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Abstract 

In this study, the buckling behavior of carbon nanotube (CNT) reinforced nanobeams on an elastic foundation is 

investigated using the nonlocal elasticity theory and nonlocal finite element method within the framework of Euler-

Bernoulli beam theory. The effects of CNT volume fraction, nonlocal parameter, elastic foundation parameter and length-

to-thickness ratio on the critical buckling load are analyzed. CNT reinforced nanobeam is modeled considering short and 

long CNT reinforcements, and mechanical properties are determined by the rule of mixtures. To determine the critical 

buckling loads of CNT reinforced nanobeams, stiffness matrices and force vectors, including nonlocal effects, are derived 

based on the Euler-Bernoulli beam theory and analyses are carried out accordingly. The results show that increasing the 

CNT volume fraction significantly increases the critical buckling load, suggesting that CNTs play an essential role in 

strengthening the nanobeams. On the other hand, the nonlocal parameter negatively affects the critical buckling load and 

decreases the buckling strength of the nanobeam. However, the effect of the nonlocal parameter on the buckling strength 

is negligible. The elastic foundation parameter positively affects the critical buckling load and increases the buckling 

resistance. This finding indicates that the elastic foundation plays an important role in improving the structural stability 
of the nanobeams. The length-to-thickness ratio is another important parameter, indicating that long and thin nanobeams 

are more prone to buckling and the critical buckling load decreases with increasing this ratio. Since the effects of the 

above-mentioned four parameters on the buckling strength were determined using the finite element method, the results 

obtained will guide the subsequent numerical modeling studies of nano-sized beams. 

 

Keywords: Carbon nanotube (CNT) reinforced nanobeams, Critical buckling load, Elastic foundation parameter, Finite 

element method, Nonlocal elasticity theory 

 

Öz 

Bu çalışmada, elastik bir zemin üzerinde yer alan karbon nanotüp (KNT) takviyeli nanokirişlerin burkulma davranışı, 

Euler-Bernoulli kiriş teorisi çerçevesinde yerel olmayan elastisite teorisi ve yerel olmayan sonlu elemanlar yöntemi 
kullanılarak incelenmiştir. KNT hacim oranı, yerel olmayan parametre, elastik zemin parametresi ve uzunluk/kesit 

kalınlığı oranı gibi parametrelerin kritik burkulma yükü üzerindeki etkileri analiz edilmiştir. Kısa ve uzun KNT takviyeleri 

dikkate alınarak KNT takviyeli nanokiriş modellenmiş ve mekanik özellikler karışım kuramı kullanılarak belirlenmiştir. 

KNT takviyeli nanokirişlerin kritik burkulma yüklerinin belirlenebilmesi amacıyla, Euler-Bernoulli kiriş teorisine dayalı 

olarak yerel olmayan etkileri de içeren rijitlik matrisleri ve kuvvet vektörleri türetilmiş ve analizler bu doğrultuda 

gerçekleştirilmiştir. Sonuçlar, KNT hacim oranının artmasının kritik burkulma yükünü önemli ölçüde artırdığını 

göstermektedir, bu da KNT'lerin nanokirişleri güçlendirmede önemli bir rol oynadığını ortaya koymaktadır. Diğer 

yandan, yerel olmayan parametre kritik burkulma yükünü olumsuz etkilemekte ve nanokirişin burkulma dayanımını 

azaltmaktadır. Ancak yerel olmayan parametrenin burkulma dayanımına olan etkisi ihmal edilebilir düzeydedir. Elastik 

zemin parametresi ise kritik burkulma yükünü pozitif yönde etkilemekte olup, burkulma direncini artırmaktadır. Bu bulgu, 

elastik zeminin nanokirişlerin yapısal stabilitesini geliştirmede önemli bir rol oynadığını göstermektedir. Uzunluk/kesit 

kalınlığı oranı da bir diğer önemli parametre olup, uzun ve ince nanokirişlerin burkulmaya daha yatkın olduğunu ve bu 
oranın artmasıyla birlikte kritik burkulma yükünün azaldığını göstermektedir. Yukarıda belirtilen dört parametrenin 

burkulma dayanımına olan etkisi sonlu elemanlar yöntemi kullanılarak belirlendiği için bundan sonraki nano boyutlu 

kirişlerin sayısal olarak modellenmesi çalışmalarında elde edilen sonuçlar yol gösterici olacaktır. 

 

Anahtar kelimeler: Karbon nanotüp (KNT) takviyeli nanokirişler, Kritik burkulma yükü, Elastik zemin parametresi, 

Sonlu elemanlar yöntemi, Yerel olmayan elastisite teorisi 

https://dergipark.org.tr/tr/pub/gumusfenbil
https://orcid.org/0000-0003-1730-7810
https://orcid.org/0000-0003-2931-9501


Kafkas & Güçlü, 2025 • Volume 15 • Issue 1 • Page 105-121 

106 

1. Introduction 

 
Carbon nanotube (CNT) reinforced nanobeams have become an important research topic in nanotechnology 

and advanced materials science. The extraordinary mechanical properties of these nanomaterials are of great 

interest, especially in terms of key parameters that determine the durability of structures, such as critical 
buckling loads (Arshid et al., 2021). The high strength-to-weight ratio of carbon nanotubes makes them ideal 

reinforcement materials for composite structures (Suhr et al., 2005; Namilae & Chandra, 2006). With CNT 

reinforcement, nanoscale structures can exhibit significantly improved mechanical performance and lighter 

structures can be designed with higher load-carrying capacity (Pouresmaeeli & Fazelzadeh, 2017; Lal & 
Markad, 2019). CNT reinforced nanomaterials also play an essential role in energy storage devices. They are 

used primarily in lithium-ion batteries and supercapacitors to increase energy density and ensure durability in 

charge/discharge cycles (Baughman et al., 2002). In addition, CNT reinforced materials are used in sensor 
technology, especially in chemical and biological sensing systems; high sensitivity and fast response times are 

among the most essential advantages of these materials (Balasubramanian & Burghard, 2005). CNT reinforced 

nanobeams have been used in various industries due to their high strength, lightweight, and excellent 

mechanical properties. In particular, they are used in the aerospace and automotive sectors to produce more 
durable and lightweight composite materials (Esawi & El Borady, 2008). They are also used as microactuators 

and microresonators with low stiffness and high vibration frequencies in nano-electromechanical systems 

(NEMS) and micro-mechanical systems (MEMS) (Ashrafi et al., 2006). However, a complete understanding 
of the mechanical behavior of nanostructures still presents several challenges, especially in terms of prediction 

and control of unstable behavior such as buckling (Wang et al., 2007; Motevalli et al., 2012). Understanding 

the buckling behavior of nano-sized beams plays a critical role in predicting the performance of materials at 
nanoscales. In this context, buckling analyses of CNT reinforced nanobeams go beyond classical beam theories 

and include phenomena occurring at the nano level, such as quantum effects and size effects 

(Wattanasakulpong & Ungbhakorn, 2013). However, the exact modeling of buckling behavior in such beams 

is quite complex due to the heterogeneous structure of the material and the anisotropic properties of CNTs 
(Thang, 2019). In addition, such structures are usually located on an elastic medium such as soil, which can 

significantly affect the buckling behavior of the structures (Pradhan & Reddy, 2011; Yaylı, 2017). This study 

investigates the buckling behavior of CNT reinforced nanobeams resting on a Winkler-type elastic foundation. 
 

The Winkler-type elastic foundation model is a common technique that models soil effects with a simplified 

approach. In this model, the soil is represented as independent springs placed under each unit area and the 
stiffness coefficient of these springs depends on the properties of the foundation. Winkler-type elastic 

foundations consider the soil-beam interaction, which is an important parameter affecting the buckling 

behavior of structures (Pradhan & Reddy, 2011). It is thought that the buckling analysis of CNT reinforced 

nanobeams on an elastic soil will produce important results that will allow the determination of the necessary 
design parameters to optimize the safety and performance of structures (Thang, 2019). Considering the 

anisotropic properties of soil and CNTs together allows the design parameters of these structures to be 

determined more accurately (Setoodeh et al., 2015). 
 

Classical beam theories are generally valid for micro- and macro-scale structures and insufficient for analyzing 

nanoscale structures. More precise modeling of mechanical behaviors occurring in nanobeams requires 

advanced approaches such as nonlocal elasticity theory (Yaylı, 2019). Nonlocal elasticity theory reflects 
materials' stress and deformation behaviors at the nanoscale more realistically by considering long-range 

interactions between material points (Taghizadeh et al., 2016). In this context, nonlocal elasticity theory offers 

a more comprehensive approach than classical elasticity theories and plays an essential role in buckling 
analysis on nanoscale structures (Phadikar & Pradhan, 2010). Non-classical elasticity theories are not limited 

to nonlocal elasticity theory. There are many other theories. Some of them are: couple stress theory (Toupin, 

1962), micropolar theory (Eringen, 1967), modified couple stress theory (Yang et al., 2002), modified strain 
gradient theory (Lam et al., 2003), nonlocal strain gradient theory (Lim et al., 2015), second strain gradient 

theory (Mindlin, 1965), strain gradient theory (Aifantis, 1999), surface elasticity theory (Gurtin et al., 1998). 

 

 
The finite element method is widely used for the numerical solution of complex engineering problems. This 

method is based on a piecewise approach to simulate the mechanics of structures and predicts the behavior of 

the entire structure based on the solution of each element (Taghizadeh et al., 2016). The method has been 
extensively employed in macro- to micro- and nano-scales analyses. Numerous scholarly works document its 
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application to both static and dynamic examinations of beam structures—encompassing bending, buckling, 

and vibration—across these dimensional ranges. The finite element method is widely used in macro-scale for 
bending (Uhm & Youn, 2009; Kahya & Turan, 2017; Reddy et al., 2020; Song et al., 2022; Chi Tho et al., 

2023), vibration (Dai & Liu, 2007; Turan & Kahya, 2018; Pham et al., 2022; Bentrar et al., 2023; Turan & 

Hacıoğlu, 2023; Zhu et al., 2024) and buckling (Casafont et al., 2009; Feng et al., 2015; Turan & Kahya, 2021; 
Turan & Hacıoğlu, 2022; Yaylacı et al., 2023; Mesbah et al., 2023) problems. At the micro/nanoscale, the 

finite element method has been widely employed to investigate both static and dynamic responses in nano-

scale beam-type elements, including static bending (Demir et al., 2018; Uzun & Yaylı, 2022; Kafkas, 2024), 

vibration (Eltaher et al., 2013; Uzun et al., 2018; Civalek & Numanoğlu, 2020; Civalek et al., 2020a; Karamanli 
& Vo, 2022; Uzun et al., 2020; Uzun et al., 2021) and buckling (Tuna & Kirca, 2017; Aria & Friswell, 2019; 

Belarbi et al., 2021), within the framework of diverse theoretical models. The finite element method for the 

analysis of nanobeams is a powerful tool to account for the heterogeneous structure of materials, dimensional 
effects, and the effects of elastic foundation (Civalek et al., 2020b). By integrating the theory of nonlocal 

elasticity into the finite element method, many problems that cannot be solved analytically can be solved 

numerically. However, it can be stated that the classical analysis results are a special case of this formulation; 

therefore, the nonlocal theory offers a more general formulation. In addition, investigating the effects of 
nonlocal parameters and CNT reinforcement ratios is very important regarding material design and 

optimization (Wu & Yu, 2019). 

 
The nonlocal finite element method used in this study allows the determination of nanobeam buckling loads 

using the numerical solution method. The main objective of this study is to investigate the buckling behavior 

of CNT reinforced nanobeams on an elastic foundation and to determine the critical buckling loads. The effects 
of various parameters such as CNT reinforcement type, CNT volume fraction, Winkler-type elastic foundation 

parameter and nonlocal parameter on buckling loads are investigated in the study. While CNT reinforcement 

improves the mechanical performance of nanobeams, the effect of nonlocal parameters is essential in modeling 

the size effects on nanoscale structures. Moreover, the elastic foundation parameter affects the buckling 
behavior by considering the interactions with the soil beneath the beam. Each of these parameters is a critical 

factor to consider in the design and analysis of nanostructures. In the reviewed part of the literature, no study 

examined the effect of the specified parameters on the buckling strength of CNT reinforced nanobeams. In this 
study, since it was determined to what extent the parameters examined affect the buckling strength, the results 

obtained are expected to guide the stability analysis of nanobeams. In addition, the results obtained by taking 

the elastic foundation parameter as zero can also be used for nanobeams that do not rest on elastic foundations. 
 

2. Material and method 

 

2.1. Determination of material properties of CNT reinforced nanobeams 

 

In this study, determining material properties and predicting mechanical properties such as modulus of 

elasticity and shear modulus, necessary to understand the buckling behavior of CNT reinforced nanobeams, 
are based on the rule of mixtures and various scale-dependent parameters. Depending on the lengths and 

volume ratios of carbon nanotubes, the elastic properties of the materials change significantly. 

 

Figure 1 shows the schematic representation of a short (10,10) and long (10,10) single-walled carbon nanotube 
(SWCNT) reinforced simply supported nanobeam resting on a Winkler-type elastic foundation. Here, the 

numbers (10,10) represent the projections of the vectors in the atomic arrangement in the schematic structure 

of the carbon nanotube in a specific direction. The cross-section of the nanobeam with the beam axis as the 𝑥-

axis is also shown. The length of the beam is denoted by 𝐿, compressive axial force by 𝑁 and the cross-

sectional dimensions are denoted by 𝑏 and ℎ. 
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Figure 1. Short and long SWCNT reinforced nanobeam 

 
The formulas used in this study are based on the assumption that CNT reinforced composites exhibit isotropic 

behavior. Based on the rule of mixture, the longitudinal elastic modulus of CNT reinforced composites can be 

calculated with the following formula (Shen, 2009): 
 

𝐸11 = 𝜁1𝑉𝐶𝑁𝑇𝐸11
𝐶𝑁𝑇 + 𝑉𝑚𝐸

𝑚 (1) 

 
Here, 𝐸11 represents the longitudinal elastic modulus of CNT reinforced nanomaterial, 𝜁1 is the carbon 

nanotube efficiency parameter, while 𝑉𝐶𝑁𝑇 and 𝑉𝑚 represent the volume fractions of carbon nanotube and 

matrix, respectively. 𝐸11
𝐶𝑁𝑇 is the longitudinal elastic modulus of carbon nanotube and 𝐸𝑚 represents the elastic 

modulus of isotropic matrix material. 

 

At the same time, the transverse elastic modulus of CNT reinforced nanobeam is calculated as follows (Fattahi 

& Safaei, 2017): 
 

𝐸22 =
𝜁2

(
𝑉𝐶𝑁𝑇
𝐸22
𝐶𝑁𝑇 +

𝑉𝑚
𝐸𝑚)

 
(2) 

 

Here 𝐸22 and 𝐸22
𝐶𝑁𝑇 represent the transverse elastic modulus of CNT reinforced nanobeam and the transverse 

elastic modulus of carbon nanotube, respectively. The volume fractions are related by the equation 𝑉𝐶𝑁𝑇 +
𝑉𝑚 = 1. The 𝜁2 used in the formula is the carbon nanotube efficiency parameter reflecting scale-dependent 

material properties. These parameters were obtained by Fattahi and Safaei (2017) using molecular dynamics 
simulation corresponding to both short (10,10) and long (10,10) SWCNT composites embedded with 

amorphous polyethylene matrix, and these data are also used in this study. The relevant data are given in 

tabular form in Table 1.  
 

Table 1. CNT efficiency parameters (Fattahi & Safaei, 2017) 

 

𝑽𝑪𝑵𝑻 𝜻𝟏 𝜻𝟐 

Short CNT-reinforced   
5% 0.0254 1.0351 

10% 0.0443 1.2854 

15% 0.0628 1.7798 
25% 0.0740 1.8751 

Long CNT-reinforced   
5% 2.1577 1.1767 

10% 1.6354 1.4765 

15% 1.6868 2.0588 

25% 1.6531 2.1820 
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2.2. Obtaining finite element matrices for buckling problem 

 
The Euler-Bernoulli beam theory (EBT) is a classical theory used to analyze the bending behavior of a beam. 

The buckling problem analyzes the stability of the beam under the effect of axial compressive force N. In this 

section, stiffness matrices and force vectors of finite element analysis will be given. In particular, under axial 

compressive force and together with the Winkler-type elastic foundation parameter (𝑘), the nonlocal elasticity 
theory is also included in this analysis. 

 

According to the nonlocal elasticity theory, Hooke's law for linear, isotropic and elastic bodies in the case of 
uniaxial deformation is given by (Wang et al., 2006): 

 

𝜎(𝑥) − 𝜇
𝑑2𝜎(𝑥)

𝑑𝑥2
= 𝐸11𝜀(𝑥) (3) 

 

Here, 𝜎 is the nonlocal stress, 𝜀 is the nonlocal strain and 𝜇 is the nonlocal parameter from the nonlocal 
elasticity theory. The free body diagram of the differential length of the nanobeam is given Figure 2. 

 

 
 

Figure 2. Free body diagram of the differential length of the nanobeam 

 

By writing equilibrium equations for moments and forces in the transverse direction and then taking the limit 
of these equations  

 
𝑑𝑉

𝑑𝑥
= 𝑘𝑤(𝑥) (4) 

 
𝑑𝑀

𝑑𝑥
= 𝑉 +𝑁

𝑑𝑤

𝑑𝑥
 (5) 

 

identities are obtained. Here, 𝑤 is the transverse displacement, 𝑉 is the shear force and 𝑀 is the bending 

moment. The bending moment and axial strain are calculated from 

 

𝑀 = ∫𝑧𝜎𝑑𝐴

𝐴

 (6) 

 

𝜀 = −𝑧
𝑑2𝑤

𝑑𝑥2
 (7) 

 

Substituting equation (6) and (7) into equation (3) gives 

 

𝑀− μ
𝑑2𝑀

𝑑𝑥2
= −𝐸11𝐼

𝑑2𝑤

𝑑𝑥2
 (8) 

 

Here 𝐼 is the moment of inertia of the nanobeam. Equation (8) is the nonlocal constitutive equation of the 

nanobeam. By taking the derivative of equation (5) with respect to 𝑥 and using equation (4) 
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𝑑2𝑀

𝑑𝑥2
=
𝑑𝑉

𝑑𝑥
+ 𝑁

𝑑2𝑤

𝑑𝑥2
= 𝑘𝑤 + 𝑁

𝑑2𝑤

𝑑𝑥2
 (9) 

 

is obtained. Taking second order derivative of equation (8) and using equation (9) leads to  

 

𝑑2𝑀

𝑑𝑥2
= μ

𝑑4𝑀

𝑑𝑥4
− 𝐸11𝐼

𝑑4𝑤

𝑑𝑥4
= μ(𝑘

𝑑2𝑤

𝑑𝑥2
+𝑁

𝑑4𝑤

𝑑𝑥4
) − 𝐸11𝐼

𝑑4𝑤

𝑑𝑥4
 (10) 

 

Equating the right sides of equations (9) and (10) gives 
 

𝐸11𝐼
𝑑4𝑤

𝑑𝑥4
+ 𝑘𝑤 − 𝜇𝑘

𝑑2𝑤

𝑑𝑥2
+ 𝑁

𝑑2𝑤

𝑑𝑥2
− 𝜇𝑁

𝑑4𝑤

𝑑𝑥4
= 0 (11) 

 

the governing differential equation for buckling of the nanobeam rests on the Winkler-type elastic foundation. 

 
The analytical solution of equation (11) for the simply supported nanobeam will be obtained. The boundary 

conditions for this case are given as 

 

𝑤(0) = 𝑀(0) = 𝑤(𝐿) = 𝑀(𝐿) = 0 (12) 

 

To satisfy the given boundary conditions in equation (11), the transverse displacement function 𝑤(𝑥) is 

expressed by the 
 

𝑤(𝑥) = ∑𝑊𝑛 sin
𝑛𝜋𝑥

𝐿

∞

𝑛=1

 (13) 

 

half-range Fourier sine series expansion. Here 𝑊𝑛 are the Fourier coefficients. By substituting equation (13) 
in equation (11) 

 

∑(𝑘 +
𝑛2π2𝑘μ

𝐿2
+
𝑛4π4𝐸11𝐼

𝐿4
−
𝑛4π4μ𝑁

𝐿4
−
𝑛2π2𝑁

𝐿2
)𝑊𝑛 sin

𝜋𝑛𝑥

𝐿
= 0

∞

𝑛=1

 (14) 

 

is obtained. To satisfy equation (14) in the 0 <  𝑥 <  𝐿 interval, which is the domain of the differential 

equation (11), coefficients of every 𝑊𝑛 sin 𝜋𝑛𝑥/𝐿 term in equation (14) should be equal to zero, which gives 

 

𝑘 +
𝑛2π2𝑘μ

𝐿2
+
𝑛4π4𝐸11𝐼

𝐿4
−
𝑛4π4μ𝑁

𝐿4
−
𝑛2π2𝑁

𝐿2
= 0,           𝑛 ≥ 1 (15) 

 
condition. By arranging equation (15), one obtains the critical buckling loads of the nanobeam: 

 

𝑁𝑐𝑟
𝑛 =

𝑛2π2(μ𝑘 𝐿2 + 𝑛2π2𝐸11𝐼) + 𝑘𝐿
4

𝑛2π2(𝐿2 + 𝑛2π2μ)
,           𝑛 ≥ 1 (16) 

 

Here, 𝑁𝑐𝑟
𝑛  is the critical buckling load of the nanobeam for the 𝑛th mode. 

 

2.3. Galerkin finite element formulation 

 
Analytical solutions cannot be obtained in many cases due to the complexity of the governing equation(s), 

boundary condition(s), or the domain of the problem. The analytical solution is not in closed form, which is 

where they can be obtained in most cases. In the finite element method, the domain of the problem is divided 
into subdomains. According to the variational approximation method used, the governing equation's weighted 

integral form is satisfied on each subdomain. Thus, the problem's solution is transformed from the solution of 

the differential equation(s) to the solution of the system of algebraic equations. The algebraic equations 
obtained for each subdomain are combined using the conditions of continuity of the primary variables and 
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equilibrium of the secondary variables at the relevant nodes. The values of the primary and secondary variables 

are determined by solving the algebraic equation set of the entire system. The value of the primary variable at 
any point in the domain of the problem is determined by taking the linear combination of the shape functions 

and the primary variable values obtained at the nodes. The finite element method can numerically solve almost 

all engineering problems encountered. It is the most common and general numerical solution method in 
engineering fields. 

 

The finite element formulation is obtained using the weak-form Galerkin (Ritz) variational approximation 

method. The beam is analyzed by dividing it into small elements along its length. Nodes are assigned to the 
start and end points of each element. Since each node has two degrees of freedom (transverse deflection and 

rotation), each element's total degree of freedom is 4. These freedoms consist of the nodal generalized 

displacements 𝑤1 , 𝜃1, 𝑤2, 𝜃2 which are elements of the generalized displacement vector 𝐮 =
[𝑤1 𝜃1 𝑤2 𝜃2]

𝑻. The shape function vector 𝛗 of the beam, with the length of each element being 𝑙𝑒 , is 
given as follows (Reddy, 2002): 

 

𝛗 = [1 −
3𝑥2

𝑙𝑒
2 +

2𝑥3

𝑙𝑒
3      𝑥 −

2𝑥2

𝑙𝑒
+
𝑥3

𝑙𝑒
2      

3𝑥2

𝑙𝑒
2 −

2𝑥3

𝑙𝑒
3      −

𝑥2

𝑙𝑒
+
𝑥3

𝑙𝑒
2
] 

 

(17) 

The approximate transverse deflection of the nanobeam can be expressed as follows: 

 

𝑤𝑁 = 𝛗𝐮 = 𝜑1𝑤1 +𝜑2𝜃1 +𝜑3𝑤2 + 𝜑4𝜃2 (18) 

 
According to the theory of nonlocal elasticity, including the Winkler-type elastic foundation effect, to obtain 

the weak form of the governing differential equation for buckling, the 𝑍 residual can be expressed as follows: 

 

𝑍 = 𝐸11𝐼
𝑑4𝑤𝑁
𝑑𝑥4

+ 𝑘𝑤𝑁 − 𝜇𝑘
𝑑2𝑤𝑁
𝑑𝑥2

+𝑁
𝑑2𝑤𝑁
𝑑𝑥2

− 𝜇𝑁
𝑑4𝑤𝑁
𝑑𝑥4

  (19) 

 
To determine the weighted integral form of the differential equation, the shape functions 𝜑𝑖 are chosen as 

weight functions, the 𝑍 residual is multiplied by the weight functions and the resulting expression is integrated 

over the length of the nanobeam: 

 

∫ (𝛗𝑇𝐸11𝐼
𝑑4𝑤𝑁
𝑑𝑥4

+ 𝛗𝑇𝑘𝑤𝑁 − 𝛗
𝑇𝜇𝑘

𝑑2𝑤𝑁
𝑑𝑥2

+ 𝛗𝑇𝑁
𝑑2𝑤𝑁
𝑑𝑥2

−𝛗𝑇𝜇𝑁
𝑑4𝑤𝑁
𝑑𝑥4

)
𝐿

0

𝑑𝑥 = 0 (20) 

 
Applying the partial integration twice in equation (20) (this is Ritz formulation, also known as weak-form 

Galerkin formulation), the general form can be written as follows: 
 

∫ (𝐸11𝐼
𝑑2𝛗𝑇

𝑑𝑥2
𝑑2𝛗

𝑑𝑥2
+ 𝑘𝛗𝑇𝛗 + 𝜇𝑘

𝑑𝛗𝑇

𝑑𝑥

𝑑𝛗

𝑑𝑥
 − 𝑁

𝑑𝛗𝑇

𝑑𝑥

𝑑𝛗

𝑑𝑥
− 𝜇𝑁

𝑑2𝛗𝑇

𝑑𝑥2
𝑑2𝛗

𝑑𝑥2
)

𝐿

0

𝐮𝑑𝑥 

+(𝐸11𝐼𝛗
𝑇
𝑑3𝛗𝐮

𝑑𝑥3
)|
𝑥=0

𝐿

− (𝐸11𝐼
𝑑𝛗𝑇

𝑑𝑥

𝑑2𝛗𝐮

𝑑𝑥2
)|
𝑥=0

𝐿

− (𝜇𝑘𝛗𝑇
𝑑𝛗𝐮

𝑑𝑥
)|
𝑥=0

𝐿

+ (𝑁𝛗𝑇
𝑑𝛗𝐮

𝑑𝑥
)|
𝑥=0

𝐿

 

− (𝜇𝑁𝛗𝑇
𝑑3𝛗𝐮

𝑑𝑥3
)|
𝑥=0

𝐿

+ (𝜇𝑁
𝑑𝛗𝑇

𝑑𝑥

𝑑2𝛗𝐮

𝑑𝑥2
)|
𝑥=0

𝐿

= 0 

(21) 

 
The stiffness and buckling load matrices of the CNT reinforced nanobeam are obtained by substituting the 
shape functions in equation (17) into equation (21) and taking the integrals one by one. These matrices are 

defined as follows: 

 

𝐊𝐸 = 𝐸11𝐼 ∫

{
 

 
𝜑1
′′

𝜑2
′′

𝜑3
′′

𝜑4
′′}
 

 𝑙𝑒

0

{𝜑1
′′   𝜑2

′′   𝜑3
′′   𝜑4

′′}𝑑𝑥 =
𝐸11𝐼

𝑙𝑒
3

[
 
 
 
12 6𝑙𝑒 −12 6𝑙𝑒
6𝑙𝑒 4𝑙𝑒

2 −6𝑙𝑒 2𝑙𝑒
2

−12 −6𝑙𝑒 12 −6𝑙𝑒
6𝑙𝑒 2𝑙𝑒

2 −6𝑙𝑒 4𝑙𝑒
2 ]
 
 
 

 (22) 
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𝐊𝑘1 = 𝑘∫ {

𝜑1
𝜑2
𝜑3
𝜑4

}
𝑙𝑒

0

{𝜑1   𝜑2   𝜑3   𝜑4}𝑑𝑥 =
𝑘

420

[
 
 
 
 
156𝑙𝑒 22𝑙𝑒

2 54𝑙𝑒 −13𝑙𝑒
2

22𝑙𝑒
2 4𝑙𝑒

3 13𝑙𝑒
2 −3𝑙𝑒

3

54𝑙𝑒 13𝑙𝑒
2 156𝑙𝑒 −22𝑙𝑒

2

−13𝑙𝑒
2 −3𝑙𝑒

3 −22𝑙𝑒
2 4𝑙𝑒

3 ]
 
 
 
 

 (23) 

 

𝐊𝑘2 = 𝜇𝑘∫

{
 

 
𝜑1
′

𝜑2
′

𝜑3
′

𝜑4
′}
 

 𝑙𝑒

0

{𝜑1
′    𝜑2

′    𝜑3
′    𝜑4

′ }𝑑𝑥 =
𝜇𝑘

30𝑙𝑒
[
 
 
 
36 3𝑙𝑒 −36 3𝑙𝑒
3𝑙𝑒 4𝑙𝑒

2 −3𝑙𝑒 −𝑙𝑒
2

−36 −3𝑙𝑒 36 −3𝑙𝑒
3𝑙𝑒 −𝑙𝑒

2 −3𝑙𝑒 4𝑙𝑒
2 ]
 
 
 

 (24) 

 

𝐁𝑁1 = 𝑁∫

{
 

 
𝜑1
′

𝜑2
′

𝜑3
′

𝜑4
′}
 

 𝑙𝑒

0

{𝜑1
′    𝜑2

′    𝜑3
′    𝜑4

′ }𝑑𝑥 =
𝑁

30𝑙𝑒
[
 
 
 
36 3𝑙𝑒 −36 3𝑙𝑒
3𝑙𝑒 4𝑙𝑒

2 −3𝑙𝑒 −𝑙𝑒
2

−36 −3𝑙𝑒 36 −3𝑙𝑒
3𝑙𝑒 −𝑙𝑒

2 −3𝑙𝑒 4𝑙𝑒
2 ]
 
 
 

 (25) 

 

𝐁𝑁2 = 𝜇𝑁∫

{
 

 
𝜑1
′′

𝜑2
′′

𝜑3
′′

𝜑4
′′}
 

 𝑙𝑒

0

{𝜑1
′′   𝜑2

′′   𝜑3
′′    𝜑4

′′}𝑑𝑥 =
𝜇𝑁

𝑙𝑒
3

[
 
 
 
12 6𝑙𝑒 −12 6𝑙𝑒
6𝑙𝑒 4𝑙𝑒

2 −6𝑙𝑒 2𝑙𝑒
2

−12 −6𝑙𝑒 12 −6𝑙𝑒
6𝑙𝑒 2𝑙𝑒

2 −6𝑙𝑒 4𝑙𝑒
2 ]
 
 
 

 (26) 

 
As can be understood from here, the system stiffness matrix is 𝐊 = 𝐊𝐸 + 𝐊𝑘1 +𝐊𝑘2 and 𝐁 = 𝐁𝑁1 +𝐁𝑁2 is 
the force vector, the critical buckling load is obtained by solving the following eigenvalue problem (Phadikar 

& Pradhan, 2010): 

 
|𝐊 − 𝜆𝐁| = 0 (27) 

 

𝜆 =
𝑁

𝑁𝑐𝑟
 (28) 

 
Here 𝑁𝑐𝑟 represents the critical buckling load. 
 

3. Results and discussion 

 

This section investigates the effects of different parameters on the buckling behavior of CNT reinforced 

nanobeams. An analysis will be made for the buckling performance of nanobeams using variables such as 

nonlocal parameter, elastic foundation parameter, beam length-to-thickness ratio and CNT volume fraction. 

The calculations made for short and long CNT reinforced nanobeam models with different CNT volume 
fractions will be evaluated in detail by considering various foundation stiffnesses and beam geometries. The 

effects of these parameters on the buckling strength and stiffness of nanobeams will be explained with the help 

of tables and figures. 
 

The elastic foundation is a parameter that directly affects the stability and buckling behavior of the beam and 

is used to model the effects of foundation stiffness on the beam. The elastic foundation parameter k is based 
on a Winkler-type foundation model and represents the force required for the foundation to make a unit 

displacement corresponding to the displacements at different points of the beam. The dimensionless parameter 

𝐾𝑊  is expressed by the following formula: 

 

𝐾𝑊 =
𝑘𝐿4

𝐸11𝐼
 (29) 

 
The nanobeam analyzed in this study is manufactured from CNT reinforced composite material. In particular, 

SWCNTs with (10,10) armchair structure and a polyethylene matrix with isotropic behavior are used. The 
properties of the nanobeam obtained by combining these two materials are based on data from the literature. 

The elasticity modulus of the polyethylene matrix is taken as 𝐸𝑚 = 3.22 GPa at room temperature and the 
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elasticity modulus of the (10,10) armchair SWCNT used as carbon nanotube reinforcement was taken as 

𝐸11
𝐶𝑁𝑇 = 600 GPa and  𝐸22

𝐶𝑁𝑇 = 10 GPa (Popov et al., 2000; Fattahi & Safaei, 2017).  

 

These properties define the mechanical behavior of SWCNT and the effective elasticity and shear moduli of 
the nanobeam are calculated using the rule of mixtures. The CNT volume fractions during the calculations 

were taken as 𝑉𝐶𝑁𝑇 = 0.05, 0.10, 0.15 and 0.25. Throughout the study, beam cross-sectional dimensions are 

taken as 𝑏 = ℎ = 10 nm. In cases where the 𝐿/ℎ ratio is 10 and above, the contribution of shear deformations 

to the strain energy remains below 5%. In this study, Euler-Bernoulli beam theory is used since solutions are 

obtained for 𝐿/ℎ = 10. 

 

Table 2 presents the 𝑁𝑐𝑟 values obtained from the exact solution in this study and given in Equation (16), and 

the finite element models using different numbers of elements (𝑁𝑒). For this comparison study, 𝑉𝐶𝑁𝑇 = 0 and 

the beam parameters are set as 𝐾𝑊 = 10, 𝐸11 = 𝐸
𝑚 = 3.22 GPa, 𝜇 = 1, and 

𝐿

ℎ
= 10. 

 

Table 2. Comparison of the first 5 modes 𝑁𝑐𝑟 values (N) for a simply supported nanobeam  

 

Mode Eq. (16) 
FEM Eq. (27) 

𝑁𝑒 = 5 𝑁𝑒 = 10 𝑁𝑒 = 15 𝑁𝑒 = 20 𝑁𝑒 = 25 𝑁𝑒 = 30 

1 2.9176 2.9182 2.9176 2.9176 2.9176 2.9176 2.9176 

2 10.6197 10.6534 10.6219 10.6201 10.6198 10.6197 10.6197 

3 23.6554 24.0040 23.6800 23.6604 23.6570 23.6561 23.6558 

4 41.7318 43.4329 41.8634 41.7588 41.7408 41.7354 41.7335 

5 64.6252 78.1660 65.0994 64.7327 64.5538 64.6384 64.6316 

 
The results in Table 2 show that the finite element solution given in Eq. (27) closely matches the analytical 

solution. The first mode frequencies show a remarkable agreement for all finite element models, confirming 

the accuracy of the finite element model for low buckling modes. For higher modes, slight discrepancies are 
observed when fewer elements are used. However, these differences decrease significantly as the number of 

elements increases in the finite element model. In this study, 𝑁𝑒 = 30 is taken for the finite element models. 

Tables 3-4 and Figures 3-4 show the effects of nonlocal parameters and CNT volume fractions on the critical 

buckling load for short and long CNT reinforced nanobeams. 𝐾𝑊 = 10 and 
𝐿

ℎ
= 10 values are used during the 

analysis. 
 

Table 3. 𝑁𝑐𝑟 values (N) of short CNT reinforced nanobeam for different 𝜇 and 𝑉𝐶𝑁𝑇 parameters 

 

VCNT 
µ (nm

2
) 

0 0.1 0.5 1 1.5 2 2.5 3 4 5 

5% 3.465 3.465 3.464 3.462 3.461 3.459 3.458 3.456 3.453 3.450 

10% 5.042 5.042 5.040 5.038 5.036 5.033 5.031 5.029 5.024 5.020 

15% 7.609 7.608 7.605 7.602 7.599 7.595 7.592 7.589 7.582 7.575 

25% 12.252 12.251 12.247 12.241 12.236 12.230 12.225 12.219 12.209 12.198 
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Figure 3. 𝑁𝑐𝑟 values of short CNT reinforced nanobeam for different 𝜇 and 𝑉𝐶𝑁𝑇 parameters 

 

Table 4. 𝑁𝑐𝑟 values (N) of long CNT reinforced nanobeam for different 𝜇 and 𝑉𝐶𝑁𝑇  parameters 
 

VCNT 
µ (nm

2
) 

0 0.1 0.5 1 1.5 2 2.5 3 4 5 

5% 61.479 61.473 61.451 61.424 61.396 61.369 61.342 61.314 61.260 61.205 

10% 91.615 91.607 91.574 91.533 91.492 91.451 91.411 91.370 91.288 91.207 

15% 140.162 140.149 140.099 140.036 139.974 139.911 139.849 139.786 139.662 139.537 

25% 227.070 227.050 226.968 226.867 226.766 226.664 226.563 226.462 226.260 226.059 

 

 
 

Figure 4: 𝑁𝑐𝑟 values of long CNT reinforced nanobeam for different 𝜇 and 𝑉𝐶𝑁𝑇 parameters 

 
Tables 3-4 and Figures 3-4 show that the critical buckling load increases significantly as the CNT volume 

fraction increases regardless of whether long or short CNT reinforcement is used. This shows that CNT 

reinforcement increases the stiffness and buckling strength of the nanobeam. This increase is slightly higher 
for long CNT reinforced nanobeams. As the nonlocal parameter increases, the critical buckling load decreases, 

but this decrease is almost imperceptible. This means that the nonlocal parameter does not affect the buckling 

load. The resulting formulation is more complex when the nonlocal elasticity theory is used in the beam model. 

Still, the effect of the nonlocal parameter on the buckling load is almost negligible. Therefore, there is no need 
to use nonlocal elasticity theory in the beam model. 

 

Tables 5-6 and Figures 5-6 show the effects of dimensionless elastic foundation parameters and CNT volume 

fractions on the critical buckling load for short and long CNT reinforced nanobeams. 𝜇 = 0.5 and 
𝐿

ℎ
= 10 

values are used during the analysis. 
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Table 5. 𝑁𝑐𝑟 values (N) of short CNT reinforced nanobeam for different 𝐾𝑊  and 𝑉𝐶𝑁𝑇 parameters 

 

VCNT 
𝑲𝑾 

0 1 2 3 4 5 10 20 50 

5% 3.141 3.173 3.206 3.238 3.270 3.302 3.464 3.786 4.754 

10% 4.571 4.618 4.665 4.711 4.758 4.805 5.040 5.510 6.918 

15% 6.897 6.968 7.039 7.110 7.180 7.251 7.605 8.314 10.439 

25% 11.106 11.220 11.334 11.448 11.562 11.676 12.247 13.387 16.810 

 

 
 

Figure 5. 𝑁𝑐𝑟 values of short CNT reinforced nanobeam for different 𝐾𝑊  and 𝑉𝐶𝑁𝑇 parameters 
 

Table 6. 𝑁𝑐𝑟 values (N) of long CNT reinforced nanobeam for different 𝐾𝑊  and 𝑉𝐶𝑁𝑇 parameters 

 

VCNT 
𝑲𝑾 

0 1 2 3 4 5 10 20 50 

5% 55.728 56.300 56.872 57.445 58.017 58.589 61.451 67.175 84.347 

10% 83.045 83.898 84.751 85.604 86.456 87.309 91.574 100.104 125.692 

15% 127.050 128.355 129.659 130.964 132.269 133.574 140.099 153.148 192.296 

25% 205.828 207.942 210.056 212.170 214.284 216.398 226.968 248.109 311.531 

 

 
 

Figure 6. 𝑁𝑐𝑟 values of long CNT reinforced nanobeam for different 𝐾𝑊  and 𝑉𝐶𝑁𝑇 parameters 

 
When Tables 5-6 and Figures 5-6 are examined, it can be understood that the increase in CNT volume fractions 

increases the critical buckling loads. This increase is slightly higher for long CNT reinforced nanobeams. As 

a result of increasing the 𝑉𝐶𝑁𝑇 value at different 𝐾𝑊  values, the proportional increase in the critical buckling 
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load does not change. In other words, regardless of the 𝐾𝑊  value, the change in the 𝑉𝐶𝑁𝑇 value affects the 

critical buckling load strength proportionally in the same way. The same goes for vice versa; i.e., regardless of 

the 𝑉𝐶𝑁𝑇 value, the change in the 𝐾𝑊  value affects the critical buckling load strength proportionally in the 

same way. When one of the parameters is kept constant and the other parameter is increased equally in both 

cases, the 𝑉𝐶𝑁𝑇 parameter increases the critical buckling load strength more than the 𝐾𝑊  parameter. 

 
Tables 7-8 and Figures 7-8 show the effects of the length-to-thickness ratio of the CNT reinforced nanobeams 

and different CNT volume fractions on the buckling behavior of short and long CNT reinforced nanobeams.  

𝜇 = 1 and 𝐾𝑊 = 20 values are used during the analysis. 
 

Table 7. 𝑁𝑐𝑟 values (N) of short CNT reinforced nanobeam for different 𝐿 ℎ⁄  and 𝑉𝐶𝑁𝑇 values 

 

VCNT 
L/h 

5 10 20 50 

5% 15.1021 3.7848 0.9468 0.1515 

10% 21.9754 5.5073 1.3777 0.2205 

15% 33.1607 8.3105 2.0789 0.3327 

25% 53.3970 13.3820 3.3476 0.5357 

 

 
 

Figure 7. 𝑁𝑐𝑟 values of short CNT reinforced nanobeam for different 𝐿 ℎ⁄  and 𝑉𝐶𝑁𝑇 values 
 

 

Table 8. 𝑁𝑐𝑟 values (N) of long CNT reinforced nanobeam for different 𝐿 ℎ⁄  and 𝑉𝐶𝑁𝑇 values 
 

VCNT 
L/h 

5 10 20 50 

5% 267.9336 67.1477 16.7972 2.6880 

10% 399.2720 100.0628 25.0311 4.0057 

15% 610.8443 153.0856 38.2949 6.1282 

25% 989.6034 248.0076 62.0400 9.9281 

 

 
When Tables 7-8 and Figures 7-8 are analyzed, it is seen that the critical buckling load decreases as the length-

to-thickness ratio of the nanobeam increases. This indicates that longer and thinner beams are more prone to 

buckling. In addition, according to the Euler-Bernoulli beam theory, the critical buckling load depends 

primarily on the flexural rigidity and length of the beam. In particular, the critical buckling load is inversely 

proportional to the length of the beam. Therefore, as the 𝐿 ℎ⁄  ratio increases (i.e., 𝐿 increases), the critical 

buckling load decreases rapidly.  
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Figure 8. 𝑁𝑐𝑟 values of long CNT reinforced nanobeam for different 𝐿 ℎ⁄  and 𝑉𝐶𝑁𝑇 values 
 

4. Conclusion 

 
This study investigates the buckling behavior of short and long CNT reinforced nanobeams resting on elastic 

foundations. The effects on the critical buckling load are evaluated by considering various parameters such as 

short or long CNT reinforcement, CNT volume fraction, nonlocal parameter, elastic foundation parameter and 

length-to-thickness ratio of the nanobeam. 
 

The results showed that an increase in the CNT volume fraction significantly increases the buckling strength 

of the nanobeam. CNT reinforcement strengthens the nanobeams' buckling strength, leading to higher critical 
buckling loads. CNT volume fraction is the most crucial parameter affecting buckling strength. This effect is 

observed for both short and long CNT reinforcements. The critical buckling loads of long CNT reinforced 

nanobeams are higher than those of short CNT reinforced nanobeams. This reveals that long CNTs contribute 
more to the mechanical performance of the nanobeam. 

 

One of the most important results of this study is that the nonlocal parameter does not practically affect the 

buckling strength. Therefore, there is no need to use the nonlocal elasticity theory in mathematical modeling, 
which leads to a more complex formulation. 

 

The elastic foundation parameter is another critical factor affecting the buckling behavior of the nanobeam. A 

significant increase in the critical buckling load was observed with the rise of the 𝐾𝑊  value. This result shows 

that the nanobeam exhibits a stronger buckling strength when placed on the elastic foundation. The elastic 

foundation parameter strengthens the structural integrity of the nanobeam and increases its resistance to 

buckling.  
 

Finally, it is found that the critical buckling load decreases as the length-to-thickness ratio of the nanobeam 

increases. This result indicates that longer and thinner nanobeams are more prone to buckling. As the length-
to-thickness ratio of the nanobeam increases, the structure's stability decreases, negatively affecting the 

buckling resistance. This parameter, together with the CNT volume fraction parameter, is the parameter that 

most affects the buckling strength of the nanobeam. Since the buckling strength will be significantly reduced, 
especially in long, thin beams, this negative effect can be mitigated by using a high CNT volume fraction.  
 
In the design of nanobeams resting on a Winkler-type elastic foundation, particular attention should be paid to 
the CNT volume fraction and length-to-thickness ratio parameters. 
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