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ABSTRACT. For differential inclusions and hemivariational inequalities driven by anisotropic differential opera-
tors, we establish the existence of generalized variational solutions and weak solutions. The main novelty consists in
allowing that the driving operators might not satisfy any ellipticity condition, which is achieved for the first time in
the anisotropic and nonsmooth context. The approach is based on a finite dimensional approximation process.
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1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

In this paper, we study the following differential inclusion with the Dirichlet boundary con-
dition

(1.1)

{
−∆p⃗u+ µ∆q⃗u ∈ ∂F (u) in Ω,

u = 0 on ∂Ω

on a bounded domain Ω in RN with N ≥ 2 and boundary ∂Ω. Here µ ∈ R is a parameter and we
have p⃗ = {p1, · · · , pN} and q⃗ = {q1, · · · , qN}, where 1 < p1, · · · , pN < ∞, 1 < q1, · · · , qN < ∞,
and qi < pi for all i = 1, · · · , N . The driving operator −∆p⃗ + µ∆q⃗ in (1.1) is formed with the
anisotropic p⃗-Laplacian ∆p⃗ and the anisotropic q⃗-Laplacian ∆p⃗. We recall that the anisotropic
r⃗-Laplacian with r⃗ = (r1, · · · , rN ) is defined as

∆r⃗ :=

N∑
i=1

∂

∂xi

(∣∣∣∣∂(·)∂xi

∣∣∣∣ri−2
)

∂(·)
∂xi

.

In (1.1), we take r⃗ = p⃗ and r⃗ = q⃗. For our purpose, the most relevant case of driving operator
in (1.1) is the competing anisotropic operator −∆p⃗ +∆q⃗ . We assume that

(1.2)
N∑
i=1

1

pi
> 1.

Set
p+ := max{p1, · · · , pN}, p− := min{p1, · · · , pN}, p∗ :=

N∑N
i=1

1
pi

− 1
,
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and further assume

(1.3) p+ < p∗.

In the right-hand side of inclusion (1.1), we have the generalized gradient ∂F of a locally Lip-
schitz function F : R → R (see [9]). The multivalued expression ∂F (u) means that pointwise
∂F (u(x)) is a subset of R for any x ∈ Ω. Without loss of generality, we may suppose that
F (0) = 0. We assume that the following condition is satisfied:

(H) There exist positive constants c0 and c1 with c1 < λ1,p⃗p
− such that

|ξ| ≤ c0 + c1|t|p
−−1

for all t ∈ R and ξ ∈ ∂F (t), where

(1.4) λ1,p⃗ := inf
u∈W 1,−→p

0 (Ω),u ̸=0

N∑
i=1

1

pi

∥∥∥∥ ∂u

∂xi

∥∥∥∥p−

Lpi

∥u∥p
−

Lp−

.

The definition of the generalized gradient ∂F implies that each solution u ∈ W 1,p⃗
0 (Ω) to (1.1)

is a solution of the inequality problem

(1.5) ⟨−∆p⃗u, v⟩+ µ⟨−∆q⃗u, v⟩ ≤
∫
Ω

F ◦(u(x); v(x))dx

for all v ∈ W 1,p⃗
0 (Ω), where F ◦ denotes the generalized directional derivative of the locally Lip-

schitz function F . Problem (1.5) is a hemivariational inequality in the Banach space W 1,p⃗
0 (Ω).

A brief presentation of the space W 1,p⃗
0 (Ω) will be done in Section 2.

We are interested in two types of solutions for inclusion (1.1) and a fortiori for hemivaria-
tional inequality (1.5), namely the weak and generalized variational solutions.

Definition 1.1. A function u ∈ W 1,p⃗
0 (Ω) is called a weak solution to (1.1) if

(1.6) ⟨−∆p⃗u, v⟩+ µ⟨−∆q⃗u, v⟩ =
∫
Ω

z(x)v(x)dx

for all v ∈ W 1,p⃗
0 (Ω), with z ∈ Lp⃗ ′

(Ω) ∈ ∂F (u) a.e. on Ω.

Definition 1.2. A function u ∈ W 1,−→p
0 (Ω) is called a generalized variational solution to inclusion (1.1)

if there exists a sequence {un}∞n=1 ⊂ W 1,−→p
0 (Ω) such that

(a) un ⇀ u in W 1,−→p
0 (Ω) as n → ∞;

(b) −∆p⃗un + µ∆q⃗un − zn ⇀ 0 in W−1,p⃗ ′
(Ω) as n → ∞ with zn ∈ Lp⃗ ′

(Ω) and zn ∈ ∂F (un)
a.e. on Ω;

(c) limn→∞⟨∆p⃗un + µ∆q⃗un, un − u⟩ = 0.

From Definitions 1.1 and 1.2, we see that any weak solution u ∈ W 1,p⃗
0 (Ω) to problem (1.1)

is a generalized variational solution. In order to confirm this, it suffices to take un = u in the
definition of the generalized variational solution. The converse assertion is generally not valid.

Our main results are formulated as follows. Note that the part played by the parameter µ is
fundamental.

Theorem 1.1. Under the stated assumptions, there exists a generalized variational solution to problem
(1.1) for every µ ∈ R. In particular, there exists a solution of the hemivariational inequality (1.5).
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Theorem 1.2. Under the stated assumptions, if µ ≤ 0 then each generalized variational solution to
problem (1.1) is a weak solution. Moreover, if µ ≤ 0, problem (1.1) admits a weak solution which is a
global minimizer of the minimization problem

(1.7) inf
v∈W 1,p⃗

0 (Ω)

[
N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥pi

Lpi

−
N∑
i=1

µ

qi

∥∥∥∥ ∂v

∂xi

∥∥∥∥qi
Lqi

−
∫
Ω

F (v(x))dx

]
.

The main novelty in our study is the presence of the anisotropic operator −∆p⃗u + µ∆q⃗u in
the nonsmooth problem, which loses the ellipticity when µ > 0. This extends to an anisotropic
nonsmooth setting the use of competing operators considered until now in completely different
situations [12, 15, 16, 17, 19]. We mention that the concept of generalized solution for equations
involving competing operators and convection terms was developed in [11, 14, 15, 16, 23] (see
also [1, 2, 7, 26]). In the present work, we explore the existence of generalized solutions to
hemivariational solutions driven by competing anisotropic operators.

The rest of the paper, has the following structure. In Section 2, we outline the needed
background of anisotropic spaces and operators and provide auxiliary results regarding the
nonsmooth analysis for inclusion (1.1). In Section 3, we present our approach based on finite
dimensional approximate solutions. In Sections 4 and 5, we prove Theorems 1.1 and 1.2, re-
spectively.

2. MATHEMATICAL BACKGROUND AND AUXILIARY RESULTS

The anisotropic Sobolev space W 1,−→p
0 (Ω) is defined as the completion of the set of smooth

functions with compact support C∞
c (Ω) with respect to the norm

∥u∥
W 1,p⃗

0 (Ω)
:=

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi

,

where ∥ · ∥Lr is the usual norm of the space Lr(Ω). It is separable and uniformly convex, thus a
reflexive Banach space. The dual of W 1,p⃗

0 (Ω) is denoted W−1,p⃗ ′
(Ω). The following embedding

theorem can be found in [10, Theorem 1].

Theorem 2.3. Assume that conditions (1.2) and (1.3) hold. Then for all r ∈ [1, p∗], there is a continuous
embedding W 1,−→p

0 (Ω) ⊂ Lr(Ω). For r < p∗, the embedding is compact.

From Theorem 2.3, we have the compact embedding

(2.8) W 1,p⃗
0 (Ω) ⊂ Lp−

(Ω).

In particular, by (2.8) we infer that there exists a constant S1 > 0 such that

(2.9) ∥v∥L1 ≤ S1∥v∥W 1,p⃗
0 (Ω)

, ∀v ∈ W 1,p⃗
0 (Ω).

The quantity λ1,p⃗ in (1.4) is finite due to the compact embedding (2.8). Since the space W 1,p⃗
0 (Ω)

is separable, there exists a Galerkin basis for W 1,p⃗
0 (Ω), that is, a sequence of vector subspaces

{Xn}n≥1 of W 1,p⃗
0 (Ω) such that

(i) dim(Xn) < ∞ for all n;
(ii) Xn ⊂ Xn+1 for all n;
(iii) ∪∞

n=1Xn = W 1,p⃗
0 (Ω).

For various aspects involving anisotropic Sobolev spaces, we refer to [3, 4, 5, 10, 13, 18, 20,
23, 24, 21, 22, 25].
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We continue with a brief survey of basic elements of nonsmooth analysis that are needed in
the sequel.

Given a locally Lipschitz function F : X → R on a normed space X , the generalized direc-
tional derivative of F at u ∈ X in the direction v ∈ X is defined as

F ◦(u; v) := lim sup
w→u,t→0+

1

t
(F (w + tv)− F (w)) .

The generalized gradient of F at u ∈ X is the subset of X∗ given by

∂F (u) := {u∗ ∈ X∗ : ⟨u∗, v⟩ ≤ F ◦(u; v) for all v ∈ X} .
A case of major interest for us in connection with the resolution of problem (1.1) is when X = R.
In this case, a relevant realization of the preceding notions is as follows. Let f ∈ L∞

loc(R) and its
primitive F : R → R defined by

F (t) =

∫ t

0

f(s)ds, ∀t ∈ R(2.10)

which is locally Lipschitz. The explicit expression of the generalized gradient ∂F (t) is ∂F (t) =

[f(t), f(t)], where

f(t) = lim
δ→0

ess inf |η−t|<δf(η) and f(t) = lim
δ→0

ess sup|η−t|<δf(η)

for every t ∈ R. With the choice in (2.10), inclusion (1.1) becomes{
−∆p⃗u+ µ∆q⃗u ∈ [f(u), f(u)] in Ω,

u = 0 on ∂Ω

which is important for equations with discontinuous nonlinearities (see [8]).
Now, we return to our general case of a locally Lipschitz function F : R → R satisfying hy-

pothesis (H). It follows from hypothesis (H) that the function F verifies the growth condition

|F (t)| ≤ c0|t|+
c1
p−

|t|p
−
, ∀t ∈ R.(2.11)

Indeed, note that F (0) = 0 and F is differentible almost everywhere due to Rademacher’s
theorem, thus

F (t) =

∫ t

0

F ′(s)ds, ∀t ∈ R.

Since F ′(s) ∈ ∂F (s) for all t ∈ R (refer to [9, p. 32])), it turns out from hypothesis (H) that
(2.11) holds true.

It is straightforward to check that the functional Φ : Lp−
(Ω) → R given by

(2.12) Φ(v) =

∫
Ω

F (v(x))dx, ∀v ∈ Lp−
(Ω)

is Lipschitz continuous on the bounded subsets of Lp−
(Ω), thus locally Lipschitz on Lp−

(Ω).
Therefore the generalized gradient ∂Φ is well defined on Lp−

(Ω).
Using that the domain Ω is bounded, Hölder’s inequality ensures the continuous embedding

W 1,p⃗
0 (Ω) ⊂ W 1,q⃗

0 (Ω) (note that qi < pi for all i = 1, . . . , N ). Then the embedding W 1,p⃗
0 (Ω) ↪→

Lp−
(Ω) in (2.8) allows us to define the functional J : W 1,p⃗

0 (Ω) → R by

(2.13) J(v) =

N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥pi

Lpi

−
N∑
i=1

µ

qi

∥∥∥∥ ∂v

∂xi

∥∥∥∥qi
Lqi

−
∫
Ω

F (v(x))dx
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for all v ∈ W 1,p⃗
0 (Ω).

Proposition 2.1. Assume that condition (H) holds. The functional J given by (2.13) is locally Lipschitz
on W 1,p⃗

0 (Ω) with the generalized gradient

(2.14) ∂J(v) =

N∑
i=1

∣∣∣∣ ∂v∂xi

∣∣∣∣pi−2
∂v

∂xi
− µ

N∑
i=1

∣∣∣∣ ∂v∂xi

∣∣∣∣qi−2
∂v

∂xi
− ∂Φ(v)

for all v ∈ W 1,p⃗
0 (Ω). Moreover, the functional J is coercive on W 1,p⃗

0 (Ω), which means that

(2.15) lim
∥v∥

W
1,p⃗
0 (Ω)

→∞
J(v) = +∞.

Proof. The first part of the statement is a direct consequence of (2.13) and of what was said
about the functional Φ introduced in (2.12).

We pass to the proof of (2.15). Hypothesis (H) in conjunction with (2.9), (1.4), (2.8), (2.13)
and Hölder’s inequality, leads to

J(v) ≥
N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥pi

Lpi

−
N∑
i=1

|µ|
qi

∥∥∥∥ ∂v

∂xi

∥∥∥∥qi
Lqi

−
∫
Ω

(
c0|v|+

c1
p−

|v|p
−
)
dx

≥
N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥pi

Lpi

−
N∑
i=1

|µ|
qi

|Ω|
pi−qi

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥qi
Lpi

−c0S1

N∑
i=1

∥∥∥∥ ∂v

∂xi

∥∥∥∥
Lpi

−
c1λ

−1
1,p⃗

p−

N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥p−

Lpi

,

where |Ω| denotes the Lebesgue measure of Ω. As it was assumed that 1 < qi < pi for all
i = 1, · · · , N , and c1 < λ1,p⃗p

−, we arrive at (2.15), so the functional J is coercive. □

3. SEQUENCE OF APPROXIMATE SOLUTIONS

In order to simplify the notation, for any real number r > 1 we denote r′ := r/(r − 1) (the
Hölder conjugate of r), and we can set p⃗ ′ := (p′1, · · · , p′N ) for p⃗ = (p1, · · · , pN ).

As noticed in Section 2, there exists a Galerkin basis {Xn}n≥1 for the space W 1,p⃗
0 (Ω) that

we now fix. We construct approximate solutions to inclusion (1.1) on each finite dimensional
subspace Xn.

Proposition 3.2. Assume that hypothesis (H) holds. Then, for each n, there exist un ∈ Xn and
zn ∈ Lp−′

(Ω) with zn ∈ ∂F (un) almost everywhere on Ω such that

(3.16) J(un) = inf
v∈Xn

J(v)

and

(3.17) ⟨−∆p⃗un, v⟩+ µ⟨−∆q⃗un, v⟩ −
∫
Ω

znvdx = 0

for all v ∈ Xn.

Proof. Proposition 2.1 ensures that the restriction J |Xn of the functional J : W 1,p⃗
0 (Ω) → R to

the finite dimensional subspace Xn is locally Lipschitz and coercive. Therefore there exists
un ∈ Xn satisfying (3.16). We derive from (3.16) the necessary optimality condition

(3.18) 0 ∈ ∂ (J |Xn) (un).
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In view of (2.14), we have that (3.18) results in (3.17). The Aubin-Clarke theorem (see [9, p.
83]) applied to the integral functional Φ on Lp−

(Ω) in (2.12) yields that zn ∈ ∂F (un) almost
everywhere on Ω. This completes the proof. □

Corollary 3.1. Assume that condition (H) holds. Then the sequence {un} ⊂ W 1,p⃗
0 (Ω) constructed in

Proposition 3.2 satisfies

(3.19) lim
n→∞

J(un) = inf
w∈W 1,p⃗

0 (Ω)
J(w).

Proof. Recall that Xn ⊂ Xn+1 for all n. Then (3.16) shows that the sequence {J(un)} is nonin-
creasing, while the proof of Proposition 3.2 provides that is bounded from below. Hence the
limit l := limn→∞ J(un) exists.

Arguing by contradiction, admit that

l > inf
w∈W 1,p⃗

0 (Ω)
J(w).

This amounts to saying that there exists ŵ ∈ W 1,p⃗
0 (Ω) such that J(ŵ) < l. Consequently, there

exists a neighborhood U of ŵ in W 1,p⃗
0 (Ω) such that

(3.20) J(w) < l for all w ∈ U.

Since W 1,p⃗
0 (Ω) = ∪∞

n=1Xn, there exists m such that w̃ ∈ U ∩Xm. Then (3.16) and (3.20) yield

min
v∈Xm

J(v) ≤ J(w̃) < l ≤ min
v∈Xm

J(v).

The obtained contradiction proves (3.19), thus completing the proof. □

We focus on the sequence {un}.

Proposition 3.3. Assume that condition (H) holds. Then the sequence {un} constructed in Proposition
3.2 is bounded in W 1,p⃗

0 (Ω), so there is a constant M1 > 0 such that

(3.21) ∥un∥W 1,p⃗
0 (Ω)

≤ M1 for all n ≥ 1.

Proof. Set v = un in (3.17) (note that un ∈ Xn). Then, as in the proof of Proposition 2.1, we use
zn(x) ∈ ∂F (un(x)) for almost all x ∈ Ω to infer that

N∑
i=1

1

pi

∥∥∥∥∂un

∂xi

∥∥∥∥pi

Lpi

=µ

N∑
i=1

1

qi

∥∥∥∥∂un

∂xi

∥∥∥∥qi
Lqi

+

∫
Ω

znundx

≤
N∑
i=1

|µ|
qi

|Ω|
pi−qi

pi

∥∥∥∥∂un

∂xi

∥∥∥∥qi
Lpi

+ c0S1

N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi

+
c1λ

−1
1,p⃗

p−

N∑
i=1

1

pi

∥∥∥∥∂un

∂xi

∥∥∥∥p−

Lpi

.

Since 1 < qi < pi and p− ≤ pi for all i = 1, . . . , N , and c1 < λ1,p⃗p
−, we get the stated result. □

Corollary 3.2. Assume that condition (H) hods. Then for the sequence {un} ⊂ W 1,p⃗
0 (Ω) in Proposi-

tion 3.2 there is a constant M2 > 0 such that

(3.22) ∥ −∆p⃗un + µ∆q⃗un − zn∥W−1,p⃗ ′ (Ω) ≤ M2

for all n, with zn as described in Proposition 3.2.
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Proof. For each v ∈ W 1,−→p
0 (Ω), by Hölder’s inequality, hypothesis (H), (2.9) and (1.4), we find

the estimate

|⟨−∆p⃗un + µ∆q⃗un − zn, v⟩|

=

∣∣∣∣∣
N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣pi−2
∂un

∂xi

∂v

∂xi
dx+ µ

N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣qi−2
∂un

∂xi

∂v

∂xi
dx−

∫
Ω

znvdx

∣∣∣∣∣
≤

N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥pi−1

Lpi

∥∥∥∥ ∂v

∂xi

∥∥∥∥
Lpi

+ |µ|
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥qi−1

Lqi

∥∥∥∥ ∂v

∂xi

∥∥∥∥
Lqi

+

∫
Ω

(c0 + c1|un|p
−−1)|v|dx

≤

(
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥pi−1

Lpi

+ |µ|
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥qi−1

Lqi

+ c0S1 + λ
− 1

p−

1,p⃗ ∥un∥p
−−1

Lp−

)
∥v∥

W 1,p⃗
0 (Ω)

.

This entails

∥ −∆p⃗un + µ∆q⃗un − zn∥W−1,p⃗ ′
0 (Ω)

≤
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥pi−1

Lpi

+ |µ|
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥qi−1

Lqi

+ c0S1 + λ
− 1

p−

1,p⃗ ∥un∥p
−−1

Lp− .
(3.23)

By (3.23), (3.21) and Theorem 2.3, we obtain the validity of (3.22), which completes the proof.
□

4. PROOF OF THEOREM 1.1

Proposition 3.3 provides the sequence {un} ⊂ W 1,p⃗
0 (Ω) which is bounded in W 1,p⃗

0 (Ω) as
demonstrated in (3.21). Therefore, thanks to the reflexivity of the space W 1,p⃗

0 (Ω), up to a
subsequence it holds un ⇀ u in W 1,p⃗

0 (Ω) for some u ∈ W 1,p⃗
0 (Ω). Corollary 3.2 ensures that

the sequence {−∆p⃗un + µ∆q⃗un − zn} is bounded in W−1,p⃗ ′
(Ω), with zn ∈ Lp−′

(Ω) satis-
fying zn ∈ ∂F (un) almost everywhere on Ω. Then along a relabeled subsequence we have
−∆p⃗un + µ∆q⃗un − zn ⇀ η in W−1,p⃗ ′

(Ω) for some η ∈ W−1,p⃗ ′
(Ω).

We claim that η = 0. In order to prove the claim, let v ∈ ∪∞
n=1Xn, so v ∈ Xm for some m.

Note that for each n ≥ m, we have v ∈ Xn, which enables us to insert v in (3.17). Letting n → ∞
in (3.17) renders ⟨η, v⟩ = 0. Using that ∪∞

n=1Xn is dense W 1,p⃗
0 (Ω), we are able to conclude that

η = 0. Therefore we have

(4.24) −∆p⃗un + µ∆q⃗un − zn ⇀ 0 in W−1,−→p ′
(Ω).

Combining (3.17) and (4.24) results in

(4.25) lim
n→∞

[
⟨−∆p⃗un, un − u⟩+ µ⟨∆q⃗un, un − u⟩ −

∫
Ω

zn(un − u)dx

]
= 0.

We stress that in the above arguments µ ∈ R is arbitrary. We are thus in a position to assert
that u ∈ W 1,p⃗

0 (Ω) is a generalized variational solution to problem (1.1) whose sequence required
in Definition 1.2 is {un}. As noticed before, we deduce that u ∈ W 1,p⃗

0 (Ω) is a solution to the
hemivariational inequality (1.5). The proof of Theorem 1.1 is completed.
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5. PROOF OF THEOREM 1.2

Now we assume that µ ≤ 0. Theorem 1.1 applies producing a generalized weak solution for
problem (1.1).

Let u ∈ W 1,p⃗
0 (Ω) be a generalized weak solution to problem (1.1). According to Definition

1.2, there is a sequence {un} in W 1,p⃗
0 (Ω) satisfying the requirements therein. In particular, it

holds (4.25). The sequence {zn} is bounded in Lp−′
(Ω) due to the Lipschitz continuity of the

functional Φ on the bounded subsets of Lp−
(Ω) (refer to the proof of Proposition 3.2). Moreover,

it is true that un → u in Lp−
(Ω) owing to the compact embedding in Theorem 2.3 for r = p−.

Altogether this gives

lim
n→+∞

∫
Ω

zn(un − u)dx = 0.

Then (4.25) leads to

(5.26) lim
n→∞

⟨−∆p⃗un + µ∆q⃗un, un − u⟩ = 0.

Using that µ ≤ 0 and the monotonicity of the operator −∆q⃗ on W 1,q⃗
0 (Ω), we are able to write

⟨−∆p⃗un, un − u⟩
=⟨−∆p⃗un + µ∆q⃗un, un − u⟩+ µ⟨−∆q⃗un +∆q⃗u, un − u⟩+ µ⟨−∆q⃗u, un − u⟩
≤⟨−∆p⃗un + µ∆q⃗un, un − u⟩+ µ⟨−∆q⃗u, un − u⟩.

By (5.26) and un ⇀ u in W 1,q⃗
0 (Ω), we find that

(5.27) lim sup
n→∞

⟨−∆p⃗un, un − u⟩ ≤ 0.

The monotonicity of the operator −∆p⃗ on W 1,p⃗
0 (Ω) implies

0 ≤
N∑
i=1

∫
Ω

(∣∣∣∣∂un

∂xi

∣∣∣∣pi−2
∂un

∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2
∂u

∂xi

)(
∂un

∂xi
− ∂u

∂xi

)
dx

= ⟨−∆p⃗un +∆p⃗u, un − u⟩.

By (5.27) and un ⇀ u in W 1,q⃗
0 (Ω), we are entitled to assert that

lim
n→∞

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣pi−2
∂un

∂xi

(
∂un

∂xi
− ∂u

∂xi

)
dx = 0 ∀ i = 1, . . . , N

which yields

lim sup
n→∞

∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi

≤
∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi

∀ i = 1, . . . , N.

Since the space Lpi(Ω) is uniformly convex (see [6]), we infer the strong convergence un → u

in W 1,p⃗
0 (Ω), thus −∆p⃗un → −∆p⃗u in W−1,p⃗ ′

(Ω) and −∆q⃗un → −∆q⃗u in W−1,q⃗ ′
(Ω).

On the other hand, taking into account that un → u in Lp−
(Ω) and zn ∈ ∂Φ(un) ⊂ Lp−′

(Ω),
the sequence {zn} is bounded in Lp−′

(Ω), so along a subsequence zn ⇀ z in Lp−′
(Ω) for some

z ∈ Lp−′
(Ω). From [9], it is known that the generalized gradient ∂Φ is weak*-closed, so we

obtain z ∈ ∂Φ(u). Furthermore, (4.24) ensures

−∆p⃗u+ µ∆q⃗u− z = 0 in W−1,p⃗ ′
(Ω).

Under assumption (H), the Aubin-Clarke theorem (see [9]) can be applied to the functional
Φ : Lp−

(Ω) → R in (2.12) establishing that z(x) ∈ ∂F (u(x)) for almost all x ∈ Ω. Consequently,
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u ∈ W 1,p⃗
0 (Ω) satisfies (1.6), thus it is a weak solution to the inclusion problem (1.1), thereby of

hemivariational inequality (1.5), too.
The last step in the proof concerns to show that u ∈ W 1,p⃗

0 (Ω) solves the global minimization
in (1.7). In view of (2.13), the global minimization in (1.7) reads as u ∈ W 1,p⃗

0 (Ω) is a global
minimizer of the functional J on W 1,p⃗

0 (Ω). On the basis of the strong convergence un → u in
W 1,p⃗

0 (Ω), we are allowed to pass to the limit in (3.19) finding that inf
w∈W 1,p⃗

0 (Ω)
J(w) is achieved at

u ∈ W 1,p⃗
0 (Ω). The proof is complete.
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[13] M. Mihăilescu, P. Pucci and V. D. Rădulescu: Eigenvalue problems for anisotropic quasilinear elliptic equations with

varaible exponent, J. Math. Anal. Appl., 340 (2008), 687–698.
[14] D. Motreanu: Quasilinear Dirichlet problems with competing operators and convection, Open Math., 18 (2020), 1510–

1517.
[15] D. Motreanu: Systems of hemivariational inclusions with competing operators, Mathematics, 12 (11) (2024), Article ID:

1766.
[16] D. Motreanu: Hemivariational inequalities with competing operators, Commun. Nonlinear Sci. Numer. Simulat., 130

(2024), Article ID: 107741.
[17] D. Motreanu, A. Razani: Competing anisotropic and Finsler (p, q)-Laplacian problems, Bound. Value Probl., 2024

(2024), Article ID: 39.
[18] D. Motreanu, E. Tornatore: Dirichlet problems with anisotropic principal part involving unbounded coefficients, Electron.

J. Differential Equations, 2024 (11) (2024), 1–13.
[19] A. Razani: Nonstandard competing anisotropic (p, q)-Laplacians with convolution, Bound. Value Probl., 2022 (2022),

Article ID: 87.
[20] A. Razani: Entire weak solutions for an anisotropic equation in the Heisenberg group, Proc. Amer. Math. Soc., 151 (11)

(2023), 4771–4779.
[21] A. Razani: Competing Kohn-Spencer Laplacian systems with convection in non-isotropic Folland-Stein space, Complex

Var. Elliptic Equ., (2024), 1–14. DOI: 10.1080/17476933.2024.2337868
[22] A. Razani, G. S. Costa and G. M. Figueiredo: A positive solution for a weighted anisotropic p-Laplace equation involving

vanishing potential, Mediterr. J. Math., 21 (2024), Article ID: 59.
[23] A. Razani, G. M. Figueiredo: Degenerated and competing anisotropic (p, q)-Laplacians with weights, Appl. Anal., 102

(2023), 4471–4488.



Optimizing solutions with competing anisotropic (p, q)-Laplacian in hemivariational inequalities 159

[24] A. Razani, G. M. Figueiredo: A positive solution for an anisotropic (p, q)-Laplacian, Discrete Contin. Dyn. Syst. Ser. S,
16 (6) (2023), 1629–1643.

[25] A. Razani, G. M. Figueiredo: Infinitely many solutions for an anisotropic differential inclusion on unbounded domains,
Electron. J. Qual. Theory Differ. Equ., 33 (2024), 1–17.

[26] A. Razani, E. Tornatore: Solutions for nonhomogeneous degenerate quasilinear anisotropic problems, Constr. Math. Anal.,
7 (3) (2024), 134–149.

DUMITRU MOTREANU

UNIVERSITY OF PERPIGNAN

DEPARTMENT OF MATHEMATICS

66860 PERPIGNAN, FRANCE

ORCID: 0000-0003-4128-4006
Email address: motreanu@univ-perp.fr

ABDOLRAHMAN RAZANI

IMAM KHOMEINI INTERNATIONAL UNIVERSITY

DEPARTMENT OF PURE MATHEMATICS, FACULTY OF SCIENCE

3414896818, QAZVIN, IRAN

ORCID: 0000-0002-3092-3530
Email address: razani@sci.ikiu.ac.ir


	1. Introduction and statements of main results
	2. Mathematical background and auxiliary results
	3. Sequence of approximate solutions
	4. Proof of Theorem 1.1
	5. Proof of Theorem 1.2
	References

