric vehicles. By reviewing the literature and
consulting with academic and industry decision-
makers, evaluation criteria and strategies are
established.

In the initial stage of the methodology, the expert
team evaluated and compared the criteria to
determine their relative importance. In the third step
of the SWARA method, each criterion is compared
with the preceding one to determine its relative

importance. The (S;) values in Table 1 reflect the
comparison of criterion j with criterion (j—1). For
example, Technological Integration (C6) s
compared with Energy Efficiency (Cl1), and
Regulatory Compliance (C7) is evaluated against
Environmental Sustainability (C5). This sequential
structure is consistent with the standard SWARA
procedure, where each criterion is assessed relative
to the one ranked just before it. Subsequently, the
comparative coefficient (k;) was calculated using
Equation (11), followed by the computation of the
initial weight for each criterion (q;) using Equation
(12). Finally, the final weights of the criteria (i)
were obtained using Equation (13). The results of
the SWARA approach are presented in Table 1.
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Table 1. SWARA Method Results (SWARA yéntemi sonuglarr)

Criteria Sj Kij Qi W;j

Energy Efficiency (C1) - 1.000 1.000 0.379
Technological Integration (C6) 0.650 1.650 0.606 0.229
Economic Feasibility (C2) 0.450 1.450 0.418 0.158
Adaptability & Scalability (C4) 0.700 1.700 0.246 0.093
Time Efficiency & Performance (C3) 0.350 1.350 0.182 0.069
Environmental Sustainability (C5) 0.650 1.650 0.110 0.042
Regulatory Compliance (C7) 0.400 1.400 0.079 0.030

The results of the SWARA method reveal that
Energy Efficiency (C1) is the most critical criterion
in evaluating Al-based energy management
strategies for electric vehicles, holding the highest
weight of 0.379. This is followed by Technological
Integration (C6) with a weight of 0.229, and
Economic Feasibility (C2) with 0.158, reflecting
their strong influence on decision-making.
Adaptability & Scalability (C4) ranks fourth with
0.093, while Time Efficiency & Performance (C3)
holds a moderate importance at 0.069.
Environmental Sustainability (C5) and Regulatory
Compliance (C7) are considered less significant,

with weights of 0.042 and 0.030, respectively.
These results indicate a clear emphasis on technical
performance and cost-effectiveness over regulatory
or environmental aspects in the context of electric
vehicle energy strategies.

In the second phase, the single-valued Pythagorean
Fuzzy MULTIMOORA method is applied using the
criterion weights obtained from the first phase. To
implement this approach, a decision matrix is
established on the basis of linguistic variables
represented by Pythagorean fuzzy numbers, as
outlined in Table 2.

Table 2. Pythagorean fuzzy number linguistic variables (Pisagor bulanik sayilarin dilsel terimleri)

Linguistic term Corresponding Pythagorean Fuzzy Member (u,v)
Very Low (VL) (0.15, 0.85)
Low (L) (0.25, 0.75)
Moderately Low (ML) (0.35, 0.65)
Medium (M) (0.50, 0.45)
Moderately High (MH) (0.65, 0.35)
High (H) (0.75, 0.25)
Very High (VH) (0.85, 0.15)

The decision matrix, presented in Table 3, was
developed based on evaluations provided by a panel
of three experts, comprising one academic and two
professionals from the automotive industry. During
the evaluation process, the experts reached a
consensus through direct discussion, eliminating the
need for aggregating differing opinions using
operators such as the Pythagorean Fuzzy Weighted
Averaging (PFWA). Nevertheless, the PFWA
operator is introduced conceptually in Section 2.1 to
inform readers and support future studies that may
require the integration of diverse expert judgments.

After constructing the Pythagorean fuzzy decision
matrix, a Pythagorean fuzzy score matrix was
established using Equation (10) to transform fuzzy
sets into crisp values. This transformation was
carried out by applying a score function that
quantifies each Pythagorean fuzzy number into a
real number between 0 and 1, thereby enabling
numerical comparison between alternatives. The
resulting crisp values reflect the relative
performance of each strategy under each criterion
and are essential for subsequent normalization and
aggregation steps.
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Table 3. Decision matrix (Karar matrisi)

Energy Economic E:‘?i]siency Adaptabili Enviroln Te(I:hnoIog Regulator
Alternative/Criteria | Efficiency | Feasibility | & Y ..& menta Ica Y .
(C1) (C2) Performan Scalabilit ﬁystalnab Integratio | Complian

ce (C3) y (C4) ility (C5) [n (C6) ce (C7)

Predictive  Energy

Optimization (A1) VH ML M H H H H

Smart Battery

Management VH L ML VH VH VH H

Systems (A2)

Al-Optimized

Route and Driving H ML MH MH MH H MH

Assistance (A3)

Al-Powered

Regenerative MH M M M MH MH M

Braking

Optimization (A4)

Al-Enabled Smart

Charging and Grid H ML ML H VH H MH

Integration (A5)

Al-Driven Thermal

Management (A6) M ML H M MH M ML

Following the transformation of expert evaluations
into crisp values using the score function, the
normalization process is carried out using Equation
(15), followed by the construction of the normalized
weighted decision matrix using Equation (16). As
part of the normalization step, benefit-type
criteria—such as Energy Efficiency (Cl1),
Adaptability & Scalability (C4), Environmental
Sustainability (C5), Technological Integration (C6),
and Regulatory Compliance (C7)—are normalized
by assigning higher scores to better-performing
alternatives. Conversely, for cost-type criteria—
namely Economic Feasibility (C2) and Time
Efficiency & Performance (C3)—lower values are
preferred and scored accordingly. This approach
ensures that all criteria, regardless of their nature,

are brought onto a unified scale between 0 and 1,
where 1 represents the most favorable performance
and 0 the least. As a result, the normalized decision
matrix presented in Table 4 enables a fair and
consistent comparison among the alternative
strategies prior to applying the MULTIMOORA
method. To enhance the robustness and accuracy of
the multi-criteria decision-making process, the three
distinct components of the MULTIMOORA
method—Ratio System (RS), Reference Point (RP),
and Full Multiplicative Form (FMF)—are applied
independently. This comprehensive approach
ensures a more reliable and consistent evaluation of
the alternatives.

Table 4. Normalized decision matrix (Normalize karar matrisi)

Time . .
. .y Adaptabili | Environm | Technolo
Alternative/Crit Engrgy ECO”.O(“.'C Efficiency ty & |ental gical Regula_tory
. Efficiency | Feasibility | & - N . | Complianc
eria (C1) (C2) Performanc Scalabilit | Sustainabi | Integratio e (C7)
y (C4) lity (C5) [n(C6)

e (C3)
Predictive
Energy 1.00 0.63 0.57 0.69 0.50 0.69 1.00
Optimization
(Al)
Smart  Battery
Management 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Systems (A2)
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Al-Optimized
Route and
Driving
Assistance (A3)

0.69 0.63 0.25

0.39 0.00 0.69 0.75

Al-Powered
Regenerative
Braking
Optimization
(A4)

0.39 0.00 0.57

0.00 0.00 0.39 0.43

Al-Enabled

Smart Charging
and Grid
Integration (A5)

0.69 0.63 1.00

0.75 1.00 0.69 0.75

Al-Driven
Thermal
Management
(A6)

0.00 0.63 0.00

0.00 0.00 0.00 0.00

The RS model is first applied to determine the
relative priority of each alternative using Equation
(17). Subsequently, the Tchebycheff Min-Max
metric is calculated to evaluate the alternatives
through the RP approach, as defined by Equation
(18). Finally, the overall utility score for each
alternative is computed by applying the FMF
technique using Equation (19) to establish their final
rankings. The results obtained from the Ratio
System (RS), Reference Point (RP), and Full
Multiplicative Form (FMF) approaches are

presented in Table 5. In the RS model, the y; values
are ranked in descending order, where a higher
value indicates a more preferable alternative. For
the RP approach, the maximum distance value D; is
calculated for each alternative, and the alternatives
are ranked in ascending order, with lower values
indicating better performance. In the FMF
technique, the utility scores U; are also ranked in
descending order, where the highest score reflects
the most ideal alternative.

Table 5. The results obtained from the RS, RP, and FMF approaches (RS, RP ve FMF yaklasimlarindan elde
edilen sonuglar)

Alternative Vi Di Ui

Predictive Energy Optimization (Al) 0.51 0.10 4.68
Smart Battery Management Systems (A2) 0.55 0.12 6.37
Al-Optimized Route and Driving Assistance (A3) 0.36 0.12 4.08
Al-Powered Regenerative Braking Optimization (A4) 0.21 0.23 3.40
Al-Enabled Smart Charging and Grid Integration (A5) 0.39 0.12 3.28
Al-Driven Thermal Management (A6) -0.10 0.38 0.00

Figure 4 indicates the ranking results of three
approaches. Smart Battery Management Systems
(A2) consistently rank as the top-performing
strategy across all three methods, highlighting its
critical role in optimizing energy use and
prolonging battery life. Similarly, Al-Driven
Thermal Management (A6) ranks lowest in all
methods, suggesting it may currently offer less
impact or maturity compared to other strategies. Al-
Optimized Route and Driving Assistance (A3) and
Al-Powered Regenerative Braking Optimization

(A4) occupy middle-tier rankings, indicating
moderate yet stable performance. Minor variances
across methods, such as the relative positions of
Predictive Energy Optimization (Al) and Al-
Enabled Smart Charging and Grid Integration (A5),
suggest that while the overall hierarchy remains
stable, method-specific criteria can influence the
finer details of strategy prioritization.
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Multiplicative Form
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Figure 4. Ranking results of three approaches (U yaklasima ait siralama sonuglarr)

3.2. Sensitivity Analysis (Duyarlilik Analizi)

Sensitivity analysis is a valuable tool employed to
evaluate the reliability of a decision-making
framework by observing how fluctuations in input
parameters—uparticularly criteria weights—affect
the final rankings of alternatives. In this study,
sensitivity analysis is conducted to investigate the
impact of changes in the importance levels assigned
to evaluation criteria on the prioritization of Al-
based energy management strategies for electric
vehicles. By systematically interchanging the
weights of each criterion, the analysis reveals
whether the ranking of strategies remains consistent
or is significantly altered. A change in the ranking
order following the modification of a criterion's
weight indicates that the model is sensitive to that
specific parameter, highlighting its influence on the
decision outcome. On the other hand, if the rankings
remain stable despite weight adjustments, it
suggests a robust decision-making model. This
process ensures the consistency and credibility of
the applied methodology under varying
assumptions, reinforcing the dependability of the
results in diverse decision environments.

In this research, sensitivity analysis is carried out by
modifying the criterion weights obtained through
the SWARA method and recalculating the Ratio
System (RS) scores using the Pythagorean Fuzzy

MULTIMOORA approach. A total of 21 distinct
scenarios are analyzed, each involving a pairwise
swap of weight values between two criteria. For
instance, the notation y;1» indicates a scenario
where the weight of Criterion 1 is exchanged with
that of Criterion 2. Figure 5 shows the heatmap of
RS model scores (y; values) for six alternatives
(A1-A6) across 21 different sensitivity scenarios,
each representing a weight swap between a pair of
evaluation criteria. The heatmap highlights how
each alternative’s performance fluctuates under
different weighting conditions. Alternative A2
(Smart Battery Management Systems) consistently
scores high across all scenarios, indicating strong
robustness and insensitivity to weight variations. In
contrast, “Al-Driven Thermal Management (A6)”
remains consistently low or negative in all cases,
suggesting weak overall performance and possibly
unfavorable evaluation under all weighting
schemes. Alternatives Al, A3, and A5 show
moderate variability, with A1 and A5 reaching
relatively high scores in several scenarios,
indicating they are sensitive but potentially
competitive depending on the criteria emphasis. A4
tends to stay on the lower end but shows some
resilience in select scenarios.
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Heatmap of RS Model Scores Across Scenarios
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Figure 5. RS Model results across 21 scenarios (RS Modeli sonuglarinin 21 senaryo karsisindaki dagilimi)

Figure 6 shows the ranking results of the
alternatives across all 21 sensitivity analysis
scenarios, clearly visualizing the dynamic shifts in
ranking positions and highlighting the stability of
top-performing strategies under different evaluation
perspectives. As observed in the data, Alternatives
Al and A2 consistently outperform others,
frequently securing the 1st and 2nd ranks in most
scenarios, indicating their robustness and reliability
under changing priority conditions. In contrast,

Alternative A6 remains fixed at the 6th position
across all scenarios, suggesting its relatively poor
performance regardless of weight variation.
Alternatives A3, A4, and A5 exhibit more
variability, occasionally reaching middle-tier
rankings, but never achieving top ranks
consistently. This variability indicates that their
effectiveness is more sensitive to the weight
distribution of the criteria.

Bump Chart of Alternative Rankings Across Sensitivity Scenarios
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Figure 6. Ranking results of the alternatives across all 21 scenarios (Alternatiflerin 21 senaryo boyunca siralama
sonuglart)
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3.3. Comparative Analysis (Karsilastirma Analizi)

To validate the robustness and reliability of the
proposed SWARA-Pythagorean Fuzzy
MULTIMOORA framework, a comparative
analysis was performed using the Pythagorean
Fuzzy TOPSIS (PF-TOPSIS) method. Such
comparative evaluations are essential in multi-
criteria decision-making (MCDM) studies, as they
provide a benchmark for assessing the consistency
of results and the practical applicability of
alternative approaches under different decision
environments.

The Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS), originally proposed by
Hwang and Yoon [19], is a widely adopted MCDM
method that selects the optimal alternative based on
its geometric proximity to a positive ideal solution
(P1S) and its distance from a negative ideal solution
(NIS). To effectively manage uncertainty in
decision-making, this method has been extended
into the Pythagorean fuzzy domain, resulting in the
Pythagorean  Fuzzy TOPSIS (PF-TOPSIS)
approach.

This method was selected for comparison due to its
popularity in the literature, ease of interpretation,
and ability to offer a reliable ranking mechanism in
fuzzy environments. On the basis of definition
above, the procedural steps of the PF-TOPSIS
method are outlined below:

Step 10: Calculate Pythagorean fuzzy positive ideal
solution (PIS) and negative ideal solution (NIS)
using Equations (20) and (21):

xt = {miax(S((xi)))lj = 1’2,-.-,n} -

{PQui, v (P3,v3)), -, (P(us, v7))}  (20)
xT = {miin(s((xi)))|j = 1,2,--~,n} =
{PQuy, v (P(uz,vz)) - (P(un, vp))}.  (21)

Step 11: Compute distances from Pythagorean
fuzzy PIS and NIS using Equations (22) and (23):
Dy, x*) = By wyd (G0, G () =

n 2 2 2 2
% j=1Wf(|(#ij) = (uf) |+|(Vij) - () |+

|(T[ij)2 - (n;’)ZD, i=12,,m, (22)

D(x;,x7) = Ty wid (), Gi(x 7)) =

éZ}Lle (|(#ij)2 - (#j_)2| + |(”ij)2 - (Uj_)2| +
|(my)* = (7)°]) i = 12, ,m. (23)
Step 12: Determine the revised closeness £(x;) of
the alternative x; using Eq. (24):

D(xyx™)

Dinax(xix™)

D(x;xt)

Dmin(x;xt)

§(x;) =

(24)

Step 13: Determine the best ranking order of
alternatives in which the best alternative is the one
that has the largest revised closeness &(x;).

The implementation of the PF-TOPSIS method
begins with the calculation of the Pythagorean
Fuzzy Positive Ideal Solution (PIS) and Negative
Ideal Solution (NIS) using Equations (20) and (21).
These reference points represent the best and worst
possible  performance across all criteria,
respectively. The results of these calculations are
presented as follows:

x* = {P(0.85, 0.15), P(0.50, 0.45), P(0.75, 0.25),
P(0.85, 0.15), P(0.85, 0.15), P(0.85, 0.15), P(0.75,
0.25)}

x~ = {P(0.50, 0.45), P(0.25, 0.75), P(0.35, 0.65),
P(0.50, 0.45), P(0.65, 0.35), P(0.50, 0.45), P(0.35,
0.65)}.

Next, the distances of each alternative from the
Pythagorean Fuzzy PIS and NIS are determined
using Equations (22) and (23). Based on these
distances, the revised closeness coefficient &(x;) for
each alternative is computed using Equation (24).
This coefficient indicates how close each alternative
is to the ideal solution, with higher values signifying
better performance. Table 6 provides a comparison
between the PF-TOPSIS method and the proposed
SWARA-Pythagorean Fuzzy MULTIMOORA
framework. It includes the calculated distances from
the PIS and NIS, as well as the resulting closeness
coefficients and rankings for each alternative.

1151



Bakioglu | GU J Sci, Part C, 13(3): 1137-1156 (2025)

Table 6. Comparative results between the PF-TOPSIS method and the proposed approach (PF-TOPSIS

yOntemi ile 6nerilen yaklagim arasindaki karsilagtirmali sonuglar)

PF-TOPSIS Proposed method
Alternative Distances | Distances Revised
from fuzzy | from closeness Ranking Vi Ranking
PIS fuzzy NIS

Predictive Energy

Optimization (A1) 0.047 0.086 -0.205 3 0.514 2
Smart Battery Management

Systems (A2) 0.041 0.080 -0.133 1 0.546 1
Al-Optimized Route and

Driving Assistance (A3) 0.067 0.092 -0.643 4 0.362 4
Al-Powered  Regenerative

Braking Optimization (A4) 0.072 0.069 -1.019 5 0.209 5
Al-Enabled Smart Charging

and Grid Integration (A5) 0.044 0.082 -0.179 2 0.387 3
Al-Driven Thermal

Management (A6) 0.083 0.071 -1.253 6 -0.100 6

The comparative results presented in Table 6
demonstrate a high degree of consistency between
the PF-TOPSIS method and the proposed SWARA-
Pythagorean Fuzzy MULTIMOORA framework. In
both approaches, Smart Battery Management
Systems (A2) is ranked as the most critical Al-based
energy management strategy for electric vehicles,
highlighting its universal importance across
different evaluation techniques.

Additionally, Al-Driven Thermal Management
(AB) consistently appears in the last position,
indicating its relatively lower priority among the
evaluated strategies in both methods. The positions
of other alternatives, such as Predictive Energy
Optimization (Al) and Al-Enabled Smart Charging
and Grid Integration (A5), show slight variations
(e.g., Al is ranked second in the proposed method
but third in PF-TOPSIS), yet the overall trend and
grouping of alternatives remain largely aligned.

This alignment validates the robustness and
reliability of the proposed methodology. The
similarity in rankings across two distinct
Pythagorean fuzzy MCDM techniques strengthens
the credibility of the decision-making framework
and validates the reliability of the weighting and
ranking procedures employed in this study.

4. DISCUSSION (TARTISMA)

This study addresses a critical challenge in the
transition toward sustainable transportation by
evaluating Al-based energy management strategies
for electric vehicles. As electric vehicles continue to
gain prominence in global markets, optimizing their
energy use through intelligent systems becomes
increasingly essential for improving efficiency,
performance, and environmental impact. The
methodological strength of this study lies in the
integration of the SWARA method and the
Pythagorean Fuzzy MULTIMOORA approach.
SWARA effectively captures expert judgment to
assign meaningful weights to evaluation criteria,
while the Pythagorean Fuzzy MULTIMOORA
method offers a robust framework for handling
uncertainty and imprecision in multi-criteria
decision-making [20]. By combining these
approaches, the study ensures both the reliability of
the input data and the robustness of the final
rankings, providing valuable insights for
stakeholders aiming to adopt the most effective Al-
based solutions in EV energy management.

As aresult of the comprehensive evaluation, “Smart
Battery Management Systems” emerged as the
highest-ranked strategy among Al-based energy
management solutions for electric vehicles. This
outcome is largely due to the vital role these systems
play in enhancing energy efficiency, prolonging

1152



Bakioglu | GU J Sci, Part C, 13(3): 1137-1156 (2025)

battery life, increasing safety, and optimizing the
overall operational performance of electric vehicles.
Predictive maintenance, intelligent charging and
discharging cycle control, and real-time monitoring
are all made possible by smart battery management
systems, and these features immediately reduce
energy waste and long-term operating expenses.
According to Ali et al. [21], a smart battery
management system is one of the main parts of
electric vehicles (EVs). It not only accurately
assesses the battery's status but also ensures safe
operation and prolongs its lifespan. For policy
makers, these findings emphasize the importance of
supporting initiatives and investments that facilitate
the development and deployment of advanced
battery technologies. Meanwhile, professionals in
computer engineering and electrical and electronics
fields can use this insight to guide innovation in Al
algorithms, embedded systems, and battery health
analytics. Focusing on this strategy can significantly
accelerate the transition toward smarter, more
sustainable, and user-friendly electric mobility
solutions.

Following the computational analysis, “Predictive
Energy Optimization” and “Al-Enabled Smart
Charging and Grid Integration” rank as the second
and third most critical Al-based energy
management strategies for electric wvehicles.
Predictive energy optimization stands out for its
ability to anticipate energy consumption based on
dynamic factors such as driving behavior, road
characteristics, and environmental conditions,
allowing for proactive and efficient energy use. This
strategy has been shown to significantly improve
route planning and reduce energy consumption
through data-driven models that combine machine
learning and statistical approaches for real-world
application [22]. Meanwhile, Al-enabled smart
charging and grid integration play a vital role in
aligning EV charging patterns with grid demands,
enabling efficient load distribution and supporting
the integration of renewable energy sources. These
capabilities contribute to both operational cost
reduction and enhanced grid stability, making this
strategy indispensable in scaling EV infrastructure
[23]. For policy makers, these findings offer a
roadmap for prioritizing investments in predictive
and intelligent charging technologies to enhance EV
performance and sustainability. Professionals in
engineering can strengthen these insights to drive
innovation in Al models, smart infrastructure
systems, and intelligent energy forecasting tools.

In the process of weighting the criteria for
evaluating Al-based energy management strategies
for electric vehicles, “Energy Efficiency” emerged
as the most important criterion, followed by

“Technological Integration” and “Economic
Feasibility”. “Energy efficiency” ranks first because
it directly impacts the core goal of energy
management—reducing consumption and
maximizing the driving range of electric vehicles.
As electric mobility continues to expand, ensuring
optimal energy use is essential for both
sustainability and performance. The importance of
Al technologies in efficiently integrating with
infrastructure, sensors, and vehicle systems is the
reason "technological integration” is rated second.
Without effective integration, even the most
advanced Al models cannot be fully utilized.
“Economic feasibility” takes the third spot,
reflecting the practical necessity for cost-effective
solutions that can be scaled and adopted by
manufacturers and consumers alike. These insights
are particularly valuable for policy-makers, as they
highlight the need to support strategies that balance
performance with technological innovation and
cost. By prioritizing investments and incentives in
areas that maximize energy savings and enable
advanced technology deployment at a reasonable
cost, policy-makers can drive the widespread
adoption of efficient and intelligent energy
solutions in the electric vehicle sector.

These findings offer valuable insights for both
policy-makers and stakeholders in the electric
vehicle industry by highlighting which Al-based
energy management strategies and evaluation
criteria are most critical for advancing sustainable
and intelligent mobility. The prioritization of
strategies such as smart battery management,
predictive energy optimization, and intelligent
charging systems underscores the need for
supportive policies that encourage innovation in Al
technologies and infrastructure development.
Additionally, the emphasis on energy efficiency,
technological integration, and economic feasibility
as top evaluation criteria provides a clear
framework for aligning regulatory actions,
investment decisions, and research initiatives. For
the electric vehicle industry, these insights help
guide the development of next-generation energy
management solutions that are not only technically
effective but also economically viable and scalable.

5. CONCLUSION (soNu(Q)

This study holds significant importance as it
addresses a critical and underexplored area in the
field of electric wvehicle development—the
systematic evaluation and prioritization of Al-based
energy management strategies. While existing
literature has focused on individual components
such as battery management, charging
infrastructure, or general energy optimization, there
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remains a lack of comprehensive frameworks that
assess these strategies in an integrated, comparative
manner.

This study addresses that gap by integrating the
SWARA method for determining the importance of
evaluation criteria with the Pythagorean Fuzzy
MULTIMOORA method for ranking alternative
strategies. This hybrid approach enables a robust,
flexible, and uncertainty-aware  evaluation
framework. The findings offer actionable insights
for policy-makers, helping them prioritize
investments and regulatory efforts that support
sustainable and intelligent mobility solutions.
Additionally, professionals in computer engineering
and electrical and electronic engineering can use the
results to guide the development of Al-driven
technologies, including smart battery systems,
predictive control algorithms, and intelligent
charging infrastructure, all aimed at enhancing the
performance and sustainability of electric vehicles.

The findings of this study reveal that among the
evaluated strategies, “Smart Battery Management
Systems” emerged as the most critical Al-based
energy management solution for electric vehicles.
This highlights the fundamental importance of
intelligent battery control in enhancing energy
efficiency, extending battery life, and ensuring
overall system reliability. ‘“Predictive Energy
Optimization” ranked second, underscoring the
value of Al-driven forecasting in managing energy
consumption based on real-time driving conditions
and user behavior. “Al-Enabled Smart Charging
and Grid Integration” ranked third, reflecting the
growing relevance of intelligent charging solutions
that optimize load distribution and support the
stability of the power grid. These results provide
decision-makers with a data-driven framework for
identifying the most impactful areas for policy
development, research investment, and
technological deployment. By prioritizing strategies
with the highest potential for improving energy
efficiency and system integration, stakeholders can
make informed decisions that accelerate the
transition toward intelligent and sustainable electric
vehicle ecosystems.

Sensitivity analysis was also conducted to examine
the robustness of the proposed decision-making
framework. This involved modifying the criterion
weights initially determined by the SWARA
method and recalculating the Ratio System (RS)
scores  within  the  Pythagorean  Fuzzy
MULTIMOORA approach. A total of 21 distinct
scenarios were created, each involving a pairwise
exchange of weight values between two criteria to

observe the resulting changes in strategy rankings.
The findings of the sensitivity analysis demonstrate
that, despite the weight alterations, the overall
ranking of Al-based energy management strategies
remained largely consistent. This stability confirms
the reliability and robustness of the evaluation
model, reinforcing confidence in the prioritization
outcomes and supporting its application in real-
world decision-making contexts related to electric
vehicle energy strategy development.

This study provides a solid foundation for
evaluating Al-based energy management strategies
for electric vehicles; however, there are several
promising directions for future research. Upcoming
studies can be expanded by incorporating additional
evaluation criteria to capture broader technical,
economic, and social dimensions. Moreover,
increasing the number and diversity of expert
participants would enhance the reliability and
generalizability of the results. The proposed
methodology can also be applied to other decision-
making problems within the transportation and
energy sectors, such as evaluating smart grid
technologies, sustainable mobility solutions, or
alternative fuel systems. Methodologically, the
framework can be enhanced by integrating
alternative fuzzy set theories, such as Fermatean
fuzzy sets or Spherical fuzzy sets, to better represent
uncertainty in complex environments. Additionally,
other multi-criteria decision-making (MCDM)
methods, including CRITIC (CRiteria Importance
Through Intercriteria Correlation) for objective
weighting and MARCOS (Measurement of
Alternatives and Ranking according to the
Compromise Solution) for ranking alternatives, can
be explored to further strengthen the decision-
making process. Expanding the application of the
proposed methodology across different regional or
country-specific EV ecosystems could also offer
valuable comparative insights for policymakers and
practitioners. Moreover, scenario-based or dynamic
decision-making frameworks can be incorporated to
reflect real-world fluctuations in energy demand,
battery performance, and grid interactions. These
extensions would provide greater flexibility and
depth in evaluating technological solutions in the
evolving landscape of electric vehicle innovation.
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