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Abstract. In the present paper we deal with an n−dimensional differentiable
manifold M with a torsion-free linear connection ∇. Here we study some

properties of a silver structure on the cotangent bundle T ∗M equipped with

the Riemannian extension R∇ and obtain a necessary condition for which the
silver semi-Riemannian manifold

(
T ∗M,R∇, S

)
to be locally decomposable.

1. Introduction

The notion of metallic structure on Riemannian manifolds has been studied
intesively recently. One of the most studied structure on Riemannian manifolds
is silver structure. As a mathematical point of view, the positive solution of the
equation

x2 − px− q = 0,

for some positive integers p and q is called a (p, q)− structure number which has
the form

µp,q =
p+

√
p2 + 4q

2
.

In particular case p = 2 and q = 1, we note that the last equality gives a silver
ratio. In the recent years, the silver sturucture on the differentiable manifolds has
been studied intensively in [4, 8, 9].

On the other hand, the cotangent bundle is the dual space of tangent bundle for
a differentiable manifold which is very popular topic in Differential Geometry and
Mathematical Physics. There are many different types of metrics on the cotangent
bundle to study the geometric of such a bundle, for instance, Sasaki metric, Cheeger-
Gromoll metric, general natural metrics, Oproius metrics, and etc. One of the
most interesting metric is the Riemann extension which is defined by Patterson
and Walker in [10]. Then, the notion of Riemann extension has been extensively
studied by several authors on different smooth manifolds, for more [2, 3, 5-7, 12,
16].

In the present paper, we study some properties of a silver structure on the
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cotangent bundle equipped with the Riemannian extension. In Sect. 2, we recall
some preliminaries on the details concerning the cotangent bundle. In Sect. 3,
considering a silver structure on the cotangent bundle T ∗M , we give some necessary
conditions for which the triple

(
T ∗M,R∇, S

)
is a locally decomposable silver semi-

Riemannian manifold.

2. Preliminaries

In this section, we recall some basic notations about the cotangent bundle of
[16].

Let (M, g) be a n−dimensional differentiable manifold whose cotangent bundle
is denoted by T ∗M . The bundle projection is given as π : T ∗M → M and the
local coordinates

(
U, xj

)
, j = 1, ..., n on M induces a system of local coordinates(

π−1 (U) , xj , xj̄ = pj

)
, j̄ = n+ j = n+ 1, ..., 2n on T ∗M , where xj̄ = pj are the

components of the covector p in each cotangent space T ∗xM,x ∈ U with respect to
the natural coframe

{
dxj
}
.

Also, the set (r, s)−type of all tensor fields is denoted by =r
s (M) and =r

s (T ∗M)
on M and T ∗M , respectively. Suppose that the vector and a covector (1-form) field
X ∈ =1

0 (M) and ω ∈ =0
1 (M) have the local expression X = Xj ∂

∂xj and ω = ωjdx
j

in U ⊂ M , respectively. Then, the horizontal lift HX ∈ =1
0 (T ∗M) of X ∈ =1

0 (M)
and the vertical lift V ω ∈ =1

0 (T ∗M) of ω ∈ =0
1 (M) are given, respectively, by

HX = Xj ∂
∂xj +

∑
j

phΓh
jiX

i ∂
∂xj̄ ,

V ω =
∑
j

ωj
∂

∂xj̄

(2.1)

with respect to the natural frame
{

∂
∂xj ,

∂
∂xj̄

}
, where Γh

ji are the components of the

Levi-Civita connection ∇g on M .
Moreover, on the cotangent bundle T ∗M , the Lie bracket satisfies the following

relations:

i)
[
HX,HY

]
= H [X,Y ] + γR (X,Y ) = H [X,Y ] + V (pR (X,Y )) ,

ii)
[
HX, V ω

]
= V (∇Xω) , iii)

[
V ω, V θ

]
= 0,

iv) V ωV f = 0, v)HXV f = V (Xf)
(2.2)

for any X,Y ∈ =1
0 (M), ω, θ ∈ =0

1 (M), R denoted the curvature tensor of ∇.
On the other hand, the Riemann extension R∇ as a semi-Riemannian metric is

defined by
R∇

(
V ω, V θ

)
=R∇

(
HX,HY

)
= 0,

R∇
(
V ω,HY

)
=V (ω (X)) = ω (X) ◦ π(2.3)

for any X,Y ∈ =1
0 (M) and ω, θ ∈ =0

1 (M) on T ∗M [2, 16].

3. Silver Structure

Let P ∈ =1
1 (M) be an almost product structure on M and g be a (semi-)

Riemannian metric such as

P 2 = I, g (PX, Y ) = g(X,PY )(3.1)

for anyX,Y ∈ =1
0 (M). Then, we call that the pair (M, g, P ) is a (semi-)Riemannian

almost product manifold [1, 11, 17]. Such metrics in the second equation of (3.1)
are said to be pure with respect to P [12, 14].
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A necessary and sufficient condition for the almost product structure P to be
integrable is that ∇P = 0, where ∇ is Levi-Civita connection of g. An almost
product manifold with an integrable product structure P is called locally product
Riemannian manifold. We know that the locally product Riemannian manifold with
structure tensor P is locally decomposable if and only if P is covariantly constant
with respect to the Levi–Civita connection ∇. Note that the condition ∇P = 0 is
equivalent to φP g = 0 where φ is the Tachibana operator and

(φP g) (X,Y, Z) = (PX) (g (Y,Z))−X (g (PY,Z)) + g ((LY P )X,Z)
+g (Y, (LZP )X)

(3.2)

for all X,Y, Z ∈ =1
0 (M) [12, 15].

Definition 3.1. (see [8]) Let M be a C∞ differentiable manifold. A (1, 1)-type
tensor field S on M is called a silver structure on M if

S2 = 2S + I(3.3)

is satisfied, where I is the identity map on M .

A Riemnnian manifold (M, g) with a silver structure S is said to be Silver Rie-
mannian manifold if the Riemannian metric g is pure with respect to S.

The next theorem gives the relationship between the Riemannian silver and al-
most product structures as follows:

Theorem 3.2. (see[8]) Let M be a Riemannian manifold. If S is a silver structure
on M , then

P =
1√
2

(S − I)

is an almost product structure on M . Conversely, any almost product structure P
on M yields a silver structure on M as follows:

S = I +
√

2P.

Theorem 3.3. (see [4]). Let (M, g, S) be a silver Riemannian manifold, where
S is the silver structure and g is the Riemannian metric. Then the followings are
satisified:
a ) S is integrable if φSg = 0,
b ) The condition φSg = 0 is equivalent to ∇S = 0, where ∇ is the Riemannian
connection of g,
where φS denotes the Tacibana operator and ∇ is the Riemannian connection of g.

In [13], Salimov and Agca presented an almost product structure on T ∗M by

PHX = V X̃,
PV ω = H ω̃.

(3.4)

for any X ∈ =1
0 (M) and ω ∈ =0

1 (M), where X̃ = g ◦X ∈ =0
1 (M), ω̃ = g−1 ◦ ω ∈

=1
0 (M) and P 2 = I. Applying Theorem 3.2 and (3.4), we find the following silver

structure S:

SHX = HX +
√

2V X̃,

SV ω = V ω +
√

2H ω̃.
(3.5)

This silver structure defined by (3.5) is used for Sasaki metric on T ∗M in [4].
Now we consider the Riemannian extension R∇ and the silver structure S on
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the cotangent bundle T ∗M . Then, using the Eqs. (3.1) and (3.5), we have the
following theorem:

Theorem 3.4. Let M be semi-Riemannian manifold and T ∗M be a cotangent
bundle of M . If T ∗M is endowed with a Riemann extension R∇ and silver structure
S, then the triple

(
T ∗M,R∇, S

)
is a silver semi-Riemannian manifold.

Proof. Using (3.1), we write

Q
(
X̃, Ỹ

)
=R∇

(
SX̃, Ỹ

)
−R∇

(
X̃, SỸ

)
for any X̃, Ỹ ∈ =1

0 (T ∗M). From (2.1), (2.3) and (3.5), we have

Q
(
HX,HY

)
=R∇

(
SHX,HY

)
−R∇

(
HX,SHY

)
=R∇

(
HX +

√
2V X̃,HY

)
−R∇

(
HX,HY +

√
2V Ỹ

)
=
(
V
(
X̃ (Y )

)
−
(
Ỹ (X)

))
=
√

2
(
X̃iY

i − ỸiXi
)

=
√

2
(
gkiX

kY i − gkiY kXi
)

= 0,
Q
(
HX, V ω

)
= −Q

(
HY, V ω

)
=R∇

(
SHX, V ω

)
−R∇

(
HX,SV ω

)
=R∇

(
HX +

√
2V X̃, V ω

)
−R∇

(
HX, V ω +

√
2H ω̃

)
= V (ω (X)− ω (X)) = 0 ,

Q
(
V ω, V θ

)
=R∇

(
SV ω, V θ

)
−R∇

(
V ω, SV θ

)
=R∇

(
V ω +

√
2H ω̃, V θ

)
−R∇

(
V ω, V θ +

√
2H θ̃

)
=
√

2V
(
θ (ω̃)− ω

(
θ̃
))

= 0 ,

i.e. R∇ is pure with respect to S, which completes the proof. �

Using the Eqs.(2.2), (2.3), (3.2) and (3.5), we obtain the following:

Lemma 3.5. Let
(
T ∗M,R∇, S

)
be a silver semi-Riemannian manifold. Then, the

following component for the Tachibana operator with respect to the silver structure
S defined by (3.5) is given by(

φS
R∇
) (

HX,HY, V ω
)

=
(
SHX

) (
R∇

(
HY, V ω

))
− HX

(
R∇

(
SHY, V ω

))
+R∇

(
(LHY S) HX, V ω

)
+ R∇

(
HY, (LV ωS) HX

)
= −

(
R∇

(
V ω,
√

2H
(
g−1 ◦ pR (Y,X)

)))
= −
√

2V
(
ω
(
g−1 ◦ pR (Y,X)

))
= −
√

2V
(
g−1 (pR (Y,X) , ω)

)
=
√

2V (pR (X,Y ) ω̃) ,(
φF

R∇
) (

V ω,HY,HZ
)

=
√

2
(
V (pR (Y, ω̃)Z + pR (Z, ω̃)Y )

)
,(

φF
R∇
) (

HX, V ω,HY
)

=
√

2
V

(pR (X,Y ) ω̃)

Here, we note that the other components are zero.

Using above Lemma 3.5, we have the following:

Theorem 3.6. The silver semi-Riemannian manifold
(
T ∗M,R∇, S

)
is a locally

decomposable if and only if M is flat.

Example 3.7. Consider the n-dimensional Euclidean space En with the Riemann-
ian metric gij = δij . It is clear that the Christoffel symbols induced by the Levi-
Civita connection ∇ on En are zero.

Let P be an almost product structure on T ∗En is given by

P =

(
In 0
0 In

)
,
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such that P 2 = In, where In denotes the identity matrix of order n. Using Theorem
3.2, the almost product structure P on T ∗En gives

SHX = HX +
√

2HX,

SV ω = V ω +
√

2V ω,
(3.6)

such that the equalities (3.6) are silver structure. Then, one can see that R∇ is pure
with respect to S and the triple

(
T ∗En,R∇, S

)
becomes a silver semi-Riemannian

manifold.
On the other hand, using the Eq.(3.2) and the Tachibana operator with respect

to the silver structure defined by (3.6), one has(
φS

R∇
)

(X,Y, Z) = 0

for any X,Y, Z ∈ =1
0 (M). Then, we obtain that the silver semi-Riemannian mani-

fold
(
T ∗En,R∇, S

)
is a locally decomposable.

4. Conclusion

In this study, a semi-Riemannian manifold M and its cotangent bundle T ∗M is
considered. Then, by considering the Riemann extension R∇ and silver structure
S on T ∗M , the components of Tachibana operators are calculated and using them,
this characterization is obtained: M is flat if and only if the silver semi-Riemannian
manifold

(
T ∗M,R∇, S

)
is a locally decomposable.
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[3] C. L. Bejan, Ş. Eken, A Characterization Of The Riemann Extension In Terms Of Harmonicity,

Czech. Math. J., Vol.67, No.1, pp.197-206 (2017).
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