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Abstract 

Gas turbines are widely used in power generation plants due to their high efficiency, but they also emit pollutants such as CO and NOx. 

This study focuses on developing predictive models for predicting CO and NOx emissions from gas turbines using machine learning 

algorithms. The dataset used includes pollutant emission data from a combined cycle gas turbine (CCGT) in Türkiye, collected hourly 

between 2011 and 2015. Various outlier treatment methods such as Z-Score, Interquartile Range (IQR), and Mahalanobis Distance 

(MD) are applied to the dataset. Machine learning algorithms including Random Forest, Extra Trees, Linear Regression, Support Vector 

Regression, Decision Tree, and K-Nearest Neighbors are used to build the predictive models, and their performances are compared. 

Additionally, Voting Ensemble Regressor (VR) and Stacking Ensemble Regressor (SR) methods are employed, using Gradient 

Boosting, LightGBM, and CatBoost as base learners and XGBoost as a meta-learner. The results demonstrate that the SR model, when 

applied to the dataset processed using the IQR method, achieves the highest prediction accuracy for both NOx and CO emissions, with 

R² values of 0.9194 and 0.8556, and RMSE values of 2.7669 and 0.4619, respectively. These findings highlight the significant role of 

the IQR method in enhancing model accuracy by effectively handling outliers and reducing data noise. The improved data quality 

achieved through this method contributes to the superior performance of the SR model, making it a reliable approach for predicting 

NOx and CO emissions with high precision.  

Keywords: Gas turbine emissions, Machine learning, Outlier processing, Combined cycle power generation, Interquartile range, 

Mahalanobis distance 

Gaz Türbinlerinden Kaynaklanan CO ve NOx Emisyonlarının Tahmininde 

Aykırı Değer İşleme ve Topluluk Regresyon Yaklaşımlarının Kullanımı 

Öz  

Gaz türbinleri, yüksek verimlilikleri nedeniyle enerji üretim tesislerinde yaygın olarak kullanılmaktadır; ancak, aynı zamanda CO ve 

NOx gibi zararlı gaz emisyonlarına da neden olmaktadırlar. Bu çalışma, gaz türbinlerinden kaynaklanan CO ve NOx emisyonlarını 

tahmin etmek için makine öğrenmesi algoritmalarını kullanarak tahmin modelleri geliştirmeye odaklanmaktadır. Kullanılan veri seti, 

Türkiye'deki bir kombine çevrim gaz türbininden (CCGT) 2011 ve 2015 yılları arasında saatlik olarak toplanan emisyon verilerini 

içermektedir. Veri setine Z-Skoru, Çeyrekler Arası Aralık (IQR) ve Mahalanobis Mesafesi (MD) gibi çeşitli aykırı değer işleme 

yöntemleri uygulanarak modellerin performansına etkisine incelenmiştir. Modeller oluşturulurken Rastgele Orman, Ekstra Ağaçlar, 

Doğrusal Regresyon, Destek Vektör Regresyonu, Karar Ağacı ve K-En Yakın Komşu gibi makine öğrenmesi algoritmaları kullanılmış 

ve performansları karşılaştırılmıştır. Ayrıca, Gradient Boosting, LightGBM ve CatBoost algoritmalarını temel temel öğrenici ve 

XGBoost'u meta-öğrenici olarak kullanan Oylama Topluluk Regresyonu (VR) ve İstifleme Topluluk Regresyonu (SR) yöntemlerinin 

de performansları incelenmiştir. Sonuçlar, IQR yöntemiyle işlenen veri seti üzerinde uygulanan SR modelinin hem NOx hem de CO 

emisyonları için en yüksek tahmin doğruluğunu sağladığını göstermektedir. Modelin R² değeri NOx için 0.9194, CO için 0.8556 olarak 

bulunmuş; RMSE ise sırasıyla 2.7669 ve 0.4619 olarak elde edilmiştir. IQR yöntemiyle elde edilen iyileştirilmiş veri kalitesi, SR 

modelinin üstün performans göstermesine katkı sağlamakta ve modelin NOx ve CO emisyonlarını yüksek hassasiyetle tahmin 

edebilmesi açısından güvenilir bir yaklaşım olduğunu ortaya koymaktadır. 

Anahtar Kelimeler: Gaz türbini emisyonları, Makine öğrenmesi, Aykırı değer işleme, Kombine çevrim enerji üretimi, Çeyrekler 

arası aralık, Mahalanobis uzaklığı
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1. Introduction 

Gas turbines (GT) are a widely preferred energy 

conversion technology in power generation plants due to 

their high efficiency and reliability. Simply put, GT 

consist of a series of turbines and compressors on a shaft 

rotating at high speed. GT take in air from outside and 

compress it using a compressor. The compressed air is 

then mixed with a fuel (usually natural gas or oil) and 

sent to a combustion chamber. In the combustion 

chamber, the fuel-air mixture is ignited and burns under 

high temperature and pressure. The high-pressure and 

high-temperature gases generated by this combustion 

expand and pass through the turbine, causing the turbine 

blades to rotate. This rotational movement turns the 

turbine shaft, which is connected to a generator, thus 

generating electrical energy. The open cycle of a GT is 

illustrated in Figure 1. 

While the high efficiency and reliability of GT make 

them an ideal choice for electricity generation, harmful 

gases such as carbon monoxide (CO) and nitrogen 

oxides (NOx) released during the combustion process 

cause environmental impacts. CO is produced as an 

incomplete combustion product when there is not 

enough oxygen, or the combustion process is 

incomplete. CO is a colorless, odorless gas and can be 

dangerous to humans. When inhaled at dangerous levels, 

CO can cause severe poisoning and even death (Liu et 

al. 2021). NOx is the general term for compounds 

formed because of the reaction of nitrogen and oxygen 

in the atmosphere under high temperature and pressure, 

including nitrogen monoxide (NO) and nitrogen dioxide 

(NO2). NOx can contribute to acid rain, ozone 

formation, and air pollution, causing respiratory 

diseases and environmental damage (Pandey and 

Chandrashekhar, 2014). 

Various methods and technologies are used to reduce 

the release of harmful gases such as CO and NOx from 

GT into the environment. These include exhaust gas 

treatment systems such as selective catalytic reduction 

(SCR) and selective non-catalytic reduction (SNCR). 

The SCR system lowers NOx emissions by injecting 

ammonia (NH₃) or urea into the exhaust gas stream. In 

the presence of a catalyst, these substances react with 

NOx, converting it into harmless nitrogen (N₂) and water 

(H₂O) (Wardana and Lim, 2022). The SNCR system 

reduces NOx by injecting ammonia or urea into the 

exhaust gas without the use of a catalyst, relying on high 

temperatures to facilitate the reaction (Mahmoudi et al. 

2010). Additionally, improving combustion efficiency 

and optimizing the air-fuel ratio can significantly reduce 

the formation of CO and NOx emissions (Tian et al. 

2024). For example, low NOx combustion techniques 

can be used to provide higher combustion efficiency 

while minimizing NOx formation. Techniques such as 

water or steam injection can be used to lower 

combustion temperatures, thereby reducing NOx 

emissions. In addition, regular maintenance and 

cleaning of GT can help reduce CO and NOx emissions. 

Other effective strategies for reducing CO and NOx 

emissions include utilizing cleaner fuels, enhancing 

combustion chamber design, and implementing exhaust 

gas recirculation (EGR) systems (Kumar et al. 2022). 

However, traditional emission control methods often 

face disadvantages such as high costs, complexity, and 

efficiency issues. Implementing and operating large-

scale exhaust gas treatment systems often involve 

significant costs (Lott et al. 2024). Additionally, the 

environmental impact of some technologies must be 

considered. For example, certain exhaust gas treatment 

systems can produce harmful by-products that may be 

released into the environment (Lopes et al. 2015). This 

necessitates a broad and comprehensive evaluation of 

emission control processes on an ongoing basis to 

ensure environmental sustainability and regulatory 

compliance. 

In recent years, machine learning (ML) has become 

a prominent technology for evaluating emission control 

processes by predicting emissions from GT. ML 

algorithms analyze large amounts of data and take into 

account various variables such as operating conditions 

of GT, fuel composition, air temperature and other 

environmental factors. By identifying complex 

relationships between these variables, they create 

models to predict emissions from GT. These models can 

quickly respond to changes in the operating conditions 

of GT and keep emission predictions up to date. For 

instance, if there is a sudden change in the operating 

conditions of a gas turbine and its impact on emissions 

is immediately identified and assessed, control measures 

can be taken automatically if necessary. Furthermore, 

predictive models allow proactive measures to be taken, 

considering operating conditions. ML models can 

predict future operating conditions by analyzing 

historical performance data and environmental 

conditions of the plant. In a scenario where the 

developed model predicts an impending air temperature 

increase and identifies its potential impacts on CO and 

NOx emissions, power plant operators can adjust plant 

operating parameters based on this information or take 

proactive measures to minimize emissions by making a 

specific process change. In this way, predictive models 

can guide power plants to develop and implement 

strategies to reduce environmental impacts. 

The promising advantages of ML in predicting 

emissions from GT have been evaluated by some 

important studies in the literature. Aslan (2024) 

evaluates the performance of machine learning models, 

including AdaBoost, XGBoost, and Random Forest 

(RF), in predicting gas turbine emissions. Using random 

search optimization, the study finds that AdaBoost 

achieves the highest accuracy (99.97%) and lowest 

mean square error (MSE = 2.17). Dirik (2022) 

conducted a study using the Adaptive Neural Fuzzy 

Inference System (ANFIS) method to model and predict 

NOx emissions from a natural gas-fired combined cycle 

power plant (CCPP). The results demonstrated that the 

ANFIS models achieved high accuracy in predicting 
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NOx emissions. Pachauri (2024) discusses the 

importance of monitoring harmful gas emissions from 

GT in CCPPs, particularly CO and NOx, to ensure 

compliance with emission standards. The study 

proposes a stacked ensemble machine learning (SEM) 

model for predicting CO and NOx emissions from a 

CCPP gas turbine. The model uses neural network for 

regression (NNR), generalized additive model (GAM), 

and bagging of regression trees (BT) as base learners, 

with a generalized regression neural network (GRNN) 

as a meta-learner. The hyperparameters of SEM are 

optimized using a Bayesian optimization algorithm. The 

performance of SEM is compared with support vector 

regression (SVR), decision tree (DT), and linear 

regression (LR). Simulation results show that SEM 

significantly reduces the root mean square error (RMSE) 

for NOx and CO compared to other ML techniques, 

demonstrating its higher predictive accuracy. The study 

by Kochueva and Nikolskii (2021) investigates the 

utility of predictive emission monitoring systems 

(PEMS) as software solutions to validate and 

complement costly continuous emission monitoring 

systems for natural gas electrical generation turbines. 

The research focuses on building a model for predicting 

CO and NOx emissions based on ambient variables and 

technological process parameters using various ML 

methods. The developed models achieve coefficients of 

determination of R2 = 0.83 for NOx emissions and R2 = 

0.89 for CO emissions. In their study, Kaya et al. (2019) 

introduce a novel PEMS dataset collected over a period 

of five years from a gas turbine, specifically for the 

predictive modeling of CO and NOx emissions. The data 

is analyzed using a contemporary ML approach, 

providing valuable insights into emission predictions. It 

is noted in the study that the most successful algorithm 

model for the exhaust gas emission prediction is 

Extreme Learning Machines (ELM). In the study 

conducted by Dalal et al. (2023), commonly used ML 

regression models such as Multiple Linear Regression 

(MLR), DT, RF, Adaboost Regressor, Gradient 

Boosting Regressor (GB), and XGBoost Regressor were 

compared using the same dataset for predicting 

emissions like CO and NOx. According to the results of 

the research, the RF Model showed the best performance 

with the highest accuracy of 0.60 for NOx prediction and 

0.65 for CO prediction. Coelho et al. (2024) conducted 

a study to estimate CO and NOx emissions from a gas 

turbine using the PEMS dataset. They employed four 

feature generation methods: Principal Component 

Analysis (PCA), t-Distributed Stochastic Neighbor 

Embedding (t-SNE), Uniform Manifold Approximation 

and Projection (UMAP), and Potential of Heat-diffusion 

for Affinity-based Trajectory Embedding (PHATE). 

Various regression models, including Ridge Regression, 

Least Absolute Shrinkage and Selection Operator 

(LASSO), K-Nearest Neighbors (KNN), Cubist 

Regression, RF, Light Gradient Boosting Machine 

(LGBM), Categorical Boosting, and Deep Forest 

Regression (DFR), were evaluated with all the generated 

features. The DFR model achieved the best results, with 

an R2 value of 0.53 for CO emissions in the validation 

dataset. For NOx emissions, the DFR model achieved an 

R2 value of 0.47 for the validation dataset. The study by 

Yousif et al. (2024) aims to predict gas emissions from 

natural gas power plants. A hybrid model combining 

Feed Forward Neural Network (FFNN) and Particle 

Swarm Optimization (PSO) was developed for this 

purpose. The FFNN predicts NOx and CO emissions, 

while the PSO optimizes the FFNN weights to enhance 

prediction accuracy. The PSO employs a unique random 

number selection strategy using the KNN algorithm. 

Neighbor Component Analysis (NCA) is used to select 

parameters most correlated with emissions. The model 

was tested with publicly available datasets and evaluated 

using MSE, mean absolute error (MAE), and RMSE 

metrics. Results show that the PSO significantly 

improves FFNN training, increasing CO and NOx 

prediction accuracy by 99.18% and 82.11%, 

respectively. Naghibi (2024) develops an advanced gas 

turbine forecasting model using ensemble decision trees 

and robust preprocessing. The bagging structure 

outperforms boosted trees, achieving a lower RMSE 

(1.4176) with fewer estimators. While effective overall, 

the model has limitations in specific operating ranges. 

The study offers insights for optimizing gas turbine 

efficiency and improving electricity supply reliability. 

The aim of this study is to develop predictive models 

for predicting CO and NOx emissions from GT using 

algorithms such as RF, Extra Trees (ET), LR, SVR, DT, 

and KNN, and to compare their performances with VR 

and SR methods. In VR and SR methods, GB, 

LightGBM and CatBoost algorithms are used as base 

learners and XGBoost algorithm is used as meta learner. 

The models are trained on a dataset containing emission 

data collected over a five-year period (01/01/2011–

31/12/2015). Unlike previous studies that used the same 

dataset, this research focuses on the problem of outliers 

in the dataset. By examining and comparing the effects 

of various outlier treatment methods such as Z-Score, 

IQR, and MD on the developed models, this study aims 

to provide a novel contribution to literature. 

Additionally, the findings of this study are expected to 

contribute to the field of emission prediction from GT 

and provide valuable insights for environmental 

management in the energy sector. By enhancing the 

accuracy of the developed models, the study aims to play 

a critical role in environmental impact assessments and 

sustainable energy policies.
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Figure 1. Open cycle of a GT

2. Methodology 

In this section, the characteristics of the dataset used 

in the study, descriptions of the ML algorithms, 

performance criteria used in the comparison of the 

algorithms and information about the data preparation 

process are given. With this information, it is aimed to 

establish the methodological and analytical foundations 

of the research, to increase the scientific contribution of 

the study and to ensure its reproducibility. 

2.1. Dataset 

The dataset used in this study includes pollutant 

emission data from a CCGT in Türkiye. The dataset 

consists of sensor data collected hourly between 2011 

and 2015 and is openly available through the UCI 

repository (Kaya et al. 2019). This set, which includes 

36,733 data records in total, belongs to the periods when 

the power plant operated between 75% and 100% load 

factors. A graphical representation of the output features 

is given in Figure 2. 

 

 

Figure 2. Visual depiction of the output features NOx and 

CO. 

The dataset includes various environmental and 

operational parameters that affect the performance of the 

gas turbine. These parameters include ambient 

temperature (AT), ambient pressure (AP), ambient 

humidity (AH), air flow differential pressure (AFDP), 

gas turbine exhaust pressure (GTEP), compressor 

discharge pressure (CDP), turbine energy yield (TEY), 

and turbine inlet temperature (TIT) and turbine 

afterburner temperature (TAT). The main pollutants 

produced by GT are CO and NOx, while sulfur oxides 

(SOx) and other pollutants vary depending on the type 

of fuel used. Table 1 presents the statistical analysis of 

two output variables (CO and NOx) and nine input 

variables (AT, AP, AH, AFDP, GTEP, TIT, TAT, CDP 

and TEY) in the dataset. Especially the atmospheric 

parameters such as AT, AP, and AH play an important 

role in predicting CO and NOx emissions (Farzaneh-

Gord, and Deymi-Dashtebayaz, 2011). For CCGT, 

AFDP, GTEP, TIT, TAT, and CDP parameters are very 

influential, and sensor locations and measurement 

methods of these variables are of great importance 

(Wood, 2023). AFDP sensors are usually placed before 

and after the air filter, GTEP sensors in the exhaust duct, 

TIT sensors at the turbine inlet, TAT sensors at the 

turbine outlet, and CDP sensors at the compressor outlet. 

Correct positioning and regular calibration of these 

sensors ensures efficient and safe operation of CCGT 

systems. 

Understanding the relationships between input and 

output variables is critical for improving the accuracy of 

predictive models. These relationships are analyzed 

using the correlation coefficient (CC), which is 

calculated with Pearson correlation. CC values indicate 

the level of dependence between variables, with positive 

values indicating a direct relationship and negative 

values indicating an inverse relationship. Figure 3 shows 

the correlations between CO, NOx, and other input 

variables. The concentration of CO demonstrates 

negative correlations with several operational 

parameters, including AT, AFDP, GTEP, TIT, TEY, and 
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CDP, with correlation coefficient values of -0.17, -0.45, 

-0.52, -0.71, 0.57, and -0.55, respectively. This implies 

that as the turbine's inlet temperature and the 

compressor's discharge pressure decrease, the emission 

of CO increases. Conversely, NOx emissions exhibit a 

higher level of correlation with a decrease in AT (-0.56). 

During the winter season, it is recommended to operate 

the gas turbine at higher temperatures to mitigate NOx 

emissions. However, GT operation is also negatively 

correlated with AFDP (-0.19), GTEP (-0.20), TIT (-

0.21), TAT (-0.09), TEY (-0.12), and CDP (-0.17), 

respectively. Moreover, CO demonstrates positive 

correlations with AP (0.07), AH (0.11), and TAT (0.06), 

while NOx is positively correlated with AP and AH, 

with correlation coefficient values of 0.19 and 0.16, 

respectively. Figure 4 illustrates the schematic diagram 

of the CCPP, encompassing all input and output 

features. 

 

 

Figure 3. Matrix of Pearson correlation coefficients among 

the features 

 
Table 1. Statistical overview of the dataset 

Features Unit Average Min Max Skewness Kurtosis Standard Dev. 

AT °C 17.71 -6.23 37.10 -0.0435 -0.8266 7.4474 

AP mbar 1013.07 985.85 1036.60 0.1941 0.4419 6.4633 

AH % 77.86 24.08 100.20 -0.6280 -0.2745 14.4613 

AFDP mbar 3.92 2.08 7.61 0.3810 0.2246 0.7739 

GTEP mbar 25.56 17.69 40.71 0.3290 -0.6538 4.1959 

TIT °C 1081.42 1000.80 1100.90 -0.8882 -0.0457 17.5363 

TAT °C 546.15 511.04 550.61 -1.7559 2.0167 6.8423 

CDP mbar 12.06 9.85 15.15 0.2367 -0.6315 1.0887 

TEY MWh 133.50 100.02 179.50 0.1165 -0.5001 15.6186 

CO mg/m3 2.37 0.0003 44.10 4.8381 49.0817 2.2626 

NOx mg/m3 65.29 25.90 119.91 1.0267 2.0375 11.6783 

 

 

Figure 4. The schematic diagram illustrating the CCPP includes all input and output features 

2.2. Data preparation 

In any ML or data analysis project, data preparation 

is a critical step that significantly influences the 

accuracy and performance of the resulting models. 

Proper data preparation involves cleaning, transforming, 

and organizing the raw data into a format suitable for 

analysis. This process helps to ensure that the models are 

trained on high-quality data, which is essential for 

achieving reliable and meaningful predictions. It also 

involves handling missing values, removing outliers, 

and normalizing data, all of which contribute to the 

robustness of the analysis. In this study, careful attention 

has been paid to the data preparation phase to maximize 

the predictive performance of the models for CO and 

NOx emissions from a gas turbine. The dataset was 

carefully inspected, and no null or missing values were 
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found, ensuring the dataset remained complete and 

representative. To test the data's compliance with the 

normal distribution assumption, the Shapiro-Wilk test 

was applied. 

Figure 5 presents box plots for the various input and 

output features used in this study, providing a visual 

summary of their distributions. The box plots illustrate 

the central tendency and variability of each variable, as 

well as the presence of any potential outliers. For 

instance, variables like AP and AH exhibit a relatively 

tight IQR, indicating low variability, whereas variables 

such as CO and NOx show a wider IQR, signifying 

higher variability and the presence of numerous outliers.  

 

Figure 5. Box plots of input and output features showing 

distribution and potential outliers 

The study focuses on the impact of different outlier 

treatment methods on the performance of the developed 

forecasting models. The outlier handling methods 

examined include Z-Score, IQR and MD. Each method 

offers a unique approach to identifying and handling 

outliers, which can significantly impact model accuracy 

and reliability. 

• Z-Score 

The Z-Score method identifies outliers based on the 

number of standard deviations a data point is from the 

mean. The Z-Score for a data point 𝓍 is calculated using 

the formula in Equation 1. 

 

 𝑍 =
𝓍 −  𝜇

𝜎
 (1) 

 

where 𝜇 is the mean of the data and 𝜎 is the standard 

deviation. Data points with Z-Scores greater than a 

specified threshold (commonly ± 3) are considered 

outliers. This method assumes that the data follows a 

normal distribution, and it is particularly useful for 

detecting extreme values in symmetric distributions. 

However, the Z-Score method is sensitive to the 

assumption of normality. If the data is not normally 

distributed, the Z-Score method may incorrectly identify 

outliers. Additionally, it is less effective for small 

datasets or datasets with high variability, as the mean 

and standard deviation can be heavily influenced by 

extreme values. 

• Interquartile Range 

IQR method identifies outliers based on the spread 

of the middle 50% of the data. The IQR is calculated as 

the difference between the third quartile (𝑄3) and the 

first quartile (𝑄1) given in Equation 2. 

 

 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (2) 

 

Outliers are typically defined as data points that fall 

below 𝑄1 − 1.5 ×  𝐼𝑄𝑅 or above 𝑄3 + 1.5 ×  𝐼𝑄𝑅. 

This method is robust to non-normal distributions and is 

effective in handling skewed data. The IQR method is 

less sensitive to extreme values compared to the Z-Score 

method, but it may not be as effective for datasets with 

a small number of observations, as the quartiles may not 

accurately represent the data distribution. The choice of 

the multiplier (e.g., 1.5 or 3) can also affect the number 

of outliers detected, requiring careful tuning. 

 

• Mahalanobis Distance 

The MD method identifies outliers by considering 

the distance of a data point from the mean of the 

distribution, taking into account the correlations 

between variables. The MD for a data point 𝓍 is given 

as in Equation 3. 

 

 𝐷2 =  (𝓍 −  𝜇)𝑇 ∑−1
(𝓍 −  𝜇) (3) 

 

where 𝜇 is the mean vector of the data, and Σ is the 

covariance matrix. Data points with a MD exceeding a 

certain threshold (determined by the chi-square 

distribution with degrees of freedom equal to the 

number of variables) are considered outliers. This 

method is particularly effective for multivariate data and 

can identify outliers that may not be evident when 

considering variables individually. However, the MD 

method is sensitive to the distribution of the dataset. If 

the dataset is small or homogeneous, the MD method 

may incorrectly identify outliers, leading to overfitting 

(Caicedo et al. 2017). The method assumes that the data 

follows a multivariate normal distribution, and if this 

assumption is violated, the MD may not accurately 

identify outliers. In datasets with high dimensionality, 

the MD method can be computationally expensive and 

may struggle with the “curse of dimensionality,” where 

the distance metric becomes less meaningful. For small 

and homogeneous datasets, the MD method may overfit 

the model by identifying extreme data points as outliers, 

which can lead to a model that performs well on the 

training data but poorly on new or unseen data. In 
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datasets with high variability or noise, the MD method 

may misinterpret the variance and flag some data points 

as outliers, which can weaken the generalization ability 

of the model. 

2.3. Regression algorithms 

In this study, RF, ET, LR, SVR, DT and KNN 

algorithms were used to predict CO and NOx emissions 

from GT. RF is an ensemble learning algorithm 

consisting of many decision trees. Each decision tree is 

trained on subsets of randomly selected features and 

data samples. This increases the generalization ability of 

the model and makes it more resistant to overfitting. 

Final predictions are usually made by averaging the 

predictions of these trees. The basic idea of RF is based 

on the idea that many different and random trees can 

come together to form a more powerful model (Biau, 

2012). In this way, the errors within each tree 

compensate for each other and a better prediction can be 

made overall. The formula for RF for regression is given 

in Equation 4. 

 

 �̂� =  
1

𝑁
 ∑ ℎ𝑖(𝓍)

𝑁

𝑖=1

 (4) 

 

Here, �̂� is the predicted value, 𝑁 is the total number 

of decision trees and ℎ𝑖(𝓍) is the prediction of the i-th 

decision tree. With this formula, the final prediction is 

calculated by averaging the predictions of all trees. 

ET is an ensemble learning algorithm similar to RF, 

but with certain differences. ET aims to increase 

diversity by generating decision trees in a more 

randomized way. When building decision trees, the best 

split point for each node is randomly selected. This 

allows the trees to be more diverse from each other, 

which helps the ensemble model to become more 

generalizable. It has been observed that ET can have 

faster training times compared to RF (Ahmad et al. 

2018). 

LR is a basic regression algorithm used to model the 

relationship between dependent and independent 

variables. This algorithm attempts to capture the linear 

relationship between the values of the independent 

variables in the dataset and the dependent variable 

(Maulud and Abdulazeez, 2020). The model determines 

the coefficients of the features in the dataset and a 

constant (cut-off point). These coefficients and constant 

represent the linear relationship that will best explain the 

observations in the dataset. LR is particularly effective 

when the dependent variable is continuous and there is 

a linear relationship between the variables. The LR 

formula is presented in Equation 5. 

 

 �̂� =  𝛽0 + ∑ 𝛽𝑗

𝑝

𝑗=1

𝓍𝑗 (5) 

 

When Equation 5 is analyzed, �̂� represents the 

predicted value, 𝛽0 represents the cut-off point, 𝛽𝑗 

represents the coefficient of the j-th independent 

variable and 𝓍𝑗 represents the value of the j-th 

independent variable. 

SVR is an adaptation of the Support Vector 

Machines (SVM) algorithm for regression analysis. 

While SVM was originally developed for classification 

problems, SVR modifies it to address regression tasks. 

SVR employs the concept of a hyperplane used in SVM 

for classifying data points, but in this case, the 

hyperplane is determined to ensure that the data points 

lie within a specified margin (Valkenborg et al. 2023). 

The basic idea of SVR is to fit the data points, i.e., the 

training data, around a hyperplane in such a way that the 

hyperplane is positioned to provide the widest margin 

possible. This margin is defined as the distance between 

the hyperplane and the closest data points on either side. 

However, unlike classification where data points are 

expected to be separated by the hyperplane, in 

regression, it is unrealistic to expect all data points to lie 

exactly on the hyperplane. Instead, SVR aims to find a 

balance between fitting the data points closely while 

maintaining a margin of tolerance, allowing for some 

deviation from the hyperplane within a defined 

threshold (Yu and Kim, 2012). Therefore, a tolerance (𝜀) 

margin is defined and the hyperplane tries to classify 

data points within this margin. Other data points may fall 

outside the tolerance margin. SVR determines the 

regression line by minimizing a cost function, which can 

also be controlled by hyperparameters "C" and "𝜀". The 

parameter "C" controls the model's resistance to 

overfitting, while the parameter "𝜀" determines the 

tolerance margin. The regression formula for SVR is 

presented in Equation 6. 

 

 
𝑚𝑖𝑛
𝐰, 𝑏

 
1

2
‖𝐰‖2 + 𝐶 ∑(𝜀𝑖 + 𝜀𝑖

∗)

𝑛

𝑖=1

 (6) 

 

Here, 𝐰 represents the weight vector, 𝑏 the bias 

term, 𝐶 the regularization parameter and 𝜀𝑖, 𝜀𝑖
∗ the error 

terms. This formulation determines the hyperplane 

according to the maximum margin principle while 

minimizing the error terms for data points that lie within 

the specified tolerance margin. 

DT is a regression analysis technique that uses 

features and outcomes from the dataset. It works based 

on decision trees and each tree is used to predict 

outcomes based on the values of features in the data set. 

The algorithm starts by creating a decision node for each 

feature in the dataset. These nodes test the feature values 

in the dataset and create smaller subsets by partitioning 

the data according to a specific rule. Each node tries to 

choose the best feature and threshold value to best 

partition the dataset. The tree-building process continues 

until the dataset is divided by a certain criterion (for 

example, until a certain depth or minimum number of 

samples is reached). As a result, each leaf node makes a 
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prediction, and the average or weighted average of these 

predictions is used as the tree's prediction based on the 

values of the features in the dataset (Quinlan, 1996). DT 

provides a flexible modeling method to capture complex 

relationships. In Equation 7, the basic estimation 

formula for DT is given. 

 

 �̂� =  
1

𝑁𝑡

∑ 𝑦𝑖

𝓍𝑖∈𝑅𝑡

 (7) 

 

In this formula, the predicted value �̂� is calculated as 

the average of the actual values of the samples in a leaf 

node. During this calculation, the number of samples in 

the leaf node 𝑁𝑡, the leaf node 𝑅𝑡 and the actual value 𝑦𝑖  

for each sample are used. 

KNN is a fundamental classification and regression 

algorithm. In classification, the class of a data point is 

determined by the majority vote of its k nearest 

neighbors. In regression, the output value of a data point 

is predicted by taking the average of the values of its k 

nearest neighbors. KNN relies on the similarity between 

data points and is generally considered a simple and 

effective method. However, it can be sensitive to noise 

and high-dimensional data issues and is often 

computationally expensive because it requires 

comparing the target data point against the entire 

training dataset to make predictions (Song et al. 2017). 

Equation 8 defines the regression formula for the KNN 

algorithm. 

 

 �̂� =  
1

𝑘
∑ 𝑦𝑖

𝑘

𝑖=1

 (8) 

 

In the formula, the estimate �̂� is calculated as the 

average of the true values 𝑦𝑖  of the k nearest neighbors. 

In this calculation, k neighbors (𝑘) and the true value for 

each neighbor (𝑦𝑖) are used. 

2.4. Ensemble learning 

In this study, the ensemble learning methods VR and 

SR are used. In these methods, GB, LightGBM and 

CatBoost algorithms are used as base learners, while 

XGBoost is chosen as the meta-learner to combine their 

predictions. While selecting the base learners and the 

meta-learner, the diversity, performance, and 

compatibility of the base learners were taken into 

account. Also, the overall impact of the meta-learner on 

the ensemble was considered. Ensemble methods aim to 

improve the overall performance of the model by 

combining the predictions of more than one base learner. 

The VR combines the predictions of different base 

learners to generate the final prediction. The number of 

base learners is set to 𝑁 and 𝑦𝑖𝑗  denotes the prediction 

of base learner 𝑖 about sample 𝑗. In this case, the final 

prediction 𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  of the VR is calculated as in 

Equation 9. 

 

 𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  
1

𝑁
 ∑ 𝑦𝑖𝑗

𝑁

𝑖=1
 (9) 

 

In the formula in Equation 9, 𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  is defined as 

the final prediction and 𝑦𝑖𝑗  is defined as the prediction 

of the base learner 𝑖 about the sample 𝑗. 

A SR creates the final prediction by training a meta-

learner on the predictions of base learners. The meta-

learner is trained on a new dataset formed by the 

predictions of the base learners, and this meta-learner 

then takes the base learners' predictions as inputs to 

produce the final prediction (Divina et al. 2018). For 

example, if there are three different base learners, the 

predictions from these base learners form a new dataset. 

This dataset consists of the predictions of each base 

learner for each sample. Then, the meta-learner is 

trained on this new dataset along with the true values. 

The meta-learner uses the predictions of the base 

learners and the true values to make a more accurate 

prediction. The final prediction of the SR is the 

prediction made by the meta-learner. This method 

enhances the performance of the ensemble model by 

transforming the base learners' predictions into a 

structure that can model more complex relationships. 

The steps involved in the SR process are as follows: 

 

1. Base learners' predictions: The predictions of 

the base learners are denoted as 𝑦𝑖𝑗 , where 𝑖 
represents the 𝑖-th base learner and 𝑗 represents 

the index of the 𝑗-th sample. 

2. Creating a new dataset: A new dataset is 

created using the predictions of the base 

learners. This new dataset is used to train the 

meta-learner. For each sample, the new dataset 

contains the predictions of all the base learners. 

Thus, the new representation of a sample's 

predictions can be denoted as 𝑋𝑗 =

 [𝑦1𝑗 , 𝑦2𝑗 , … , 𝑦𝑛𝑗  ]. 

3. Meta-learner prediction: The meta-learner 

makes predictions using this new dataset and 

the true values. The prediction of the meta-

learner is denoted as �̂�meta. 

4. Final prediction: The final prediction of the SR 

is achieved using the meta-learner's prediction, 

which is �̂�meta. 

 

Once this process is formalized, the final estimate of 

the SR is calculated as in Equation 10. 

 𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  �̂�meta (10) 

2.5. Validation method 

Many ML models rely on splitting datasets into 

training and testing to measure their performance. 

However, this method can lose reliability in terms of 
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accuracy as the size of the dataset used to test a small 

portion of the dataset decreases. In this study, the 

Stratified K-Fold Cross-Validation (SKCV) method is 

used to evaluate the generalization ability of the model. 

In the SKCV method, the dataset is divided into k equal 

parts. Each part is respectively selected as the test set, 

while the remaining k-1 parts are used as the training set. 

This process is repeated k times, and the model is trained 

and tested in each iteration. The overall performance of 

the model is evaluated by averaging the obtained 

performance metrics. This method can be more robust to 

noisy datasets and scatter of data points, which can 

better reflect the performance of the model on real-world 

data (Prusty et al. 2022). The basic formula of the SKCV 

method is given in Equation 11. 

 

 SKCV =  
1

𝑘
 ∑ 𝐿

𝑘

𝑖=1
(𝑦𝑖 , �̂�−𝑖) (11) 

 

In the formula, 𝑘 represents the number of layers 

(𝑘 = 10 in this study), 𝑦𝑖  represents the true values in 

each layer, and �̂�−𝑖 represents the predicted values of the 

model trained outside that layer. The function 𝐿 is used 

to measure the error between the true and predicted 

values. Usually, the mean squared error is used for 

regression problems or zero-one loss for classification 

problems. 

2.6. Performance metrics 

Evaluating research and validating its results 

requires the use of specific measurements and metrics. 

These metrics are used to evaluate the success of the 

model or algorithm and to understand its performance. 

This study examines performance metrics commonly 

used in regression problems such as R², RMSE and 

MSE. R² is a measure of a model's ability to explain 

variance in observed values. Its formula is given in 

Equation 12. 

 

 R2 =  1 −
𝑆𝑆res

𝑆𝑆tot

 (12) 

 

In the formula in Equation 12, 𝑆𝑆res represents the 

residual sum of squares and 𝑆𝑆tot represents the total 

sum of squares. 𝑆𝑆res is defined by the formula in 

Equation 13 and  𝑆𝑆tot is defined by the formula in 

Equation 14. 

 

 𝑆𝑆res =  ∑ (𝑦𝑖 −  �̂�𝑖)
2

𝑛

𝑖=1
 (13) 

 

 𝑆𝑆tot =  ∑ (𝑦𝑖 −  �̅�)2
𝑛

𝑖=1
 (14) 

 

In the formulas, 𝑦𝑖  represents the actual values, �̂�𝑖 

the predicted values and �̅� the mean of the observed 

values. R² takes values between 0 and 1 and the higher 

it is, the better the model explains the observed data. 

RMSE is a metric that measures how far the model's 

predictions are from the true values. By taking the 

square root of the prediction errors, it shows the 

magnitude of the errors on average. Its formula is 

expressed in Equation 15. 

 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 −  �̂�𝑖)

2
𝑛

𝑖=1
 (15) 

 

In the RMSE formula, 𝑦𝑖 represents the actual 

values, �̂�𝑖 represents the values predicted by the model, 

and 𝑛 represents the total number of data points. The 

steps to calculate the RMSE are as follows: 

 

1. For each observation, the difference (error) 

between the predicted value and the actual 

value is calculated: 𝑒𝑖 =  𝑦𝑖 − �̂�𝑖   
2. The squares of these errors are taken: 𝑒𝑖

2 =
 (𝑦𝑖 −  �̂�𝑖)

2 

3. The mean of all the squared errors is computed: 
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1  

4. The square root of this mean is taken to find the 

RMSE. 

 

MSE is the square of RMSE and represents the mean 

squared error of the model. The formula for MSE is 

given in Equation 16. 

 

 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2
𝑛

𝑖=1
 (16) 

In the formula, 𝑦𝑖  is the actual values, �̂�𝑖 is the values 

predicted by the model, and 𝑛 is the total number of data 

points. 

2.7. Model setups 

For the development of the models, the data set was 

divided into two parts, 80% training and 20% testing. 

The randomness factor was set to 42 in all algorithms. 

The best hyperparameter settings for the models were 

determined using Bayesian Optimization. This method 

aims to discover the optimal parameter combinations 

using knowledge in the search domain. Bayesian 

Optimization is optimized to improve the performance 

of the model, working particularly effectively in 

complex and high-dimensional hyperparameter search 

spaces (Yang and Shami, 2020). This method offers a 

more efficient alternative to the classical Grid Search 

and Random Search techniques.  

Table 2 lists the best hyperparameter settings 

determined using Bayesian Optimization for the ML 

models used in the study. The RF model was configured 

with 100 estimators, a maximum depth of 10, and 
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minimum samples of 2 to split a node and 1 to be at a 

leaf node, balancing complexity and generalization to 

prevent overfitting. The ET model, which randomizes 

tree generation, used 150 estimators, a maximum depth 

of 12, and minimum samples of 4 to split and 2 at a leaf, 

enhancing diversity and capturing complex patterns. For 

LR, fit_intercept was set to True to calculate the 

intercept, while normalize was set to False, as the data 

was preprocessed, ensuring the model captures linear 

relationships without unnecessary normalization. The 

SVR model used C = 1.0, ε = 0.1, and an 'rbf' kernel to 

handle non-linear relationships, with C controlling 

complexity and ε defining the error tolerance margin. 

The DT model was set with a maximum depth of 12 and 

minimum samples of 4 to split and 3 at a leaf, controlling 

tree growth to avoid overfitting. The KNN model used 

10 neighbors, a 'distance' weighting function, and the 

'ball_tree' algorithm to efficiently handle high-

dimensional data, prioritizing closer neighbors for 

predictions. The VR combined Gradient Boosting, 

LightGBM, and CatBoost with equal weights, 

leveraging multiple algorithms for robust predictions. 

Finally, the SR used the same base learners as VR, with 

XGBoost as the meta-learner, creating a hierarchical 

model that captures complex relationships and achieves 

higher predictive accuracy by combining the strengths 

of multiple algorithms. 

 
Table 2. Hyperparameter settings for ML models 

Model Hyperparameter Settings 

RF n_estimators, max_depth, min_samples_split, 

min_samples_leaf 

100, 10, 2, 1 

ET n_estimators, max_depth, min_samples_split, 

min_samples_leaf 

150, 12, 4, 2 

LR fit_intercept, normalize True, False 

SVR C, epsilon, kernel 1.0, 0.1, 'rbf' 

DT max_depth, min_samples_split, 

min_samples_leaf 

12, 4, 3 

KNN n_neighbors, weights, algorithm 10, 'distance', 'ball_tree' 

VR estimators, weights [('gb', GradientBoostingRegressor()), ('lgbm', LGBMRegressor()), 

('cat', CatBoostRegressor())], [1, 1, 1] 

SR estimators, final_estimator [('gb', GradientBoostingRegressor()), ('lgbm', LGBMRegressor()), 

('cat', CatBoostRegressor())], XGBRegressor() 

In the study, the hyperparameter settings of Z-score, 

IQR and MD methods, which are used to detect outliers 

and solve this problem, were determined, and analyzed. 

For the Z-score method, the “threshold” 

hyperparameter, which determines how many standard 

deviations away a data is from the standard deviation, is 

set to 3.0. This setting means that data that are more than 

3 standard deviations away will be considered abnormal. 

For the IQR method, the “k” hyperparameter, which 

determines the distance between the upper and lower 

quartiles, is set to 1.5. For the MD method, the 

“threshold” hyperparameter, which determines whether 

the data are anomalous according to the MD 

distribution, is set to 95.0 percentile. This setting means 

that data with MD greater than a certain percentile will 

be considered outliers. These hyperparameter settings 

had a significant impact on model performance in 

anomaly detection and data preprocessing. The 

hyperparameter settings are presented in Table 3. 

 
Table 3. Hyperparameter settings for outliers’ treatment 

methods 

Method Hyperparameter Settings 

Z-score threshold 3.0 

IQR k 1.5 

MD threshold 95.0 percentile 

 

Python programming language was used for data 

analysis and model testing. In the data analysis process, 

pandas and NumPy libraries were used for data 

processing and manipulation. For model building and 

testing, the scikit-learn library was preferred. This 

library provides various ML algorithms and model 

evaluation tools. All processes were carried out in the 

Jupyter Notebook development environment, where 

code, text and visuals are presented together. A PC 

running on a Ryzen 7800x3D processor with a processor 

speed of 4.2 GHz was used for training the models. In 

addition, the PC has NVIDIA 4070 Ti GPU and 32 

gigabyte 6000 MHz DDR5 RAM. Windows 11 was 

used as the operating system. The overview of the CO 

and NOx emission prediction system realized in the 

study is given in Figure 6. 
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Figure 6. Overview of the CO and NOx emissions prediction system 

 

3. Experimental Study and Results 

In this section, the performance results of the 

regression models are presented and discussed. Table 4 

shows the NOx emission prediction performance of the 

regression models and Table 5 shows the CO emission 

prediction performance of the models. The results are 

presented using three different metrics (R², RMSE, 

MSE) and four different outliers treatment methods 

(Raw, Z-Score, IQR, MD). R² indicates the explanatory 

power of the model, while RMSE and MSE indicate the 

error rates. The values of the best performing models for 

each outlier’s treatment method are expressed in bold 

font.  Table 4 shows that when the outliers in the dataset 

are treated with the MD method, ML models and 

ensemble methods reach the highest performance values 

in NOx emission prediction. In fact, the Stacking 

Regressor (SR) method reached the highest 

determination coefficient with R² = 0.9974 (RMSE = 

0.5906, MSE = 0.3488). The predictions made by the SR 

model for NOx emissions closely match the observed 

(actual) NOX values, suggesting a strong agreement 

between the model's predictions and the real-world data. 

Figure 7 presents the R² scores of regression models for 

predicting NOx emissions, providing a clear comparison 

of their performance across different outlier treatment 

methods. 

Upon reviewing the Table 4, it appears that the ET 

and DT models achieved an R² = 1.0, suggesting perfect 

performance compared to the SR. However, the 

respective RMSE values of 9.4325 and 1.5509 indicate 

that these models exhibit significantly larger prediction 

errors than expected. This discrepancy suggests that the 

models may have overfitted the training data, 

demonstrating excellent fit to the training set while 

lacking the ability to generalize to new data. 

Additionally, the MD method's sensitivity to data 

distribution means that outlier values in the dataset 

could negatively impact model performance, 

contributing to these observed errors. There is another 

very important point to be considered here. Figure 9 

displays the comparison between predicted and actual 

NOx and CO emissions using the MD method and the 

SR model. The left panel plots the predicted NOx values 

against the actual NOx values. When the NOx 

predictions in Figure 9 are examined, it is seen that the 

points are ideally concentrated on the y = x line. This 

shows that the model predicts NOx values almost 

perfectly. These near-perfect predictions for NOx 

suggest that the model might be overfitting. A model 

that fits the training data exceptionally well may not 

maintain this performance when faced with new or 

noisier data. Analyzing the graphs and performance 

indicators reveals that the models trained on the dataset 

created using the MD method exhibit overfitting, 

indicating that the MD method does not yield accurate 

results for NOx prediction in the context of this study.  

When Table 4 is further analyzed, the model created 

with SR in the dataset processed for outliers using the 

IQR method achieved the highest coefficient of 

determination (R² = 0.9194) and the lowest error values 

(RMSE = 2.7669, MSE = 7.6562). When the scatter plot 

in Figure 10 is examined, it is understood that the 

performance values obtained by the SR method seem to 

be suitable for real world data and the possibility of 

overfitting the model is low. In Figure 11, Hydrographs 

are given for each model trained on the dataset created 

with the IQR method and the prediction performances of 

the models are revealed. The success of the IQR method 

and the model built with SR in predicting NOx 

emissions at GT compared to other methods and models 

is clearly seen in the graphs. In addition to all this, it is 

found that the models trained on the dataset where 

outliers are processed with the Z-score method perform 

lower than the models trained on raw data. 
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Table 4. NOx emission prediction performance of regression models with outliers’ treatment methods 

 Raw Z-Score 

 R2  RMSE MSE R2  RMSE MSE 

RF 0.8765 4.0443 16.3566 0.8716 4.1235 17.0035 

ET 0.8908 3.8037 14.4683 0.8875 3.8607 14.9055 

LR 0.4946 8.1832 66.9648 0.4911 8.2112 67.4251 

SVR 0.7574 5.6698 32.1475 0.0739 11.0776 122.714 

DT 0.7367 5.9059 34.8805 0.7383 5.8882 34.6718 

KNN 0.8549 4.3846 19.2255 0.7893 5.2839 27.9197 

VR 0.8575 4.3447 18.8766 0.8159 4.9384 24.3883 

SR 0.8942 3.7430 14.0101 0.8889 3.8353 14.7100 

 IQR MD 

 R2  RMSE MSE R2  RMSE MSE 

RF 0.8992 3.0947 9.5776 0.9822 1.5602 2.4343 

ET 0.9162 2.8218 7.9629 1.0 9.4325 8.8972 

LR 0.7259 5.1046 26.0579 0.5233 8.0913 65.4694 

SVR 0.0748 9.3789 87.9644 0.0788 11.2477 126.5129 

DT 0.7672 4.7047 22.1351 1.0 1.5509 2.4052 

KNN 0.8191 4.1473 17.2002 0.8723 4.1864 17.5262 

VR 0.8511 3.7624 14.1559 0.8836 3.9972 15.9782 

SR 0.9194 2.7669 7.6562 0.9974 0.5906 0.3488 

 

Table 5 shows that ML models and ensemble 

methods achieve the highest performance values in CO 

emission prediction when outliers in the dataset are 

processed using the MD method. Similarly, examining 

the CO predictions in Figure 9, it is observed that the 

points are concentrated around the y = x line, but there 

is a more pronounced scatter and deviations. Although 

the CO predictions are more modest, there is a high 

probability that the model may have overfitted. 

Therefore, when Table 5 is further analyzed using other 

methods, it is seen that the model created with SR 

reaches the highest coefficient of determination (R² = 

0.8556) and the lowest error values (RMSE = 0.4619, 

MSE = 0.2133) in the dataset processed for outliers 

using the IQR method. The scatter plot in Figure 10 also 

supports these results obtained by SR with the IQR 

method. In addition, the Hydrographs given for each 

model in Figure 12 reveal the high success of the IQR 

method and the model built with SR in predicting CO 

emissions in GT compared to other methods and models. 

Also, similar to the results for NOx emission prediction, 

the CO prediction performance of the models trained on 

raw data is lower than the models trained on the dataset 

generated by the IQR method, but higher than the 

scenario using the Z-score method. Figure 8 displays the 

R² scores of regression models for CO emission 

prediction, offering a concise comparison of their 

performance across various outlier treatment methods. 

 

 
Table 5. CO emission prediction performance of regression models with outliers’ treatment methods 

 Raw Z-Score 

 R2  RMSE MSE R2  RMSE MSE 

RF 0.7649 1.1306 1.2783 0.7509 1.1637 1.3543 

ET 0.7990 1.0453 1.0926 0.7682 1.1225 1.2602 

LR 0.5566 1.5526 2.4107 0.5511 1.5621 2.4404 

SVR 0.6755 1.3282 1.7641 0.4405 1.7441 3.0419 

DT 0.5081 1.6354 2.6747 0.4055 1.7978 3.2321 

KNN 0.7630 1.1350 1.2883 0.6626 1.3543 1.8343 

VR 0.7631 1.1349 1.2880 0.6220 1.4335 2.0550 

SR 0.8026 1.0359 1.0731 0.6705 1.3384 1.7914 

 IQR MD 

 R2  RMSE MSE R2  RMSE MSE 

RF 0.8426 0.4822 0.2325 0.9682 0.4002 0.1602 

ET 0.8542 0.4640 0.2153 1.0 4.4572 1.9867 

LR 0.6150 0.7542 0.5689 0.5651 1.4803 2.1915 

SVR 0.5491 0.8163 0.6664 0.4658 1.6408 2.6922 

DT 0.6658 0.7027 0.4939 1.0 3.1728 1.0066 

KNN 0.7752 0.5764 0.3322 0.7983 1.0080 1.0162 

VR 0.8060 0.5353 0.2866 0.9286 0.5998 0.3597 

SR 0.8556 0.4619 0.2133 0.9974 0.1122 0.0126 
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Figure 7. Comparison of R² scores for NOx emission prediction models with different outlier treatment methods 

 

 

Figure 8. Comparison of R² scores for CO emission prediction models with different outlier treatment methods 
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Figure 9. Scatter plots generated on the MD method for the SR prediction model 

 

 

Figure 10. Scatter plots generated on the IQR method for the SR prediction model 
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Figure 11. Hydrographs for all designed ML models for NOx in the IQR-processed dataset 

 

 

Figure 12. Hydrographs for all designed ML models for CO in the IQR-processed dataset 
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Figure 13 shows the results of the sensitivity analysis 

for CO and NOx emissions. The graph reflects the 

impact of each feature on the predictive performance of 

the model. Blue bars represent CO sensitivity and red 

bars represent NOx sensitivity. The sensitivity analysis 

for each feature is performed as follows: 

 

1. Baseline score: First, the error of the model's 

predictions (MSE) with the available features 

is calculated (Equation 16). 

2. Perturbed scores: For each feature, the error of 

the model's predictions is recalculated by 

randomly permuting the values of this feature. 

This process is repeated 10 times and the MSE 

values obtained each time are recorded 

(Equation 17). Here �̂�𝑗
(𝑚)

, denotes the values 

predicted by the model after the 𝑚-th 

permutation and m represents the number of 

permutations (10). 

 

 

Perturbed_Score(𝑚)

=  
1

𝑛
∑(𝑦𝑖

𝑛

𝑗=1

−  �̂�𝑗
(𝑚))

2
 

(17) 

 

3. Sensitivity value: The sensitivity value for each 

feature is calculated by subtracting the average 

error from the permuted scores from the 

baseline score (Equation 18). 

 

 

Sensitivity(𝑖)

=  (
1

10
∑ Perturbed_Score(𝑚)

10

𝑚=1

)

−  Baseline_Score 

(18) 

 

When examining Figure 13, it is found that AT has a 

significant impact on CO emissions, with a sensitivity 

value of 0.6234. It also shows a notable effect on NOx 

emissions (2.5019). Higher temperatures generally 

enhance combustion, promoting NOx formation while 

potentially reducing CO emissions. AP has a low-level 

effect on CO and a moderate impact on NOx emissions. 

The impact of AP on CO is measured at 0.0587, while 

its impact on NOx is 0.7457. TIT has the highest impact 

on CO emissions, with a sensitivity value of 10.0492. Its 

effect on NOx is negative, with a sensitivity value of -

0.6029. The high sensitivity of TIT on CO emissions 

indicates that TIT plays a critical role in combustion 

efficiency and, consequently, CO formation. The 

negative effect on NOx emissions may indicate that high 

inlet temperatures can reduce NOx formation. TAT has 

a significant impact on CO emissions, with a sensitivity 

value of 6.819. Its effect on NOx is quite low and 

positive, measured at 0.0694. The high impact of TAT 

on CO emissions suggests that the turbine outlet 

temperature can affect the composition of post-

combustion gases. Overall, it is understood that TIT and 

TAT parameters are particularly critical in predicting 

CO emissions, while AT has significant effects on NOx 

emissions. 

 

 

Figure 13. Parameter sensitivity analysis results for CO and 

NOx emissions 

The error deviation graphs presented in Figure 14 

show the differences between the predicted and actual 

CO and NOx emission rates. Table 6 provides the 

minimum and maximum error values obtained for each 

predictive ML model created. For the SR model trained 

on the dataset processed with the IQR method for outlier 

treatment, the minimum and maximum error values for 

NOx are -21.5874 and 24.5953, respectively, while for 

CO they are -2.6273 and 3.5575, respectively. 

Compared to other models, it can be concluded that the 

SR model has the lowest error deviation. This indicates 

that the SR model is more successful in predicting CO 

and NOx emissions and that these predictions are closer 

to the actual values. 

 
Table 6. Error deviation for all designed predictive models in the IQR-processed dataset 

Error deviation RF ET LR SVR DT KNN VR SR 

NOx 

Min deviation -27.1536 -21.9554 -27.3576 -21.9011 -34.0320 -25.9326 -18.3893 -21.5874 

Max deviation 30.1443 24.4523 33.1878 28.0568 37.6850 31.1432 26.4236 24.5953 

CO 

Min deviation -2.7295 -2.6710 -3.3075 -2.8513 -4.7361 -2.9963 -2.9103 -2.6273 

Max deviation 3.7549 3.6115 4.0626 3.8812 4.6908 3.5781 3.4712 3.5575 
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Figure 14. Error deviation comparison of all predictive 

models for NOx and CO in the IQR-processed dataset 

4. Discussion 

This study aims to develop predictive models for 

predicting CO and NOx emissions from GT using 

various ML algorithms and compare their performance 

with VR and SR methods. A comprehensive evaluation 

of these models is conducted to provide insights into 

their practical applicability in industrial settings. The 

findings show the importance of hyperparameter tuning 

and outlier processing in improving the prediction 

accuracy of these models. 

Tree-based methods using a combination of models 

provided better performance compared to other 

regression models for both CO and NOx predictions. SR 

achieved the highest determination coefficient values 

when outliers in the dataset were treated using the MD 

method. However, despite the high R² values, high 

RMSE values indicate the possibility of overfitting, 

mainly in NOx predictions. While the MD method 

effectively detects outliers, it can lead to overfitting if 

the dataset does not follow a normal distribution. 

Overfitting occurs when the model performs well on 

training data but poorly on new data (Karthikeyan et al. 

2023). Furthermore, the risk of overfitting associated 

with the MD method, as observed in this study, has also 

been noted in prior research. For instance, Ghorbani 

(2019) highlighted that the MD method, while effective 

for multivariate outlier detection, can be overly sensitive 

to data distribution and may lead to overfitting in small 

or homogeneous datasets. This corroborates our 

findings, where the MD method achieved high R² values 

but showed poor generalization in real-world scenarios.  

In contrast, the IQR method's robustness and 

consistency make it a more suitable choice for practical 

applications in emission monitoring and control. In 

addition, the MD method considers the distance of each 

data point in the data set to other data points in multiple 

dimensions (Leys et al. 2018). This method can identify 

extreme data points as outliers and remove them from 

the model or cause the model to overfit these points. 

Another disadvantage of the MD method is that it is very 

sensitive to the distribution of the dataset (Todeschini et 

al. 2013). If there is heterogeneity or too much noise in 

the dataset, this method may detect false positive 

outliers. In this case, the model may focus on false 

positive outliers instead of true outliers, which weakens 

the generalization ability of the model. Furthermore, if 

there is too much variance in the dataset, the MD method 

may misinterpret this variance and flag some data points 

as outliers (Wu et al. 1997). This can cause the model to 

be trained on an incorrect subset of data and lead to 

overfitting. 

On the other hand, the IQR method for outlier 

treatment produced more robust models with lower error 

rates. The SR model trained on the IQR-processed 

dataset achieved the highest determination coefficient 

(R² = 0.9194) and the lowest RMSE and MSE values for 

NOx predictions. The scatter plots in Figure 10 confirm 

the model's performance close to the true values, 

indicating a low risk of overfitting. This aligns with 

previous research by Yaro et al. (2023), who 

demonstrated that the IQR method is highly effective in 

reducing the impact of outliers in datasets with non-

normal distributions, leading to more robust and 

generalizable models. Similarly, Mishra et al. (2019) 

emphasized that the IQR method outperforms Z-Score 

and MD in scenarios where data variability is high, as it 

is less sensitive to outlier values and provides a balanced 

approach to outlier detection. These studies collectively 

support the conclusion that the IQR method is a reliable 

choice for emission prediction tasks, especially in 

datasets with complex operational variability, such as 

those from gas turbines. 

Similar patterns were observed for CO predictions. 

Although the MD method initially seemed to give the 

best results, further analysis revealed significant spread 

and biases, indicating the possibility of overfitting. The 

SR model trained on the IQR processed dataset 

outperformed the other models, again achieving the 

highest R² (0.8556) and the lowest RMSE and MSE 

values. This observation supports that the IQR method 

offers a balanced approach to dealing with outliers and 

ensures the robustness and accuracy of the model. 

The worse performance of models trained on raw 

data compared to models trained on the processed 

dataset emphasizes the necessity of outlier handling 

methods in improving the reliability of emission 

prediction models. This finding is in line with previous 

research (Osborne and Overbay, 2019), which indicates 

that untreated outliers can significantly skew model 

training and prediction results. However, in the dataset 

where outliers were treated with the Z-score method, the 

performance of the models decreased compared to the 

raw dataset. The Z-score method is a common method 

for detecting and treating outliers, but it is based on the 

assumption of a normal distribution. If the dataset is not 

normally distributed or is multidimensional, this method 

may detect false positive outliers and over-smooth the 
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variance in the dataset (Mare et al. 2017). This reduces 

the model's ability to capture true patterns and leads to 

performance degradation. The degradation of the 

performance of the models in the dataset processed with 

the Z-score method compared to the raw dataset 

indicates that this method is not always appropriate and 

should be applied carefully according to the 

characteristics of the dataset. 

In the study, sensitivity analysis was performed to 

improve the performance of emission prediction models 

and to identify the parameters that have the most impact 

on emissions. The findings show that turbine inlet and 

outlet temperatures (TIT and TAT) have a significant 

effect on CO emissions. TIT has the highest impact on 

CO emissions, indicating that TIT plays a critical role on 

combustion efficiency and hence CO formation. The 

negative effect on NOx emissions indicates that higher 

inlet temperatures can reduce NOx formation. Similarly, 

AT has a significant effect on NOx emissions, but less 

on CO emissions. This finding suggests that higher 

temperatures can reduce CO emissions while promoting 

NOx formation. 

In Table 7, the results obtained by using the SR 

model proposed in this study and the dataset processed 

with the IQR method are compared with other studies in 

literature. The table shows that the model proposed in 

this study outperforms other studies in the literature in 

the prediction of NOx and CO emissions. The RMSE 

value of the proposed model in NOx prediction is 2.76 

and the RMSE value in CO prediction is 0.46. These 

error values are significantly lower than the results of 

other models in the literature. In addition, higher R² 

values were obtained in both NOx and CO emissions 

prediction compared to other models in the literature. 

Possible reasons for this high performance include the 

effective treatment of outliers with the IQR method, 

which reduces the noise in the dataset. The IQR method 

provides a robust approach to handling non-normally 

distributed data by eliminating extreme values without 

over-penalizing potential influential data points. 

Moreover, the structure of the SR model and 

hyperparameter optimization are other factors that 

positively affect the prediction performance. Although 

the MD method initially appeared to provide 

competitive results in terms of R² values, its over-

performance can be attributed to its sensitivity to 

multivariate relationships and its assumption of normal 

data distribution. However, this sensitivity may lead to 

overfitting, as the MD method can classify influential 

but valid data points as outliers, thereby reducing model 

generalization. This explains why, despite high R² 

values, the RMSE values remained relatively high, 

indicating possible model overfitting and reduced 

performance on new data. 

 

 
Table 7. Comparison of NOx and CO emission prediction models from the literature with the proposed SR 

Model and Reference NOx CO 

RMSE MSE R² RMSE MSE R² 

ANN with feature normalization (Nino-Adan et al. 2021) 7.06 - 0.57 - - 0.43 

Symbolic regression (Kochueva and Nikolskii, 2021) - - 0.83 - - 0.89 

KNN (Rezazadeh, 2021) - - 0.89 - - - 

DFR (Coelho et al. 2024) 5.54 30.69 - 1.35 1.84 - 

KNN (Wood, 2023) 5.12 - - - - - 

ANFIS (Dirik, 2022) 4.98 24.8 - - - - 

SR (Pachauri, 2024) 3.83 14.70 0.87 0.61 0.37 0.77 

This study (SR with IQR Treatment) 2.76 7.65 0.92 0.46 0.21 0.85 

 

5. Conclusion 

This study aims to evaluate the performance of 

various ML algorithms for predicting CO and NOx 

emissions from GT. The algorithms used in the study 

include RF, ET, LR, SVR, DT, KNN, as well as VR and 

SR methods. In the ensemble methods, GB, LightGBM 

and CatBoost algorithms were used as base learners and 

XGBoost was determined as the meta-learner. 

The study examined the effects of processing the 

outliers in the dataset with various methods (Z-Score, 

IQR, MD) on model performance. The findings show 

that the MD method provides high performance of the 

models, especially in NOx emission prediction, but it 

also brings the risk of overfitting. Although the SR 

model provides high R² and low error values in NOx 

predictions, scatter plots and hydrographs reveal that the 

data processed with the MD method do not show a 

distribution suitable for real world data. Due to the 

sensitivity of the MD method to outlier values, some 

models tend to overfit, indicating that caution should be 

exercised in the use of this method. 

The treatment of outliers with the IQR method 

provided more balanced and generalizable results in CO 

and NOx emission predictions. In the dataset processed 

with the IQR method, the SR model achieved R² values 

of 0.9194 in NOx emission predictions and 0.8556 in 

CO emission predictions and showed low error rates in 

other metrics. Scatter plots and hydrographs also 

showed a consistent distribution. These results show that 

the IQR method is an effective approach to deal with 

outliers and has an impact on improving the 

performance of ML models. In the dataset processed 

with the Z-Score method, the performance of the models 

was lower compared to the models trained with raw data. 

This finding suggests that the Z-Score method may be 

less effective in identifying and processing outliers, 
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especially in this dataset, and that each outlier 

processing method may yield different results 

depending on the characteristics of the dataset and the 

problem definition. 

The results show that the methods used to handle 

outliers have a significant impact on the performance of 

ML models and that the right choice of method can 

improve model accuracy and generalizability. While the 

IQR method gives balanced results in predicting CO and 

NOx emissions, the MD method can provide high 

performance in some cases, although it increases the risk 

of overfitting. ML algorithms and outlier treatment 

methods need to be carefully selected for gas turbine 

emission prediction. 

The sensitivity analysis highlighted the significant 

impact of TIT, TAT, and AT on CO and NOx emissions 

in the prediction models. In particular, the high impact 

of TIT on CO emissions shows how important a role TIT 

plays on combustion efficiency and CO formation. This 

highlights the need for careful control of TIT to optimize 

combustion processes and reduce CO emissions. 

Furthermore, the negative effect of TIT on NOx 

emissions indicates that high inlet temperatures can 

reduce NOx formation. This finding suggests that high 

temperature processes in power generation have the 

potential to control NOx emissions. The significant 

effect of AT on NOx emissions suggests that 

environmental temperature conditions should also be 

considered in emission control strategies. 

Based on the results, some recommendations can be 

made to improve gas turbine emission predictions and 

develop environmental management strategies in the 

energy sector. First of all, the quality of sensors and data 

collection systems in power plants should be improved 

and data accuracy should be ensured through regular 

calibrations, as accurate detection and processing of 

outliers directly affects model performance. The use of 

integrated model approaches should be encouraged as 

combinations of different ML algorithms can provide 

more balanced and accurate results in emission 

predictions. In addition, it is understood that temperature 

parameters are critical for improving the accuracy of 

emission prediction models and obtaining reliable 

predictions. To improve emissions management in the 

power sector, turbine and environmental temperatures 

need to be optimized. These approaches will enable 

more effective implementation of emission reduction 

strategies and contribute to reducing environmental 

impacts. To increase the generalizability of the results, 

future studies should test these methods on different 

datasets or systems, ensuring their applicability across 

various operational contexts and conditions. 

The findings of this study hold significant potential 

to support sustainable energy policies and 

environmental management practices. For instance, the 

high accuracy of the SR model can help Turkish 

industries comply with stringent emission regulations, 

such as the EU Industrial Emissions Directive, while 

aligning with global climate goals like the Paris 

Agreement. By enabling precise real-time emission 

monitoring, these models can empower policymakers to 

design data-driven regulations and incentivize the 

adoption of low-emission technologies. Furthermore, 

optimizing TIT based on sensitivity analysis insights 

could reduce CO emissions by up to 10–15% in practical 

scenarios, contributing to cleaner air and improved 

public health in countries. Integrating ML-driven outlier 

detection and ensemble methods into existing emission 

control systems can also reduce operational costs by 

minimizing fuel waste and avoiding non-compliance 

penalties. These advancements not only enhance the 

sustainability of gas turbine operations but also position 

the countries’ energy sector to meet evolving 

environmental standards while maintaining energy 

security and supporting its transition to a greener 

economy. 
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