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Abstract 

Sign language is a vital communication tool for hearing-impaired individuals to express their thoughts and emotions. 
Turkish Sign Language (TSL) is based on hand gestures, facial expressions, and body movements. In this study, deep learning 
models were developed to recognize 41 commonly used TSL expressions. An original dataset was created using the Media 
Pipe Holistic framework to capture the 3D landmarks of hand, face, and body movements. The study trained and evaluated 
GRU, LSTM, and Bi-LSTM models, as well as hybrid architectures such as CNN+GRU, GRU+LSTM, and GRU+Bi-LSTM. In the 
training of the models, a hold-out validation method was used. 80% of the dataset was allocated for training and 20% for 
testing. Additionally, 20% of the training data was used for validation. Among Deep Learning models, the CNN+GRU hybrid 
model achieved the highest accuracy rate of 96.72%, outperforming similar studies in the literature. Our results 
demonstrate that deep learning techniques can effectively classify TSL expressions, with the CNN+GRU combination 
showing particularly high performance. Future work will focus on expanding the dataset and developing real-time 
recognition systems that incorporate both skeleton images and landmarks. 
Keywords: Turkish sign language, Sign language recognition, Media pipe, Deep learning, Recurrent neural network 

DERİN ÖĞRENME VE YER İŞARETİ VERİLERİNİ KULLANARAK TÜRK İŞARET 
DİLİ İFADELERİNİ TANIMA 

Özet 

İşaret dili, işitme engelli bireylerin düşüncelerini ve duygularını ifade etmeleri için hayati bir iletişim aracıdır. Türk İşaret 
Dili (TİD), el hareketleri, yüz ifadeleri ve vücut hareketlerine dayanır. Bu çalışmada, yaygın olarak kullanılan 41 TİD 
ifadesini tanımak için derin öğrenme modelleri geliştirilmiştir. El, yüz ve vücut hareketlerinin 3D yer işaretlerini yakalamak 
için Media Pipe Holistic çerçevesi kullanılarak orijinal bir veri seti oluşturulmuştur. Çalışmada, GRU, LSTM, Bi-LSTM 
modelleri ve hibrit mimarilere sahip olan CNN+GRU, GRU+LSTM, GRU+Bi-LSTM modelleri eğitilmiş ve değerlendirilmiştir. 
Modellerin eğitiminde dışarda tutma doğrulama yöntemi kullanılmıştır. Veri setinin %80'i eğitim ve %20'si test için 
ayrılmıştır. Ayrıca eğitim için ayrılan verinin %20'si doğrulama için kullanılmıştır. Derin öğrenme modelleri arasında en 
yüksek doğruluk oranını %96,72 ile CNN+GRU hibrit modeli elde etmiştir ve literatürdeki benzer çalışmalardan daha 
yüksek performans göstermiştir. Sonuçlarımız, derin öğrenme tekniklerinin TİD ifadelerini etkili bir şekilde 
sınıflandırabileceğini ortaya koymaktadır ve özellikle CNN+GRU kombinasyonu yüksek performans sağlamıştır. Gelecek 
çalışmalar, veri setinin genişletilmesi ve iskelet görüntüleriyle birlikte yer işaretlerinin de kullanıldığı gerçek zamanlı 
tanıma sistemlerinin geliştirilmesine odaklanacaktır.  
Anahtar Kelimeler: Türk işaret dili, İşaret dili tanıma, Media pipe, Derin öğrenme, Tekrarlayan sinir ağı 
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1.  Introduction 

Sign language (SL) is an essential communication tool for 
people who are deaf or hard of hearing, enabling them to 
convey their emotions, ideas and needs to others. This 
form of nonverbal communication relies on using hands, 
arms, heads, facial expressions, and body language. The 
World Health Organization reported in 2021 that 

approximately 466 million people globally experience 
hearing loss, including 34 million children. Projections 
indicate that this figure may rise to over 700 million by 
2050 [1]. Individuals with hearing impairments utilize 
Sign Language to communicate, not just among 
themselves but also with others. Sign Languages function 
similarly to spoken languages, varying from one country 
to another and even possessing different dialects within 
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a single country. This diversity poses a significant 
challenge in developing a universal tool for all hearing-
impaired individuals globally [2]. 

One of the sign languages, Turkish Sign Language (TSL), 
is typified by hand gestures and occasionally face and 
body indications. It has unwritten grammar [3]. In TSL, 
gestures represent commonly used words and the letters 
of the Turkish alphabet. Although Sign Language is 
influenced by spoken language, it possesses its unique 
grammatical structure. The relationship between TSL 
and Turkish cannot be taken for granted [4]. 

This study focuses on TSL expression recognition. There 
are a few studies in literature that stand out regarding 
TSL. Katılmış and Karakuzu[3], created a dataset using a 
Leap Motion Controller (LMC) for 26 dynamic Turkish 
Sign Language (TSL) words performed with both hands. 
They applied the Meta Extreme Learning Machine 
(MELM) method to this dataset and conducted training 
and testing using 5-fold cross-validation. Pacal and 
Alaftekin[5],  classified numbers (0-9) in TSL using 
ResNet, MobileNet, VGG, DenseNet, and EfficientNet 
models. Özcan and Baştürk [6], created a dataset 
consisting of videos recorded from various angles by 49 
individuals with hearing and speech impairments. The 
videos featured 25 words commonly used in hospital 
emergency departments. For classification tasks, a 
transfer learning model based on GoogLeNet was 
employed. Kırcı et al. [7], used Media Pipe to detect hand 
landmarks and created a dataset for 29 TSL letters. They 
trained a Long Short-Term Memory (LSTM) network 
using this dataset. However, no information regarding 
the recognition performance obtained in the study was 
provided. Karacı et al. [4], developed machine learning 
models based on a cascade voting approach to recognize 
the 29-letter TSL alphabet. They used a dataset obtained 
from the Leap Motion Controller (LMC) device, from 
which they extracted handcrafted features. The models 
they developed were tested in real-time and achieved 
high accuracy rates. Çelik and Odabaş [8] developed a 
model that translates sign language gestures into text by 
combining CNN and LSTM networks to automate the TSL 
recognition process. In this context, they used a camera 
image dataset consisting of 10 digits and 29 letters. 
Demircioğlu and Bülbül [9] aimed to recognize the basic 
hand movements of TSL using the LMC device. In their 
study, they developed a real-time system based on 18 
selected hand movements from TSL. To evaluate the 
system's performance, they used machine learning 
methods such as Random Forest and Multilayer 
Perceptron (MLP), comparing the results. The system 
was noted for its advantage in achieving high accuracy, 
especially with a small amount of data. Haberdar and 
Albayrak [10] prepared a dataset of 50 static TSL words 
using a Leap Motion device. They trained a model on this 
dataset using Hidden Markov Models (HMM). Memiş and 
Albayrak [11], created a dataset of 111 static TSL words 
using an MS Kinect device. They trained a k-NN algorithm 
on this dataset using 3-fold cross-validation. 

In this study, Deep Learning (DL) based sign language 
recognition models were developed for sign language 
expressions frequently used in TSL. These models were 
trained and tested on the original dataset created in this 
study. The main contributions of this paper are as 
follows: 

1. The authors developed an original dataset of TSL 
expressions that has not been used in previous studies. 
This data set is expected to be useful for future research 
in the field of TSL recognition. 

2. Since the dataset consists of landmarks, it can be 
processed by DL models using fewer resources. 

3. CNN (Convolutional Neural Network), GRU (Gated 
Recurrent Unit), LSTM and Bi-LSTM (Bidirectional Long 
Short-Term Memory) DL models and hybrid models 
(CNN+GRU) by connecting these models, GRU+Bi-LSTM 
and GRU+LSTM) were created. 

4. The hybrid model CNN+GRU achieved an impressive 
accuracy rate of 96.72%, leaving behind similar studies 
in literature and demonstrating the effectiveness of 
convolutional and recurrent neural networks for sign 
language recognition. 

2.  Materials and Methods 

An overview of our methodology is shown in Figure 1. In 
this study, a dataset was created using the Media Pipe 
framework for 41 commonly used sign language 
expressions in Turkish Sign Language (TSL). Landmark 
points were obtained from video frames using Media 
Pipe and saved. The dataset was normalized before being 
fed into the deep learning (DL) models. GRU, LSTM, and 
Bi-LSTM models were trained and tested on this dataset. 
Additionally, training and testing procedures were also 
performed on hybrid models such as CNN+GRU, GRU+Bi-
LSTM, and GRU+LSTM.  

 
Figure 1. Overall methodology of the research. 

2.1. Dataset 

In all sign languages, including Turkish Sign Language 
(TSL), words are divided into two main categories. These 
are static sign language words and dynamic sign 
language words. Static sign language words are signs 
made with the hands remaining in a fixed position or 
with very little movement. Dynamic sign language words 
involve hand or body movement, and changes in hand 
positions or shapes. These signs generally consist of a 
combination of several movements and are more 
complex [12]. 
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In this study, 41 words were selected from the basic 
communication patterns in units 1 and 2 of the Turkish 
Sign Language Course Teaching Material book published 
by the Ministry of National Education, General 
Directorate of Special Education and Guidance. Of these 
words, 35 are dynamic, and 6 are static. These words, 
their types, and the labels to be used while training DL 
algorithms are presented in Table 1. 

Table 1. TSL words were used in the creation of the 
dataset. 

Labels Words Type Labels Words Type 

0 Man (Adam) Dynamic 21 Dog (Köpek) Dynamic 

1 Smart (Akıllı) Dynamic 22 
In the box 
(Kutuda) 

Dynamic 

2 Five (Beş) Static 23 
Hello 
(Merhaba) 

Dynamic 

3 White (Beyaz) Dynamic 24 Why (Neden) Dynamic 

4 One (Bir) Static 25 
Cheerful 
(Neşeli) 

Dynamic 

5 Here (Burada) Dynamic 26 
Student 
(Öğrenci) 

Dynamic 

6 
Grandpa 
(Dede) 

Dynamic 27 
Sorry (Özür 
dilerim) 

Dynamic 

7 Not (Değil) Dynamic 28 Calm (Sakin) Dynamic 

8 
Ice Cream 
Vendor 
(Dondurmacı) 

Dynamic 29 Respect (Saygı) Dynamic 

9 Sir (Efendi) Dynamic 30 
Classroom 
(Sınıf) 

Statik 

10 
Disabled 
(Engelli) 

Static 31 
In the 
classroom 
(Sınıfta) 

Static 

11 
Goodbye (Güle 
güle) 

Dynamic 32 Angry (Sinirli) Dynamic 

12 
Good morning 
(Günaydın) 

Dynamic 33 Black (Siyah) Dynamic 

13 
Which 
(Hangisi) 

Dynamic 34 
Doesn't Know 
(Tanınmıyor) 

Dynamic 

14 Gift (Hediye) Dynamic 35 Lazy (Tembel) Statik 

15 
Excited 
(Heyecanlı) 

Dynamic 36 
Thanks 
(Teşekkürler) 

Dynamic 

16 
Nice to be here 
(Hoşbulduk) 

Dynamic 37 Doing (Yapıyor) Dynamic 

17 
Welcome 
(Hoşgeldiniz) 

Dynamic 38 
To Do 
(Yapmak) 

Dynamic 

18 Cat (Kedi) Dynamic 39 
Naughty 
(Yaramaz) 

Dynamic 

19 Who (Kim) Dynamic 40 Place (yer) Dynamic 

20 Girl (Kız) Static       

The dataset was obtained using an application developed 
in Python with the Media Pipe Holistic framework. While 
creating the dataset, the person detected on the camera 
was cropped to center within a rectangular frame. The x, 
y, and z coordinates of 543 landmarks from the face, right 
hand, left hand, and body were recorded through the 
Media Pipe Holistic framework. Seven randomly selected 
words ("goodbye", " good morning", " nice to be here", " 
welcome", " hello", " why", and " sorry") were obtained 
from five individuals, while the remaining words were 
obtained from three individuals. This aims to examine 
whether the number of examples affects learning 
performance. Each person repeated the sign language 

word 10 times, and 30 frames were captured for each 
repetition. The total number of frames in the dataset is 
41,100. However, feeding each set of 30 frames obtained 
for each trial as-is to machine learning is not appropriate. 
Therefore, during the pre-processing phase, these 30 
frames were concatenated into a single frame. As a result, 
a total of 1,370 data points were obtained. 

2.2. LSTM and GRU 

LSTM is a subset of Recurrent Neural Network (RNN) 
architecture that captures and represents long-term 
dependencies in sequential input. Several gating 
mechanisms help to enable this capability. An LSTM unit 
consists of several key components: a cell state, an input 
gate, an output gate, and a forget gate. The cell structure 
stores information for long periods, while each of the 
three gates functions as a standard artificial neuron, 
similar to those seen in multi-layer or feedforward 
neural networks. Essentially, these gates calculate an 
activation based on a weighted sum [13]. 

LSTM networks, created in 1997 for language processing, 
became well-known for their outstanding ability to hold 
long short-term dependencies [14]. However, the 
complexity of its architecture sometimes results in 
extensive training cycles. To solve this, GRU networks 
were designed as a more efficient alternative to LSTM, 
with a simpler structure that speeds up the training 
process [15]. The GRU is similar to an LSTM in that it 
includes a forget gate, but it has fewer parameters since 
it does not include an output gate. [16]. The input and 
output structure of GRU is comparable to standard RNN, 
while its internal structure is similar to the LSTM. Figures 
2 show an internal structural comparison of LSTM and 
GRU. 

 
Figure 2. Internal structure of LSTM and GRU. 

2.3. Bi-LSTM 

The traditional LSTM processes previous data by only 
receiving inputs in the backward direction through 
hidden states. In contrast, the Bi-LSTM network differs 
from the unidirectional LSTM, which relies solely on 
backward propagation to gather preliminary insights on 
temporal data. The Bi-LSTM network trains LSTM 
models in both forward and backward directions 
simultaneously, enabling it to extract features from both 
past and future timeframes of the data [17]. This 
capability results in improved prediction outcomes 
compared to LSTM. Bi-LSTM typically outperforms 
LSTM, although it requires more time for training [16].  
The overall structure of the Bi-LSTM is illustrated in 
Figure 3 [17]. 
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Figure 3. Architecture of the Bi-LSTM network. 

2.4. Performance Metrics 

The models were evaluated using metrics such as 
precision (P), recall (R), F1-score (F1), and accuracy 
(acc). These metrics have been commonly utilized in 
prior research and are widely recognized. These metrics 
are explained below [18]. 

Precision: This parameter evaluates the proportion of 
true positives among all predicted positives. 
Consequently, it is influenced by the values of True 
Positives (TP) and False Positives (FP). 

Precision(P)= TP ∕ (TP + FP) (1) 

Recall: Recall is the proportion of true positives that the 
model correctly classified. It is computed for all positive 
samples in the dataset. 

Recall(R) = TP ∕ (TP + FN) (2) 

F1-Score: The F1 score is a metric that combines both 
precision and recall, offering a comprehensive 
assessment of the model's accuracy. It is calculated by 
finding the harmonic mean of the precision and recall 
values. 

F1-Score=2*(P*R)/(P+R) (3) 

3.  Experimental Results and Discussion 

3.1. Performance Metrics 

In this study, the GRU, LSTM, Bi-LSTM, CNN+GRU, 
GRU+LSTM, and GRU+Bi-LSTM models were trained and 
tested using Tensorflow and Keras Library in Python on 
Google Colab with Tesla P100-PCIE-16 GB GPU, Intel(R) 
Xeon(R) 2.30 GHz CPU, and 25 GB RAM system 
components. The models' training approach, as well as 
their parameters, are detailed below. 

3.2. Training and testing of models  

The GRU, LSTM, Bi-LSTM, CNN+GRU, GRU+LSTM, and 
GRU+Bi-LSTM models were trained and tested using the 
hold-out validation method. The dataset was initially 
split into 80% for training and 20% for testing. 
Additionally, 20% of the data allocated for training was 
used for validation. 

Some parameters used in training the models and giving 
the highest classification performance are given in Table 
2 and other parameters were used by default. 
Optimization refers to the learning algorithm responsible 
for determining how the vast number of parameters, 
often ranging from millions to billions, should be 
adjusted during the training process [19]. During the 
training of the models, various optimizers were tested, 
including Adam, Adadelta, SGD, RMSprop, Adamax, and 

Nadam. The highest classification accuracy for the LSTM 
model was achieved with the Adadelta optimizer, 
whereas for the other models, it was achieved using the 
Adam optimizer. 

Another key factor in model training is the learning rate. 
The predictions may become unstable and fluctuate if the 
learning rate is too high. Conversely, the training process 
can take much longer if the learning rate is too low. 
Therefore, various learning rates were tested during the 
training phase, and the rate that delivered the best 
performance was selected. Additionally, the early 
stopping feature was used for each model. As a result, the 
number of epochs used during the training of the models 
varied from one another. 

Table 2. Parameters setting of the GRU, LSTM, Bi-LSTM, 
CNN+GRU, GRU+LSTM, and GRU+Bi-LSTM models 

Model 
Optimization 
Algorithm 

Learning 
Rate 

Batch 
Size 

Epoch 
Activation 
Function 

Loss 
Fuction 

GRU Adam 0.0001 64 284 

Relu 
Softmax 

Categoric
al 
crossentr
opy  

CNN+GRU Adam 0.0001 32 273 
GRU+LST
M 

Adam 0.00001 32 
311 

GRU+Bi-
LSTM 

Adam 0.00001 32 
262 

LSTM Adadelta 0.1 64 86 
Bi-LSTM Adam 0.0001 32 123 

 

In the study, the highest classification accuracy was 
obtained in the CNN+GRU model. The architecture of this 
model is presented in Table 3. This model combines 1D 
convolutional layers and GRU layers to capture both 
spatial and temporal patterns in the input. The model 
starts with two 1D convolutional layers (Conv1D) with 
64 and 128 filters and then uses MaxPooling layers to 
reduce the dimensionality. After each convolution layer, 
Batch Normalization is applied to stabilize the learning 
process and Dropout is added to prevent overfitting. 
After extracting 296,448 convolutional features, 
temporal dependencies in the sequential data are 
captured using two GRU layers, respectively. The second 
GRU layer passes its output to a fully connected layer. L2 
regularization is applied to prevent over-learning in fully 
connected layers, and Batch Normalization is applied to 
ensure faster convergence of the model. Finally, the 
output layer has a softmax activation function to estimate 
the class probabilities among the 41 classes. 

Table 3. Architecture of CNN+GRU model 
Layer (type) Output Shape Param # 

conv1d_20 (Conv1D) (None, 28, 64) 319,168 
max_pooling1d_20   (None, 14, 64)  0 
batch_normalization_35 (None, 14, 64) 256 
dropout_45  (None, 14, 64) 0 
conv1d_21 (Conv1D)  None, 12, 128) 24,704 
max_pooling1d_21  (None, 6, 128) 0 
batch_normalization_36  None, 6, 128) 512 
dropout_46   (None, 6, 128  0 
gru_20 (GRU) (None, 6, 256) 296,448 
dropout_47  (None, 6, 256) 0 
gru_21 (GRU) (None, 128) 148,224 
dropout_48  (None, 128) 0 
dense_25 (Dense)  (None, 256) 33,024 
batch_normalization_37 (None, 256) 1,024 
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dense_26   (None, 256) 65,792 
batch_normalization_38  (None, 256) 1,024 
dense_27 (Dense)  (None, 41) 10,537 

 

The loss and accuracy curves of the CNN+GRU model are 
presented in Figure 4. The curves of the other models are 
not included to enhance the readability of the study. 
These curves indicate that the model did not overfit the 
data and performed well in terms of generalization. The 
model exhibited some oscillations up to 200 epochs, but 
after this epoch value, it demonstrated reduced 
oscillations and improved generalization. 

 
Figure 4. Accuracy and loss curves of the CNN+GRU 

model 

3.3. Classification Results  

The classification performances of the models are 
presented according to the recall (R), precision (P), F1 
score (F1), and accuracy (ACC) measurements in Table 4. 
The R, P, and F1 values in Table 4 are calculated as 
weighted averages. As can be seen in this table, the 
highest classification performance was achieved in the 
hybrid model created by sequentially combining the CNN 
and GRU models. 

The second highest classification performance was 
obtained in the other hybrid model, the GRU+Bi-LSTM 
model. The ACC and R values of the CNN+GRU model are 
96.72%. This model classifies 41 sign language words 
correctly at a rate of 96.72%. This rate is 95.62%, 
95.26%, 94.53%, 93.80%, and 92.34% in the GRU+Bi-
LSTM, Bi-LSTM, GRU, GRU+LSTM, and LSTM models, 
respectively.  Thus, three models demonstrate a 
classification accuracy of 95% or higher. This rate is high 
for a data set of 41 classes and the models classify sign 
language words sufficiently. In addition, the CNN+GRU 
and GRU-Bi-LSTM models have high precision(P) values. 
These values are 97.11% and 96.27%, respectively. This 
indicates that these models have a low likelihood of 
making false positive (FP) classifications. 

Table 4. Hold-out test results of the GRU, LSTM, Bi-
LSTM, CNN+GRU, GRU+LSTM, and GRU+Bi-LSTM 

models. 

Models 
R 

(%) 
P 

(%) 
F1 

(%) 
ACC 
(%) 

CNN+GRU 96.72 97.11 96.69 96.72 
GRU+Bi-LSTM 95.62 96.27 95.52 95.62 
Bi-LSTM 95.26 95.87 95.13 95.26 
GRU 94.53 95.24 94.53 94.53 
GRU+LSTM 93.80 94.78 93.70 93.80 
LSTM 92.34 93.47 92.24 92.34 

The confusion matrix of the CNN+GRU model, which 
gives the highest classification performance, is presented 
in Figure 5. According to this matrix, 33 words were 
classified 100% correctly (R=1), while the remaining 8 
words could not be classified 100% correctly. These 
words and their correct classification rates are as 
follows: smart (83.33%), here (83.33%), hello (80%), 
why (90%), calm (83.33%), classroom (83.33%), in the 
classroom (83.33%) and place (83.33%). Only the word 
"hello" has a false negative count of 2, while the others 
have a count of 1.  The word "smart" is “doesn't know”, 
the "here" word is “excited”, the word "hello" is 
“welcome” and “black”, the word "why" is “dog”, the word 
"calm" is “doing”, the word "classroom" is “in the 
classroom”, the word "in the classroom" as “one” and 
finally the word “place" is misclassified as “in the box”. 
These words consist of 6 dynamic and 2 static words. No 
dynamic word has been misclassified as a static word, 
and no static word has been misclassified as a dynamic 
word. Furthermore, it has been observed that obtaining 
samples from more individuals does not proportionally 
improve model performance. This is because, among the 
7 words sampled from 5 individuals, 2 were 
misclassified, while among the 34 words sampled from 3 
individuals, 6 were misclassified. 

 
Figure 5. Confusion matrix of CNN+GRU model. 

3.4. Discussion 

In this study, the results obtained were compared only 
with studies conducted specifically on TSL to ensure 
fairness. The studies in the field of TSL are presented in 
Table 5. Among these studies, only five studies [3, 6, 9–
11] are directly related to our work, as they focus on 
recognizing static or dynamic words. The classification 
accuracies of these studies are lower than those of our 
work, with values of 93%, 93.93%, 93.59%, 95.7%, and 
90%, respectively. Additionally, two studies [4, 5] that 
are not directly related to our work demonstrate higher 
classification performance. The classification accuracy of 
these studies is 97.5% and 98.76%, respectively. 
However, the first of these studies [4] classifies only 29 
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TSL letters, while the other [5] classifies 10 TSL digits. In 
other words, it does not classify an expression or word. 
The process of classifying words or expressions is more 
complex and difficult. As a result, our study has a higher 
classification accuracy than similar studies in the 
literature. 

Table 5. Comparison of our study with previous studies 
on TSL. 

Study Classifier 
Data 
Acquisition 
Method 

Dataset ACC % 

Haberdar 
and 
Albayrak 
[10] 

HMM LMC 
50 static 
word 

95.7 

Memiş and 
Albayrak 
[11] 

KNN Kinect 
111 
static 
word 

90 

Demircioğlu 
et al. [9] 

RF, MLP LMC 
18 static 
word 

93.59 

Çelik and 
Odabaş [8] 

CNN+LSTM 
InceptionV3, 
real-time 

10 
number 
29 letter 

97 

Özcan and 
Baştürk [6] 

CNN Video 
25 
Dynamic 
word 

93.93 

Kircı, 
Durusan, 
Ozsahin [7] 

LSTM MediaPipe 29 letter None 

Pacal and 
Alaftekin 
[5] 

CNN-
ResNet 

Video 
10 
nımber  

98.76 

Katılmış 
and 
Kazakuru 
[3] 

Meta-ELM LMC 
26 
dynamic 
word 

93 

Karacı et al. 
[4] 

DNN 
LMC, real-
time 

29 letter 97.5 

This study 

CNN+GRU 

MediaPipe 

35 
dynamic 
word  
6 static 
word 

96.72 
GRU+Bi-
LSTM 

95.62 

Bi-LSTM 95.26 
GRU 94.53 
GRU+LSTM 93.80 
LSTM 92.34 

4.  Conclusion 

This study aims to recognize Turkish Sign Language 
(TSL) expressions with various deep learning models 
(GRU, LSTM, Bi-LSTM, CNN+GRU, GRU+LSTM, and 
GRU+Bi-LSTM). The models were trained and tested 
using the hold-out validation method. According to the 
results, the highest classification performance was 
achieved with the hybrid model that sequentially used 
CNN and GRU, which accurately classified 41 sign 
language words with an accuracy rate of 96.72%.The 
GRU+Bi-LSTM model provided the second-highest 
accuracy rate with 95.62%. The results show that deep 
learning models can classify Turkish Sign Language 
words with very high accuracy rates and that CNN and 
GRU combinations are especially effective in sign 
language recognition problems. In addition to the high 
accuracy rate of the CNN+GRU model, it was also found 
that the probability of making incorrect classifications is 
low with low false positive rates. In addition, when the 
classification results were analyzed, it was seen that 

incorrect classifications occurred mostly among dynamic 
words. The absence of significant classification errors 
between dynamic and static words indicates that the 
models can effectively distinguish between these two 
types of words. As a future study, a new dataset will be 
created for 452 TİD words included in Turkish Sign 
Language Course Teaching Material. This dataset will not 
only include landmarks points but also skeletal images. 
DL models will be created on both landmark data and 
skeleton images and these models will be combined.  
Additionally, the classification performance of these 
deep learning models for TİD words will be 
demonstrated in real-time. 
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