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Abstract 

This paper focuses on Natural transform and the Runge-Kutta numerical method. These techniques have been used to 

analyze blood glucose concentrations and electrical circuits. These examples have been selected to demonstrate the 

applicability of Natural transform in many different areas. It was aimed to solve electrical circuits, which are generally 

solved by Laplace transform in engineering literature, with Natural transform and to obtain a comparative solution with 

Runge-Kutta method, which is a numerical method. These engineering problems defined with differential equations were 

analyzed using Natural transform. Firstly, the differential equations were written using the Natural transform, then the 

new equations were solved and applying the inverse transform, the results of the equations were obtained. The fourth-

order Runge-Kutta numerical method was the second method employed in this study. The results found with this methods 

were presented in tables and compared graphically. The results applying Natural transform and Runge–Kutta method are 

equivalent to exact solution. 
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Öz 

Bu çalışma, Naturel dönüşüm ve Runge-Kutta sayısal yöntemi üzerine odaklanmaktadır. Bu teknikler kan şekeri 

konsantrasyonlarının analizinde ve devre analizlerinde kullanılmıştır. Örnekler, Naturel dönüşümün birçok farklı alanda 

uygulanabilirliğini göstermek için seçilmiştir. Mühendislik literatüründe genellikle Laplace dönüşümü ile çözülen elektrik 

devrelerinin Naturel dönüşüm ile çözülmesi ve sayısal bir yöntem olan Runge-Kutta yöntemi ile karşılaştırmalı bir çözüm 

elde edilmesi amaçlanmıştır. Diferansiyel denklemlerle tanımlanmış bu mühendislik problemleri Natural dönüşümü ile 

analiz edilmiştir. İlk olarak diferansiyel denklemler Naturel dönüşüm kullanılarak yazılmış, daha sonra yeni denklemler 

çözülmüş ve ters dönüşüm uygulanarak denklemlerin sonuçları elde edilmiştir. Bu çalışmada kullanılan ikinci yöntem, 

dördüncü dereceden Runge-Kutta sayısal yöntemidir. Bu metotlarla elde edilen sonuçlar tablolar halinde sunulmuş ve 
grafiksel olarak karşılaştırılmıştır. Naturel dönüşüm ve Runge-Kutta yöntemi uygulanarak elde edilen sonuçların tam 

çözüme eşdeğer olduğu görülmüştür. 
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1. Introduction 

 
Integral transforms are essential mathematical techniques that are frequently used to solve differential 

equations and analyze complicated systems in many scientific and technical fields. They are essential in 

applications including signal processing, control theory, fluid dynamics, and quantum physics because of their 
capacity to translate differential equations into algebraic equations (Debnath & Bhatta, 2016). Numerous 

integral transforms, each designed to handle a particular difficulty, have been introduced as a result of the 

physical science and engineering models' rapid evolution throughout time. These transforms are derived from 

the different kernel functions in the fundamental integral transform. Fourier and Laplace transforms, which are 
the oldest and most popular transforms, have been frequently used in many problems before. In recent years, 

studies in this field have been continuing rapidly. In addition to these, many other transforms have been 

obtained and used: Sumudu, Natural, Anuj, Sawi, Shehu etc. (Gardner & Barnes, 1942; Bateman, et al., 1954; 
Lado, 1971; Watugala, 1998; Khan & Khan, 2008; Doetsch, 2013; Mahgoub & Mohand, 2019; Maitama & 

Zhao, 2019; Kumar et al., 2021). Additionally, generalized forms of these transforms have been extensively 

studied in the literature. For instance, Natural transform is the particular case of Upadhyaya transform 

(Upadhyaya, 2019; Upadhyaya et al., 2021). 
 

Among the extensive suite of integral transforms, Natural transform has garnered significant attention due to 

their properties and wide-ranging applications. This transform not only simplify mathematical problems but 
also preserve essential characteristics such as scale and units, making them useful in practical applications. 

This transform has broad applications in fields such as signal processing, control theory, and financial 

mathematics, exemplifying their versatility and effectiveness in addressing complex mathematical problems. 
The duality features of the Natural transform with the Laplace and Sumudu transforms, as well as the scale 

change, weight shift, multiple shift, and convolution theorem, are thoroughly examined by Belgacem and 

Silambarasan (Belgacem & Silambarasan, 2012). The Natural transform has also dualities with Khalouta 

integral transforms (Khalouta, 2023).  
 

The Natural transform has been extensively studied in the solution of lineer / nonlinear ordinary differential 

equations (ODEs) and partial differential equations (Al-Omari, 2013; Rawashdeh & Maitama, 2014, 2015, 
2016). It is especially useful in problems involving initial and boundary conditions, and in the realm of 

fractional calculus for solving Fractional differential equations (FDEs). Alkan and Anaç studied numerical 

approximation techniques particularly designed for the studied equations are presented. The objective of this 
study is to use the fractional natural transform decomposition method (FNTDM) to solve the nonlinear time-

fractional Korteweg–De Vries (KdV) equation, the nonlinear time-fractional Klein-Gordon equation, and the 

nonlinear time-fractional Fornberg Whitham equation. By using the recently created hybrid technique, this 

study seeks to provide novel numerical solutions for the aforementioned equations (Alkan & Anaç, 2024). 
Köklü studied that the Natural transform converged to the Laplace and Sumudu transform (Köklü, 2020). In 

2019, Maitama and Zhao studied that the Shehu transform, which converges to the Natural transform, 

converges to Laplace and Sumudu transforms (Maitama & Zhao, 2019). Moreover, Kiliçman and Omran 
generalize the concept of one-dimensional Natural transform to two-dimensional Natural transform namely, 

double Natural transform (Kiliçman & Omran, 2017). The Natural transform, sharing a dual relationship with 

the Laplace transform, facilitates the solution of integral and differential equations by maintaining many of the 

Laplace transform's properties while offering advantages. 
 

Different transform methods have been used in many engineering and applied mathematics studies. Vashi and 

Timol used Sumudu and Laplace transform to solve applications in physics and circuit theory (Vashi & Timol, 
2016).  Jadhav et al solved the RL, RC and LC circuit using Sumudu transform (Jadhav et al., 2022). Peker 

and Çuha used Kashuri Fundo transform for exact solutions of some cardiovascular models (Peker & Çuha, 

2023). Silambarasan and Belgacem presented the Natural transform for Maxwell equations (Silambarasan & 
Belgacem, 2011). Chindhe and Kiwne used Natural transform for Cryptography (Chindhe & Kiwne, 2017). 

Higazy et al determined the number of infected cells and concentration of infected particles in plasma during 

HIV-1 infections using Shehu transform (Higazy et al., 2020).  

 
The second method used in this study is the 4th-order Runge Kutta method, which is a numerical method. It is 

a powerful and versatile tool for solving ODEs. Due to its accuracy and ease of application, it is widely used 

in scientific and engineering applications. It is widely recognized that the foundational work on Runge-Kutta 
methods can be traced back to the contributions of Carl Runge (1895) (Runge, 1895), who extended the Euler 
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method by incorporating multiple derivative evaluations within a single integration step. This extension laid 

the groundwork for more sophisticated numerical integration techniques. Subsequent advancements were 
made by Heun (1900) (Heun, 1900) and Wilhelm Kutta (1901) (Kutta, 1901). Heun's work introduced 

enhancements to the initial Runge method, while Kutta further improved these techniques, particularly with 

his development of the fourth-order Runge-Kutta methods and initial approaches for higher-order methods 
(Butcher, 2008). 

 

Runge–Kutta methods have attracted interest, and a number of researchers have contributed to the development 

of particular approaches as well as more recent developments in the theory. Second-order differential equations 
have many applications as well. The transform of a second-order initial value problem into an equivalent 

system of first-order initial value problems has been comprehensively addressed to ensure thoroughness 

(Iyengar & Jain, 2009). In the realm of second-order differential equations, the contributions of E. J. Nyström 
(Nyström, 1925) were particularly notable. Nyström not only advanced the theory of numerical methods for 

first-order differential equations but also devised specialized techniques for effectively addressing second-

order problems. The pursuit of higher-order methods continued, culminating in the introduction of sixth-order 

numerical techniques by Hušta in the mid-20th century (Hušta 1956, 1957). Hušta's work represented a 
significant leap in the precision and efficiency of numerical integration methods, extending the range of 

applications for Runge-Kutta type methods.  The 4th-order Runge-Kutta method has a local truncation error 

of O (h5) and a global error of O (h4). This makes it highly accurate for most problems, but the step size h must 
be chosen carefully to balance accuracy and computational cost. 

 

Our aim is to evaluate the accuracy and applicability of both numerical and analytical techniques in solving 
ODEs by comparing the Runge-Kutta method and the Natural transform. It is also aimed to show that the 

Runge-Kutta method converges to the exact solution. In this study, for the first-order differential equation, the 

application of blood glucose concentration was chosen, and for the second-order differential equation, 

electrical circuits were selected. The results of the Runge-Kutta method and Natural transform are presented 
in the tables and shown graphically. 

 

2. Methods  

 

The definition and properties of the Natural transform are firstly explained in this section. Then, the 4th-order 

Runge-Kutta method for first and second-order initial value problems is explained. 
 

2.1. Natural transform 

 

Khan and Khan defined the Natural transform (Khan & Khan, 2008). Belgacem and Silambarasan defined 
inverse Natural transform and studied some properties (Silambarasan & Belgacem, 2011; Belgacem & 

Silambarasan, 2012). The Natural transform, on the other hand, shares a dual relationship with the Laplace 

transform, which enhances its utility in solving integral and differential equations.  
 

On the set of definitions, Natural transform was defined (Khan & Khan, 2008; Belgacem & Silambarasan, 

2012): 
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The Natural transform retains many properties of the Laplace transform while offering unique advantages, 

such as its straightforward application to problems involving initial conditions and boundary value problems. 

This transform is particularly useful in fractional calculus, where it aids in the resolution of fractional 
differential equations by transforming them into algebraic equations, thus simplifying their analysis and 

solution (Debnath, & Bhatta, 2016). 

 
The most commonly used transformations of Natural transform are given in Table 1 and some of their 

properties are given in Table 2. 
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Table 1. Special Natural transforms (Belgacem & Silambarasan, 2012)  

 

𝒇(𝒕) 𝑵[𝒇(𝒕)] 𝒇(𝒕) 𝑵[𝒇(𝒕)] 

1 
1

𝑠
 

sin 𝑎𝑡

𝑎
 

𝑢

𝑠2 + 𝑎2𝑢2
 

𝑡 
𝑢

𝑠2
 cos 𝑎𝑡 

𝑠

𝑠2 + 𝑎2𝑢2
 

𝑡𝑛−1

(𝑛 − 1)!
, 𝑛 = 1,2, … 

𝑢𝑛−1

𝑠𝑛
 

𝑒𝑏𝑡𝑠𝑖𝑛 𝑎𝑡

𝑎
 

𝑢

(𝑠 − 𝑏𝑢)2 + 𝑎2𝑢2
 

𝑒𝑎𝑡 
1

(𝑠 − 𝑎𝑢)
 𝑒𝑏𝑡 cos 𝑎𝑡 

𝑠 − 𝑏𝑢

(𝑠 − 𝑏𝑢)2 + 𝑎2𝑢2
 

 

 

Table 2. Properties of Natural transform (Khan & Khan, 2008; Belgacem & Silambarasan, 2012)  

 

Comment                         Formula of Natural transform 

Duality with Laplace transform 𝑅(𝑠, 𝑢) =
1

𝑢
𝐹(

𝑠

𝑢
) 

Linearity property 𝑁[𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)] = 𝑎𝑁[𝑓(𝑡)] + 𝑏𝑁[𝑔(𝑡)] 

Function derivatives 

𝑁[𝑓′(𝑡)] =
𝑠

𝑢
𝑅(𝑠, 𝑢) −

𝑓(0)

𝑢
 

𝑁[𝑓′′(𝑡)] =
𝑠2

𝑢2
𝑅(𝑠, 𝑢) −

𝑠

𝑢2
𝑓(0) −

𝑓′(0)

𝑢
 

𝑁[𝑓𝑛(𝑡)] =
𝑠𝑛

𝑢𝑛
𝑅(𝑠, 𝑢) − ∑

𝑠𝑛−(𝑘+1)

𝑢𝑛−𝑘
𝑓𝑘 (0)

𝑛−1

𝑘=0

 

First scale preserving theorem 𝑁[𝑓(𝑎𝑡)] =
1

𝑎
𝑅(

𝑠

𝑎
, 𝑢) 

First shifting theorem 𝑁[𝑒𝑎𝑡𝑓(𝑡)] =
𝑠

𝑠 − 𝑎𝑢
𝑅 (

𝑢𝑠

𝑠 − 𝑎𝑢
) 

 

 

2.2. The Runge-Kutta 4th order method  

 

The Runge - Kutta 4th order (RK4) method is a numerical technique for resolving ordinary differential 

equations: 
 

𝑧′ = 𝑔(𝑡, 𝑧),     𝑧(𝑡0) = 𝑧0                                                                                      (2)   

 

The Runge-Kutta 4th order method is based on the following 
 

𝑧𝑖+1 = 𝑧𝑖 +
1

6
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4)ℎ                                                                                                                 (3)   

 

where  knowing  the  value  of  𝑧 = 𝑧𝑖   at  𝑡𝑖, we find the value of 𝑧 = 𝑧𝑖+1 at 𝑡𝑖+1   and  ℎ = 𝑡𝑖+1 − 𝑡𝑖 ,      

𝑙1 =  𝑔(𝑡𝑖 , 𝑧𝑖),  𝑙2 = 𝑔 (𝑡𝑖 +
1

2
ℎ, 𝑧𝑖 +

1

2
 𝑙1ℎ), 𝑙3 = 𝑔 (𝑡𝑖 +

1

2
ℎ, 𝑧𝑖 +

1

2
 𝑙2ℎ),  𝑙4 = 𝑔(𝑡𝑖 + ℎ, 𝑧𝑖 + 𝑙3ℎ). 

Let the linear second-order initial value problem be given as 
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𝑚0(𝑡)𝑧′′ + 𝑚1(𝑡)𝑧′ + 𝑚2(𝑡)𝑧 = 𝑞(𝑡),       𝑧(𝑡0) = 𝑏0,       𝑧′(𝑡0) = 𝑏1                                                          (4) 

           

Define 𝑤1 = 𝑧, then we have the system 𝑤1
′ = 𝑧′ = 𝑤2,    𝑤1(𝑡0) = 𝑏0. If we substitute them in Equation (4), 

we get  𝑤2
′ = 𝑧′′ =

1

𝑚0(𝑡)
[𝑞(𝑡) − 𝑚1(𝑡)𝑧′(𝑡) − 𝑚2(𝑡)𝑧(𝑡)]  and the following first-order equation is obtained 

 

𝑤′2 =
1

𝑚0(𝑡)
[𝑞(𝑡) − 𝑚1(𝑡)𝑤2 − 𝑚2(𝑡)𝑤1],          𝑤2(𝑡0) = 𝑏1                                                                        (5) 

 

The system is given by  

[
𝑤1

′

𝑤2
′ ]=[

𝑤2

𝑔2(𝑡, 𝑤1, 𝑤2)] ,      [
𝑤1(𝑡0)

𝑤2(𝑡0
] = [

𝑏0

𝑏1
] 

where   𝑔2(𝑡, 𝑤1 , 𝑤2) =
1

𝑚0(𝑡)
[𝑞(𝑡) − 𝑚1(𝑡)𝑤2 − 𝑚2(𝑡)𝑤1]. 

Generally, we may have a system as well  
 

[
𝑧1

𝑧2
]

′

= [
𝑔1(𝑡, 𝑧1, 𝑧2)

𝑔2(𝑡, 𝑧1 , 𝑧2)
],     [

𝑧1(𝑡0)

𝑧(𝑡0)
] = [

𝑏0

𝑏1
]                                                                                                                   (6) 

 

In vector notation, denote  𝒛 = [𝑧1 𝑧2]𝑡     ,       𝒈 = [𝑔1 𝑔2]𝑡        ,       𝒃 = [𝑏0 𝑏1]𝑡 

Then we can create the system   

 

𝒛′ = 𝒈(𝑡, 𝒛),      𝒛(𝑡0) = 𝒃                                                                                                                                             (7) 

 

By expressing the answer in vector form, the techniques developed for the solution of the first-order initial 

value problem in Equation (2) may be applied to the system of Equations (7), i.e., the second-order initial value 
problem Equation (6) (Iyengar & Jain, 2009). 

 

3. Application of Natural transform 

 

In this study, differential equations of first and second-order are examined. Blood glucose concentration 

application for the first order differential equation and circuit analysis applications for the second order 
differential equation are presented. These illustrations have been chosen to show how Natural transform can 

be applied in a wide range of contexts. 

 

3.1. The blood glucose concentration  

 

A person’s blood glucose concentration is determined at any given time.  The blood glucose concentration is 

modelled mathematically as below (Khidir et al., 2023; Peker & Çuha, 2023): 
 
𝑑𝐶(𝑡)

𝑑𝑡
+ 𝑘𝐶(𝑡) =

𝛽

𝑃
 ,       𝑡 > 0                and   𝐶(0) = 𝐶𝑖                                                                                    (8) 

 

where C(t) is the blood glucose concentration at time t, k is the constant velocity of the elimination, 𝛽 is the 

proportion of the infusion, P is the volume in which glucose is distributed, 𝐶𝑖 is the initial concentration of 

glucose in the blood. We will find the concentration of glucose in the blood by using the Natural transform 

method. The Natural transform of C(t) is denoted by  𝐶(𝑠, 𝑢). Applying the Natural transform on both sides of 
Equation (8), 

 
𝑠

𝑢
𝐶(𝑠, 𝑢) −

𝐶𝑖

𝑢
+ 𝑘𝐶(𝑠, 𝑢) =

𝛽

𝑃
 
1

𝑠
                                                                                             (9) 

 
is obtained. Using partial fraction decomposition, C(s,u) is found  

 

𝐶(𝑠, 𝑢) =
𝐶𝑖

𝑠+𝑘𝑢
+

𝛽

𝑃
 (

1

𝑠𝑘
−

1

𝑘(𝑠+𝑘𝑢)
)                                                                               (10) 

 
Operating inverse Natural transform on both sides of Equation (10), we obtain the concentration of glucose in 

the blood: 
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𝐶(𝑡) = 𝐶𝑖 𝑒−𝑘𝑡 +
𝛽

𝑃𝑘
(1 − 𝑒−𝑘𝑡)                                                                    (11) 

 

The results of both obtained with the Kashuri Fundo transform by Peker and Çuha and obtained with the Anuj 

transform by Kumar et al. are consistent with those obtained with the Natural transform (Peker & Çuha, 2023; 

Kumar et al, 2021). Solving this problem greatly helps doctors to determine the patient's exact blood glucose 
level at any time when receiving continuous intravenous injections. 

 

3.2. Electrical circuits 

 
In this section, circuit analysis for the second order differential equations are presented: series RLC circuit, 

parallel RLC circuit and two-meshed RL circuit. 

 
3.2.1. Series RLC circuit 

 

In a series RLC circuit, the resistor (R), inductor (L), capacitor (C) and source are connected in series with 

each other. In this structure, all currents (𝑖(𝑡)) are the same. Using Kirchoff's voltage law (KVL), the following 
equation for the circuit of Figure 1 is obtained: 

 

𝑉𝑅(𝑡) + 𝑉𝐿(𝑡) + 𝑉𝑐(𝑡) = 𝑉𝑘(𝑡)                                                                                                                       (12) 
 

where 𝑉𝑅(𝑡), 𝑉𝐿(𝑡), 𝑉𝑐(𝑡) and 𝑉𝑘(𝑡) are the voltage of resistor, inductor, capacitor and source, respectively and 

defined as  𝑉𝑅(𝑡) = 𝑅𝑖(𝑡),  𝑉𝐿(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
 and 𝑉𝐶(𝑡) =

1

𝐶
∫ 𝑉(𝑡)𝑑𝑡. When the voltage formulas are substituted 

in Equation (12),  

 

𝑅𝑖(𝑡) + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+

1

𝐶
∫ 𝑖(𝑡)𝑑𝑡 = 𝑉𝑘(𝑡)                                                                  (13) 

 
is obtained. When the derivative of both sides of the equation is taken, the second order differential equation 

is obtained as: 

 
𝑑2𝑖(𝑡)

𝑑𝑡2 +
𝑅

𝐿

𝑑𝑖(𝑡)

𝑑𝑡
+

1

𝐿𝐶
𝑖(𝑡) =

1

𝐿

𝑑𝑉𝑘(𝑡)

𝑑𝑡
                      (14) 

 

 
                                     Figure 1. A series RLC circuit (Arifoğlu, 2013) 

 

The circuit of Figure 2 models the ignition system of a car (Irwin & Nelms, 2015). VS, C, L and R represent 
voltage source (battery), capacitor, inductor and resistor, which is the internal resistance of the inductor, 

respectively. And there is also a switch in the circuit. Initially, the resistor, inductor, capacitor are connected 

to the battery by switching and the capacitor charge up to voltage source. At time t=0, the switch is closed and 

the capacitor discharges. 
 

We calculate 𝑖𝐿(𝑡) using Natural transform assuming that 𝑉𝑠 = 12𝑉, 𝐶 =
1

3.8
𝐹, 𝐿 = 200𝑚𝐻 and 𝑅 = 4Ω for 

the circuit of Figure 2*. The initial conditions are 𝑖𝐿(0) = 0𝐴, 𝑉𝑐(0) = 12 𝑉, 𝑖𝐿
′ (0) = 60𝐴. Using the initial 

values the following initial value problem is obtained: 
 
*: In (Irwin & Nelms, 2015), the C value is calculated in the conditions below: it is required to be overdamped, the current (i(t)) reaches 

at least 1mA within 100ms after switching, and it remains above 1A between 1-1.5s. In this question, the values in (Irwin & Nelms, 
2015) are used and iL(t) is calculated with Natural transform. 
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                                        Figure 2. A circuit model of ignition system of a car (Irwin & Nelms, 2015) 

 
𝑑2𝑖(𝑡)

𝑑𝑡2 + 20
𝑑𝑖(𝑡)

𝑑𝑡
+ 19𝑖(𝑡) = 0, 𝑖(0) = 0𝐴, 𝑖′(0) = 60𝐴                    (15) 

 

The Natural transform of  𝑖(𝑡) is denoted by 𝐼(𝑠, 𝑢). If the Natural transform is applied to Equation (15), we 

will get 

 
𝑠2

𝑢2 𝐼(𝑠, 𝑢) −
𝑠

𝑢2 𝑖(0) −
𝑖′(0)

𝑢
+ 20

𝑠

𝑢
𝐼(𝑠, 𝑢) − 20

𝑖(0)

𝑢
+ 19𝐼(𝑠, 𝑢) = 0                             (16) 

 

Substituting the initial values in the Equation (16), 𝐼(𝑠, 𝑢)  is obtained:  

 
𝑠2

𝑢2 𝐼(𝑠, 𝑢) −
60

𝑢
+ 20

𝑠

𝑢
𝐼(𝑠, 𝑢) + 19𝐼(𝑠, 𝑢) = 0                                (17) 

 

𝐼(𝑠, 𝑢) =
60𝑢

𝑠2+2𝑠𝑢+19𝑢2                                   (18) 

 

 After decomposition, the inverse Naturel transform is taken and the current is obtained: 

 

𝑖(𝑡) =
−10

3
𝑒−19𝑡 +

10

3
𝑒−𝑡                        (19) 

 
3.2.2. Parallel RLC circuit 

 

In a parallel RLC circuit, the resistor, inductor and capacitor are connected in parallel to each other and the 
source. In this configuration, while the voltage across each component is the same, the currents are different 

and can be found using Kirchoff’s Current Law (KCL). Using KCL, the currents for the circuit of Figure 3 are 

written as: 
 

𝐼𝑅(𝑡) + 𝐼𝐿(𝑡) + 𝐼𝑐(𝑡) = 𝐼𝑘(𝑡)                                  (20) 

 

where 𝐼𝑅 =
𝑉(𝑡)

𝑅
 , 𝐼𝐿(𝑡) =

1

𝐿
∫ 𝑉(𝑡)𝑑𝑡 and 𝐼𝑐(𝑡) = 𝐶

𝑑𝑉(𝑡)

𝑑𝑡
. Substituting these formulas in Equation (20)   

 
𝑉(𝑡)

𝑅
+

1

𝐿
∫ 𝑉(𝑡)𝑑𝑡 + 𝐶

𝑑𝑉(𝑡)

𝑑𝑡
= 𝐼𝑘(𝑡)                      (21) 

 

is obtained. Taking the derivative of both sides, the second-order differential equation is obtained: 

 
𝑑2𝑉(𝑡)

𝑑𝑡2 +
1

𝑅𝐶

𝑑𝑉(𝑡)

𝑑𝑡
+

1

𝐿𝐶
𝑉(𝑡) =

1

𝐶

𝑑𝑖𝑘(𝑡)

𝑑𝑡
                      (22) 

 

https://testbook.com/electrical-engineering/parallel-rlc-ac-circuit#:~:text=An%20inductor%20is%20a%20passive,the%20current%20flowing%20through%20it.
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                                             Figure 3. A Parallel RLC circuit (Arifoğlu, 2013) 
 

We determine 𝑉(𝑡) in the circuit of Figure 3 using Natural transform assuming that 𝑖𝑘(𝑡) = 5𝑒−2𝑡 , 𝑅 = 4Ω, 

𝐿 = 8𝐻, 𝐶 =
1

8
𝐹, 𝑉′(0) = 0 and 𝑉(0)=0 (Arifoğlu, 2013). Using the initial values the following initial value 

problem is obtained: 

 
𝑑2𝑉(𝑡)

𝑑𝑡2 + 2
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑉(𝑡) = −80𝑒−2𝑡 , 𝑉(0) = 0, 𝑉′(0) = 0                                      (23) 

 

 𝑉(𝑠, 𝑢) denotes the Natural transform of 𝑉(𝑡). Taking the Natural transform of Equation (23), then we will 

reach 

 
𝑠2

𝑢2 𝑉(𝑠, 𝑢) −
𝑠

𝑢2 𝑉(0) −
𝑉′(0)

𝑢
+ 2

𝑠

𝑢
𝑉(𝑠, 𝑢) − 2

𝑉(0)

𝑢
+ 𝑉(𝑠, 𝑢) =

−80

𝑠+2𝑢
                                                                 (24)  

 

Substituting the initial values in the equation, 𝑉(𝑠, 𝑢)  is obtained: 

 

𝑉(𝑠, 𝑢) =
−80  𝑢2

(𝑠+2𝑢)( 𝑠2+2𝑠𝑢+ 𝑢2)
                                                     (25) 

 
Taking inverse Natural transform, we get 

 

𝑉(𝑡) = −80𝑒−2𝑡 + 80𝑒−𝑡 − 80𝑡𝑒−𝑡                                        (26) 

 
3.2.3. Two-mesh circuit 

 
Figure 4. A two-mesh circuit (Arifoğlu, 2013) 

 

We find the current of inductor (𝐼𝐿2) in the circuit of Figure 4 assuming that 𝑉𝐾(𝑡) = 100sin (3𝑡), 𝑅1 = 4Ω , 

𝑅2 = 2Ω , 𝐿1 = 1𝐻 and 𝐿2 = 3𝐻. The initial conditions of  𝐼𝑐1(𝑡 = 0) = 0, 𝐼𝑐2(𝑡 = 0) = 0 (Arifoğlu, 2013). 
Firstly, applying KVL to each mesh,  the mesh equations are written as: 

 

(𝑅1 + 𝑅2)𝑖𝑐1(𝑡) + 𝐿1
𝑑𝑖𝑐1(𝑡)

𝑑𝑡
− 𝑅2𝑖𝑐2(𝑡) = 𝑉𝐾(𝑡)                                                           (27) 

𝑅2(𝑖𝑐2(𝑡) − 𝑖𝑐1(𝑡)) + 𝐿2
𝑑𝑖𝑐2(𝑡)

𝑑𝑡
= 0                                (28) 

 

After writing the values in the Equations (27)-(28), 

 

6𝑖𝑐1(𝑡) +
𝑑𝑖𝑐1(𝑡)

𝑑𝑡
− 2𝑖𝑐2(𝑡) = 100𝑠𝑖𝑛3𝑡                                 (29) 

2(𝑖𝑐2(𝑡) − 𝑖𝑐1(𝑡)) + 3
𝑑𝑖𝑐2(𝑡)

𝑑𝑡
= 0                      (30) 
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are obtained. In Equation (30), 𝑖𝑐1(𝑡) is written in terms of 𝑖𝑐2(𝑡) and substituted in Equation (29) to obtain 

second order initial value problem: 
 
𝑑2𝑖𝑐2(𝑡)

𝑑𝑡2 +
20

3

𝑑𝑖𝑐2(𝑡)

𝑑𝑡
+

8

3
𝑖𝑐2(𝑡) =

200

3
𝑠𝑖𝑛3𝑡, 𝑖𝑐2(0) = 0, 𝑖𝑐2

′(0) = 0                  (31) 

 

The Natural transform of 𝑖𝑐2(𝑡) is denoted by 𝐼(𝑠, 𝑢). If the Natural transform is applied to Equation (31), we 

get 

 
𝑠2

𝑢2 𝐼(𝑠, 𝑢) −
𝑠

𝑢2 𝑖(0) −
𝑖′(0)

𝑢
+

20

3
(

𝑠

𝑢
𝐼(𝑠, 𝑢) −

𝑖(0)

𝑢
) +

8

3
𝐼(𝑠, 𝑢) =

200

3

3𝑢

𝑠2+9𝑢2                 (32) 

 

Substituting the initial values in the equation, 𝐼(𝑠, 𝑢)  is written as below:  

 

𝐼(𝑠, 𝑢) =
600𝑢3

(𝑠2+9𝑢2)(3𝑠2+20𝑠𝑢+8𝑢2)
                      (33) 

 

After the inverse Naturel transform is taken, the current is obtained: 
 

𝑖𝑐2(𝑡) = 3.7475𝑒−0.4274𝑡 − 0.7180𝑒−6.2393𝑡 − 0.9594 sin(3𝑡) − 3.0295cos (3𝑡)                (34) 

 

The solutions of Equation (8), Equation (15), Equation (23) and Equation (31) obtained with Natural transform 
correspond exactly to the analytical solutions. 

 

 4. Application of Runge-Kutta numerical method 

 

The Ruge-Kutta method is used to calculate the blood glucose concentration and circuit’s voltage and current. 

The results of the methods are given in Figure 5-8 and in Table 3-6, respectively. The number of samples 
obtained with the Runge-Kutta method is inversely proportional to the step size. Because of many samples, 

Table 3-6 shows the results at particular times. The error values in the tables are calculated by taking multiple 

numbers after the comma. 

 

Firstly, in Equation (11) the parameters 𝐶𝑖 = 𝐶(0) = 320, 𝛽 = 280, 𝑃 = 45, 𝑘 = 0.058 (Khidir et al., 2023) 

were used to calculate the blood glucose concentration and 𝐶(𝑡) = 320𝑒−0.058𝑡 +
280

45 0.058
(1 − 𝑒−0.058𝑡 ) is 

obtained. Using the same parameters, the RK4 method was applied to Equation (8) for 0≤t≤90s and h=1. Blood 

glucose concentration was calculated for each cycle. Before determining the step size, blood glucose 
concentration was calculated for step size values 0.1, 0.25, 0.5 and 1. For the step size selected (h=1), it has 

been observed that the exact solution and the numerical solution converge. Choosing the step size differently 

caused the number of cycles to change. The solution of Natural transform (exact solution), the numerical 
solution (RK4 solution) and error for the concentration are given in Table 3.  The results obtained graphically 

are also supported with the results given in Table 3. Figure 5 shows the blood glucose concentration (blue: 

result obtained with Natural transform, red: result obtained with the Runge-Kutta method). 
 

Table 3. Error of the blood glucose concentration in RK4 method  

 

t NT 
solution 

RK4 
solution 

Absolute 
Error 

t NT 
solution 

RK4 
solution 

Absolute 
Error 

0 320 320 0 50 118.9842 118.9843 3.36E-06 

5 266.4505 266.4506 4.57E-06 55 116.0378 116.0378 2.77E-06 

10 226.3814 226.3815 6.84E-06 60 113.8331 113.8331 2.26E-06 

15 196.3992 196.3992 7.67E-06 65 112.1833 112.1833 1.83E-06 

20 173.9646 173.9646 7.66E-06 70 110.9489 110.9489 1.47E-06 

25 157.1776 157.1776 7.16E-06 75 110.0252 110.0252 1.18E-06 

30 144.6164 144.6165 6.43E-06 80 109.3341 109.3341 9.43E-07 

35 135.2174 135.2174 5.61E-06 85 108.8169 108.8169 7.5E-07 

40 128.1845 128.1845 4.8E-06 90 108.4299 108.4299 5.94E-07 

45 122.922 122.922 4.04E-06     
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Figure 5. Exact and numerical solutions (RK4) of the blood glucose concentration 

(𝐶𝑖 = 320, 𝛽 = 280, 𝑃 = 45, 𝑘 = 0.058, ℎ = 1) 

 
Secondly, taking the initial conditions (i(0)=0, i' (0)=60) in Equation (15), comparison of the analytical solution 

and the numerical solution of the current in Figure 2 were given in Table 4 when RK4 was applied for h = 0.01 

and 0≤t≤5s. The current in the series RLC circuit is given in Figure 6. In (Irwin & Nelms, 2015), it is aimed 
that i(t) reaches at least 1mA within 100ms after switching, and it remains above 1A between 1-1.5s. All are 

seen in the Figure 6 and Table 4. Also it can be seen that as t goes to infinity, the current goes to zero. For the 

RK4 method, the results were obtained by changing the step size as 0.01, 0.05, 0.075, 0.1, respectively and 
step size was selected as 0.01. The reason for this is that at other values of the step size, the solutions created 

by the RK4 method for t < 0.5s are not the same with the results obtained with Natural transform and exact 

solution.  

 
Table 4. Error of the current in the circuit of Figure 2 in RK4 method 

 

t NT 
solution 

RK4 
solution 

Absolute 
Error 

t NT 
solution 

RK4 
solution 

Absolute 
Error 

0 0 0 0 2.75 0.213093 0.213093 4.92E-11 

0.25 2.567164 2.567162 1.7E-06 3 0.165957 0.165957 4.18E-11 

0.5 2.021519 2.021519 3E-08 3.25 0.129247 0.129247 3.53E-11 

0.75 1.574553 1.574553 2.9E-10 3.5 0.100658 0.100658 2.96E-11 

1 1.226265 1.226265 9.85E-11 3.75 0.078392 0.078392 2.47E-11 

1.25 0.955016 0.955016 1E-10 4 0.061052 0.061052 2.05E-11 

1.5 0.743767 0.743767 9.37E-11 4.25 0.047547 0.047547 1.7E-11 

1.75 0.579246 0.579246 8.52E-11 4.5 0.03703 0.03703 1.4E-11 

2 0.451118 0.451118 7.58E-11 4.75 0.028839 0.028839 1.15E-11 

2.25 0.351331 0.351331 6.64E-11 5 0.02246 0.02246 9.44E-12 

2.5 0.273617 0.273617 5.75E-11     
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Figure 6. Exact and numerical solutions (RK4) of the current in the circuit of Figure 2 

 

Thirdly, with initial conditions  𝑉(0) = 0, 𝑉′(0) = 0, Equation (23) was examined. The analytical solution 

and the numerical solution of the voltage in the parallel RLC circuit were given in Table 5 when RK4 was 

applied for h = 0.01 and 0≤t≤10s. The voltage in the parallel RLC circuit also goes to zero while t goes to 
infinity (Figure 7). When the step size is greater than 1, the solution obtained with the RK4 method does not 

converge to the results obtained with Natural transform and the exact solution.  

 

Table 5. Error of the voltage in the circuit of Figure 3 in RK4 method 
 

t NT 

solution 

RK4 

solution 

Absolute 

Error 

t NT 

solution 

RK4 

solution 

Absolute 

Error 

0 0 0 0 5.5 -1.47257 -1.47257 1.11E-10 

0.5 -5.16913 -5.16913 1.2E-08 6 -0.99199 -0.99199 5.15E-11 

1 -10.8268 -10.8268 8.3E-09 6.5 -0.66169 -0.66169 1.68E-11 

1.5 -12.9082 -12.9082 3.8E-09 7 -0.43777 -0.43777 1.6E-12 

2 -12.2921 -12.2921 1E-09 7.5 -0.28763 -0.28763 9.9E-12 

2.5 -10.3892 -10.3892 2.52E-10 8 -0.18787 -0.18787 1.3E-11 

3 -8.16423 -8.16423 6.47E-10 8.5 -0.12208 -0.12208 1.2E-11 

3.5 -6.11243 -6.11243 6.4E-10 9 -0.07898 -0.07898 1.1E-11 

4 -4.42259 -4.42259 4.95E-10 9.5 -0.0509 -0.0509 8.7E-12 

4.5 -3.12039 -3.12039 3.34E-10 10 -0.03269 -0.03269 6.8E-12 

5 -2.15978 -2.15978 2.03E-10     
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Figure 7. Exact and numerical solutions (RK4) of the voltage in the circuit of Figure 3 

 

Finally, considering Equation (31) with  initial conditions 𝑖𝑐2(0) = 0, 𝑖𝑐2
′ (0) = 0, the analytical solution and 

the numerical solution of the current around mesh 2 in Figure 4 were given in Table 6 when RK4 was applied 
for h = 0.01 and 0≤t≤20s. Figure 8 shows the current around mesh 2 of the two-mesh circuit. It is seen that the 

steady-state part of the Equation (34) is sinusoidal. When the step size is larger than 0.2, the results obtained 

with the RK4 method diverge from the results obtained with the Natural Transform. The step size (h) chosen 
for Runge-Kutta method for electrical circuits are  0.01.  

 

Figure 5-8 demonstrate that the numerical method approximates the analytical solution well for small step 
sizes. As the step size increases, deviations between the two solutions may become more noticeable. Also, 

Table 3-6 demonstrate that the error is rather small. 

 

Table 6. Error of the current in the circuit of Figure 4 in RK4 method 
 

t NT 

solution 

RK4 

solution 

Absolute 

Error 

t NT 

solution 

RK4 

solution 

Absolute 

Error 

0 0 0 0 11 -0.88501 -0.88501 4.03E-08 

1 5.306584 5.306584 4.29E-08 12 1.361337 1.361336 3.5E-08 

2 -1.04674 -1.04674 4.7E-08 13 -1.71795 -1.71795 2.82E-08 

3 3.404598 3.404598 5.14E-08 14 2.100482 2.100482 2.1E-08 

4 -1.36365 -1.36365 5.3E-08 15 -2.40164 -2.40164 1.39E-08 

5 2.119886 2.119886 5.5E-08 16 2.680386 2.680386 6.2E-09 

6 -0.99156 -0.99156 5.5E-08 17 -2.88875 -2.88875 1.6E-09 

7 1.044832 1.044832 5.43E-08 18 3.050211 3.050211 9.36E-09 

8 -0.29361 -0.29361 5.2E-08 19 -3.1435 -3.1435 1.7E-08 

9 0.04756 0.04756 4.92E-08 20 3.178519 3.178519 2.42E-08 

10 0.532749 0.532749 4.5E-08     
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Figure 8. Exact and numerical solutions (RK4) of the current in the circuit of Figure 4 

 
 

5. Discussion and conclusions 

 

This study demonstrates a comparative analysis between the analytical solution of differential equations 
considered in section 3 using the Natural Transform and the numerical solution obtained through the fourth-

order Runge-Kutta method. Using the Runge Kutta method, both blood glucose concentration and currents and 

voltage of electrical circuits were calculated for different values of the step size. The convergence of the results 
calculated with Runge Kutta method and obtained with Natural transform was obtained for these step size (h) 

which are 1 and 0.01, respectively.  

 

The Natural Transform provided an exact solution, serving as a benchmark for evaluating the performance of 
the numerical approach. The Runge-Kutta method successfully approximated the analytical solution with high 

accuracy, especially when a small step size was used. Graphical comparisons showed that both solutions align 

closely across the solution domain, with only minor discrepancies due to numerical approximation errors.  
 

Overall, the study highlights the strength of combining analytical and numerical approaches, with the Natural 

Transform offering insight into the exact behavior of the system and the Runge-Kutta method providing a 
robust tool for approximating solutions when analytical methods are infeasible. Ongoing research and 

development in these transforms continue to expand their utility, offering new solutions to complex scientific 

and engineering problems. In future studies, the results obtained with integral transform can be compared with 

numerical methods for different applications. 
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