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Abstract

This article aims to define the M-derivative double Laplace
transform, which is the general form of the six-parameter
conformable derivative involving the Mittag-Leffler function. It
is expressed with several theorems and will give us a useful and
dependable method for solving fractional M-derivative partial
differenial equations. Furthermore, the application of these
given definitions and theorems to fractional partial differential
equations is shown. Finding solutions to partial differential
equations containing M-derivatives that can match
mathematical, engineering, and physical mode Is may be
accomplished with the use of this transformation.

Keywords M-derivative, Laplace transform, Double M-Derivative,
Truncated Mittag-Leffler function.

Oz

Bu makale, Mittag-Leffler fonksiyonunu igeren alti parametreli
uyumlu tirevin genel formu olan M-tirevi cift kath Laplace
donlsimind tanimlamayr amaglamaktadir. Birkag teoremle
ifade edilir ve bize M-tirevi kismi diferansiyel denklemleri
¢6zmek icin kullanisli ve glvenilir bir yontem verecektir. Ayrica,
verilen bu tanim ve teoremlerin kesirli kismi diferansiyel
denklemlere  uygulanmasi  gosterilmistir.  Matematiksel,
mihendislik ve fiziksel modellerle eslesebilecek M-tirevlerini
iceren kismi diferansiyel denklemlere ¢oziimler bulmak, bu
dontgiimian kullanilmasiyla gergeklestirilebilir.

Anahtar Kelimeler M-tiirev, Laplace donisimi, iki kath M- Laplace
donustimi, Mittag Leffler fonksiyonu

1. Introduction

One of the most significant studies conducted by
humanity to better comprehend nature is described in a
letter L'Hospital wrote to Leibniz in 1695 and which
establishes the terms derivative and integral, the building
blocks of fractional calculations. Following this letter, it
caught the interest of other scientists, leading to the
substantial contributions of numerous mathematicians
including Euler, Lagrange, Laplace, Lacroix, Fourier,
Liouville, Riemann, Greer, Holmgren, Griinwald, Letnikov,
Sonin, Laurent, Nekrassov, Krug, and Weyl [Kurt 2018,
Ozkan and Kurt 2018]. Their contributions have helped
physics, engineering, and other scientific fields advance.
In recent vyears, there have been numerous
advancements in the field of fractional calculus, as well as
numerous definitions of fractional derivatives. Riemann-
Liouville, Caputo, Griwald-Letnikov, Hadamard,
Marchaud, Riesz, Wely, and Erdely-Kober are a few of the
authors who defined fractional derivative definitions
[Kilbas 2006]. The Riemann-Liouville fractional nonlocal
derivative had certain drawbacks, thus Caputo defined a

new non local fractional derivative in 1967 that was

superior to many other fractional non local derivatives.
But since the derivative of the resultant function, product,
and quotient of two functions is not defined by these non-
Khail
colleagues defined the local conformable derivative
[Khalil, R., Horani, M. Al., Yousef, A., Sababheh, M. 2014]
and the local conformable integral [J.V.D.C Sousa, E.C. de

local fractional derivative definitions, and his

Oliveira, 2017], which are close to the classical derivative.

Additionally, Abdeljawad developed the chain rule,

exponential functions, Gronwall's inequality, partial
integration, Taylor series expansion, which are some
important features of the harmonic derivative, and
defined the Laplace transform in terms of the harmonic
derivative [Abdeljawad, T., 2015]. Another type of local
derivative and integral was defined by Katugampola
[Katugampola, U.N., 2011]. In 2018, Ozkan and Kurt
expressed and proved certain fundamental features of
the conformable Laplace transform, and then they used
these properties to get the solutions of conformable
fractional integral and integro-differential equations. In a
different work, Ozkan and Kurt defined the double

conformable Laplace transform and discussed some of its
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characteristics. Using these characteristics, they were
able to fully solve the conformable fractional-order heat
and telegraph problem [Kurt 2018, Ozkan and Kurt 2018].
Jarad F., Ugurlu E., Abdeljawad T. and Baleanu, D.,
investigated definitions and theorems in conformable
fractional partial derivatives in 2017 [Jarad, F., Ugurlu, E.,
Abdeljawad, T. and Baleanu, D., 2017]. The M -derivative,
a brand-new local derivative using the Mittag-Leffler
function, was published in 2017 by Sousa and Oliveira
[J.V.D.C Sousa, E.C. de Oliveira, 2017]. The characteristics
of integer-order computations are satisfied by this newly
found M-derivative. [Katugampola, U.N., 2011]. In 2020,
Jarad F. and Abdeljawad T. examined the convolution

theorem and Laplace transform in comformable
derivatives [larad, F., Abdeljawad, T., 2020]. The
spectrum solutions of differential equations with

fractional M-derivatives under starting circumstances
were studied in 2020 by Bas E. and Acay B. [Bas, E., Acay,
B., 2020]. Bas, Acay, and Abdeljawad published this work
to scientific resources in 2020 after obtaining the
corresponding values of the M-derivative in Laplace
transforms [Bas, E., Acay, B., and T. Abdeljawad, 2020].

2. Description of the truncated M-derivative and some
fundamental tools

Definition 2.1. The fractional M-derivativefor0 < <1

is;

9(tiEg(et™F))-g(t)
&

DyPg(t) = lim (1)
it's described as [Jarad, F., Ugurlu, E., Abdeljawad, T. and

Baleanu, D., 2017].

Definition 2.2. The left M-integral of an integrable
function f,(a,t] with a=>0,t>a, and 0<p <1is
defined as [Bas, E., Acay, B., and T. Abdeljawad, 2020]:

W3 F(©) = [ F(0)d,(a, %)

=y +1) [} f()(x — @)P~ dx. 2

where d,(x,a) = I'(y + D(x —a)?™" d,x
written, and if the M-integral from the right at the point
a =0 is defined as follows [Bas, E., Acay, B., and T.
Abdeljawad, 2020]:

can be

1Iuf ) = [} f()d,(b,x)

=Ty + 1 [ FQ)(b - x)Pdx. (3)

Definition 2.3. Let f,g:[a,b]> Rand f,g
differentiable functions and 0 < p < 1. Then the partial
integration of the M-derivative from the left and right
respectively is as follows [Bas, E., Acay, B., and T.
Abdeljawad, 2020]:

b
r(y+1) f (t — a)P~* £(£) Dy g(t)dt

=f©).9OL - T+ [ (t—a) " g®
x Dy PY f(£)dt. (4)

and
Fy+1) [t —a)* " () Dy g()dt = f(£)g ()12

+I+1D [ (b - )P g(® Dy F(D)dt. (5)

Definition 2.4. Let f: [a,0)— R be a real-valued function,
a ER,y>0and 0<p <1 In this case, the Laplace
transform of the M-derivative of the function f is;

Loy (O}(s) = Fyy(s)

r(y+1)(t—a)P

=+ [, e »  fOE-ardt  (6)

itis defined as [Bas, E., Acay, B., and T. Abdeljawad 2020].

Theorem 2.1. Let f:[a,00)— R be a defined function.
LEAf(®)}(s) = Fg,(s) and from the classical Laplace
transform

o0 =0 =y e+ ()] o

the expression is obtained by [Bas, E., Acay, B., and T.
Abdeljawad, 2020].

Definition 2.4. Let the functions f(t) and g(t) have a
piecewise continuous and exponential order, the
convolution integral of the functions f and g on the M-
derivative is

Fr@®)=Ty+1)

x [ f@ga+ (-0 - - —arae
(8)

it is defined as
2020].

[Bas, E., Acay, B., and T. Abdeljawad,

Theorem 2.2. g:[a, @)= R, a €R, 0<p <1 Y>0,
s> 0andlet f(t) and g(t) be functions such that

LEf (@) 1()=Fg (s) and LE, [ g(£)](s)=Gg(s)
To ensure the conditions
LEASf * ght)= Fph(s)- G5y (s),

the operation { f * g } defined by its equality, is called the
convolution of functions f and g [Bas, E., Acay, B., and T.
Abdeljawad, 2020].

We can express the double Laplace transformations
of some functions by means of the M-derivative in the
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following table [Bas, E., Acay, B., and T. Abdeljawad,

2020]:
o L4 {1}(s) = 3,5 > 0.
(t- a)p B r@+1)
° {(F(Y +1) ) }(s) =5
Re([)’) >0,s> 0.
1
+1)( )
o L2 {t}(s) = ()p% s> 0.
s P
o L2{tNY(s) = G ) “) , s>0and k is any
ST

constant.

tP
o L2, {ecr(wl)?} (s) = i , s>c and c is any

constant.
a tP cl"(y+1) _ .
o s, {F(Y+ n- ; }( )= c)2' c is any
constant.
o Ly {sm(b ry+1 —)} (s)= m, b is any
constant.
a t .
e Ly {COS(b Fy+1) p} ($)=7 2+52, is any
constant.
. Lg,y{ ~erry sin(b T(y + 1) }(s)
b .
= 37 eror b and c is any constant.
. Lf,’,y{ ~er(y+t )P cos(bT(y+1) }(s)
s+c .
i b and c is any constant.

3. Main Theorical Results and Applications

Definition 3.1. Let u(x,t) be a piecewise continuous
function on the interval [0, ) X [0, ) of exponential
order. Consider for some y,0 >0

[u(x.0)l

SUPyx>0,t>0 < o0, Under these conditions

t* x
eF(Y+1)7+F(U+1)T

M —derivative double Laplace transform is defined by

ML Ll u(x, 3= U(p, )
© o0 xB o
= f f r'(o+ 1)e_pr(a+1)71"(y + 1)e ST+
o Jo

xu(x, t)dgtdgx (9)

where p,s € ¢,0 < a, B <1 and the integrals are by
means of conformable fractional integral with respect to
t and x respectively.

Theorem 3.1. Let u(x, t), v(x,t) be two functions which
have the M-Derivative double Laplace transform and
¢, ER

MpaM pBec ulx, t) + cv(x, )}
= o MLEM Ll fulx, )+ ¢ MLEM L (v (x, 1)) (10)

equality is ensured, that is ML?‘ML,/: the operator is

linear.

Proof. The theorem is easily proved easily by using the
linearity property of the double Laplace transform with
the definition of double M-Laplace.

Theorem 3.2. u(x, t) is a function that provides a double

M-Laplace transform, and the ML?‘MLf transform, c,d €
R, provides the translation property as follows.

—CF(U+1)£—(1F( +1)£
ML?MLf{e gy “uQaﬂ}

=U(p+c¢,s+d).

—cF(a+1) dl"(y+1)

Proof. If the function e ay(x,t) is
written instead of the function u(x,t) expressed in the
equation (9) in the definition of the M-derivative Laplace
transform,

—F(y+1)F(o+1)

f J. pI"(o'+1) —sl"(y+1)— —cF(zr+1)——dl"(y+1)au(x t)d tdﬁx

=J'0 F(Y + 1)e—sl"(y+1)7—d1"(y+1)—

—pF(a+1) c[‘(0'+1)

X[foool“(o +1e B u(x, t)dgx|d

(11)

is obtained. If we consider the definition of M-Laplace
transform

[oe]

& t&
- f Iy + De STOVT IO+ DT 15 p + ¢, £)] d, t
0

=U(p+cs+d)
it is found, which completes the proof.

Theorem 3.3. The function u(x, t) is B with respect to x.
according to order and t, a. the double M —derivative
Laplace transforms of the fractional partial derivatives of
order, MLEMLP[u(x,0)]=U(p,s), B and a of the
function u(x,t) the double M-derivative Laplace
transformations of order fractional partial derivatives are
respectively

(@) MLEMLE (D Pux, )} =pU(p,5) —U(0,5)  (10)
@@i) MLEMLE (D u(x, )} = sU(,s) —U(p,0) (1)
(i) MLEMLE {4y D, D “ux, 1)}

=psU(p,s) —pU(p,0) —s U(0,s) + U(0,0) (12)

it is expressed in the form.
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Proof.

(D) (9) if u(x,t) is written instead of the function

MDxBu(x, t) in the double M-Laplace transform given by
the definition

MLEMLY (D u(x, )
B
<[y Jy T+ e
xI'(y+ 1)e_SF(Y+1)_[ D, Pu(x, t)]dgxd,t
oo _ t
=fy Ty + DT Ve

o) xB
x U r(c+ 1)e_pr(a+1)7 [14D:Pulx, t)]d,;x] d,t
0

G e
0

pF(J+1)

x [1"(0 +1) fo /3 [14D:Pu(x, t)]dﬁx]

[oe]

_(® —sl"(y+1)£ —pI"(U+1)ﬁ
-fo 'y +De a | u(x, t)e B

0

pF(o+1)

o0 [T+ D™V g, t))d[;x>

o _ e«
=[7T(y+ De Y Ve pUp, ) — U0, )] dyt

o _ L5
=p [Ty + De VT U, t)d,t

oo _ Lo
— [Ty + e YT U(0,0)d,t
=pU(p,s) — U(O,s)
is acquired.

(ii) (9) the proof is made if ,,D,*u(x, t) is written instead
of the function u(x, t) in the double M-Laplace transform
given by the definition and the operations of Theorem 3.3
(i) are repeated.

(iii) (9) if the double M-Laplace transform given by the
equation M£&EMcPe, D B, D %u(x,t)} is taken instead
of the function u(x, t) in the definition,

xB

=f0°° I'(c+ 1)e_pr(a+1)7

o _ t
x[fo ry+1)e "% [0, D “u(x, t)]dat] dgx

xB
=f000 1_'(0_ + 1)e—p1“(a+1)?

[oe] ta
x [F(Y + 1)] e—SF(Y+1)7 [MDXBMDtau(x’ t)]dat:| dl;x
0

B
X
=f0°°I"(G + 1)e_pr(a+1)7

(oo}

t(x
X (e—sI‘(y+1)7MDxBu(x’ t)
0

w0 _ Lol
+s[”e ST+OT DI (y + Dulx, t)dat) dgx

B
X
=fo°ol"(a + 1)e_pr(g+1)7

x[syDPU(x,s) — 4D PU(x, 0)] dgx

xB
=s foool"(a + 1)e_pr(g+1)7 [1DPU(x, s)]dpx

pF(cr+1)—

-Jy T'(o+ e 7 1Dy ? [U(x, 0)]dgx

[ee)

s (pU(p,s) — U0, s)) —( prerii U(x,0)

0
- f I'(o+ e p”"“)ﬁu(x 0) dﬁx)
0

=psU(p,s) —pU(p,0) —s U(0,s) + U(0,0)
The proof is completed.

Theorem 3.4. let 0<a,f <1 and be u(xt)€
CY(R* x R*) and | = max(m,n) with m,n €N. In
addition, Let there be double M —Laplace
transformations of the functions u(x, t), MDx(i)G u(x,t)
and MDt(j)“ u(x,t), i=1.2,..,
this case

mand j=12,..,n In

(@) MLeMel{, D, ™Pux, )}=p™U(p, s)
m-—1

= pmI(0,5) = Y P ML D, Pu(0, 1)

(i) MLeMeBl D, W (x, £)}=s"U(p,s)

Tois™ 1-j Mﬁf[MDt(j)“u(x, 0)]

—s"U(p,0) —
i) MLEMLE (D™ D (ux, )}
=p™s"(U(p,s) — s (p,0) — p~1U(0,s)
=¥ ts ML, D, O (p, 0)]
— Xt p ML, D, PPU (0, 9)]
+ 30t s p 7 (44D, P*U (0,0))
+Ym s p=1=t, D, DBy (0,0)
+EI R s T p T D P U(0,0)
+p~1s71U(0,0))

equality is ensured.
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Proof.

(i) According to the total method, we must first show its
accuracy for m = 1. we proved its correctness form = 1
in Theorem 3.3 (i). Now we will accept its correctness for
m — 1 and show that this equality is correct for m.

MLEM LB (D ™ Pux, 1))
=pMLEM LB (D, VP (x, £)}-MLE (D, ™ VPu(0, £))

it can be written. since equality is considered correct for
m—1

Mo Bl D Py (x, 1))

=™ 'U(p,s) —p™?U(0,s)
m-—2

_ Z pm—Z—i ML?[MDx(i)Bu(O, t)]
i=1

— MLE{uD, ™ VPu(0, )}

=p™U(p,s)

—-p™U(0,s)

3
N

pm—l—i ML? [MDx(i)Bu(O, t)]

|
ﬁEM

ar D DBy (0,6)}

=p™U(p,s) — p™ 1U(0,s)
m-1

pmimiMear, D, DBy (o, 1))

i=1
is obtained.

(ii) If the necessary operations are performed in a
manner similar to Theorem 3.4 (i), the proof will be made.

(iit) We will use the equations (i) and (ii) to prove this
theorem. (i) from equality

e, )

= MLE (™D, MU (p, t) — p™ 1D, *U(0, 1)

(
MLgM el Dy ™F D,

m-—1

= ) PG D, PPu(0, )

i=1

it can be arranged as. Due to the linearity property of the
Laplace transform

=p™ ML?{MDt(n)aU(P' t)} - pm_lMLg{MDt(n)aU(O' t)}

m-1
Mg {z P (D ™ D2 PP (0, 6))

i=1

it can be written. (if) in accordance with the equality
contained in the expression

M LM LR D, P D (u(x, 1))}

=p™(s"U(p,s) —s"'U(p,0)
-1

_ gn-1-J (MDt(i)Otu(p‘ 0)))

1

S

-
Il

—p™1(s™U(0,5) —s""1U(0,0)

-1
_ gn—1-J (MDt(j)aU(O,O))

1

S

-
Il

—gn :nll pm 1-i (MDx(i)BU(O, S))
n-1 _ i i
s m=1,m=1 L( D, DBy (0, 0))
—ym1 ?fpm 1-i gn-1-j D(])a D (I)BU(OO)
ML?Mﬁg{MDx(m)BMDt(n)a(u(x; t))}
=p™s"(U(p,s) —s~'U(p,0) —p~'U(0,s)
=X s ML 1D VU (p, 0)]
- X e ML D, PPU(0,5)]
+X0o0 s pt (MDt(j)aU(O,O))
+Z:n115_1 ‘1'iMDx(i)BU(O,O)
+Zm 1 ;1 1 S—l—jp—l—i MDt(j)O(MDx(i)B U(0,0)
+p~1s71U(0,0))
the result is reached. Thus, the proof is completed

Theorem 3.5. We can express the double Laplace
transformations of some functions by means of the M-
derivative in the following way:

o Mpampbi1y— i p>05>0
. MLchL)lg{xmtn} — i’

(i) o) T(1+2) 1 (145)

p > 0,s > 0 m and n are any constant.

Proof.

If u(x,t) = x™t"is taken instead of the function u(x,t)
in the equation (8) in the definition of the fractional M-
derivative Laplace transform, the double M-Laplace
transform

—pI‘(o'+1)%

MpaM pBemeny =f0°° foool"(cr + 1e
t(x
xI'(y + 1)e_sr(y+1)7xmtndatd[;x

B
X
= fow r'(c+ 1)e_pr(a+1)7xm
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[ee] ta
x| f, Iy + 1)e STv DT g ¢ dgx
it is expressed in the form. Let's solve the integral
[ee] ta
I=[ T+ 1)e ST DG ng ¢ here

104
ifu= sTy+1) t; is transformed and written instead
of in the integral

atoc—(x

du= sI'(y+1)

d
d,t, T”: Iy + Dd,t

a

n

t" = ( ad )E I, then
sr(y+1)

o t(l
I= f Iy + De ST0+VTemg ¢
0

n n
0 _ ua \adu 1 a aro _, -
=/ e “( ) —=—( ) e Y uadu
fO s (y+1) s s \sI'(y+1) fO

it is obtained that, by looking at how the gamma function
o n
is defined in the [~ e™" uadu integral
o _y. 2 n
J, e uadu = F(1+;),

n

n
o et (e (14
s (sl‘(y+1)) fO e " uadu s \sI'(y+1) r 1+a :

B

X

In=[ r(+ 1)e P Fxm dsx let's solve the
integral.

B
Where v = pI'(c + 1) % transformed and

_ BXB_B av _
dv = pl'(c+ 1)Tdﬁx, > I'(o + Ddgx

m

)B is written instead in the Il integral,

m _ vB
If x™ = (pF(c+1)

#

-pr(o+1) B x™ dﬁx

I1=["T(c+1e

m

m
(v (B _\E A _1( B \F (® v 7
- fO € V(pF(c+1)) P _p(pl“(cr+1)) fO eV vhdy

It is discovered that, In addition, considering the

m
definition of the gamma function fooo eV vAdv integral

fow eV v%dv =T (1 + %),

1 m
= (o)

= fowl"(a + 1e

e vhdv-1 (prgfm)% P+

B
—pI"(J+1)%xm

f°°r( 1 P+ ng tld
x|J, Ty +1e atd,t|dgx

B
X
= [T+ 1) e Ty

1( ‘ >§F(1+n)d
xssF(y+1) o) | ¥

n

n xB
)a F(l +g) Jy T'(@+De prlo+1yg x™dgx

-
s sr(y+1)

) 11D r1+2)

- i (SF(:/I+1))E (pr(iﬂ))F r (1 + g) r (1 + %)

the result is reached.

& xP
° MLchLf {ecl“(y+1)7+dr(a+1)7}

_ 1
(p-d)(s-¢)
constant.

. ML?MLf {sin (aF(y +1) %)

,p>c¢,s>d, c and d are any

B
xsin (bI'(o + 1) %)} = ab a and b

" (@%+s%)(b?+p2)
are any constant.

. ML?MLf {cos (aI‘(y +1) %)
X COS (1"(6 +1) %)} P

=m,a and b are

any constant.
a B
o Mpamph {F(y +1)=r(o+ D>
& B
X ecl“(y+1)7+d[‘(a+1)%}

1
T (p-d)?(s—c)?’
p >c¢,s >d, candd are any constant.

o Meevcflsink (Tiy+ DY)

x sinh (F(a +1) %B)}

_ 1
T (s2-D@2-1)

Proof.
(9) instead of the function u(x, t) in the double M-Laplace
transform given by the definition
a B
if sinh (F(y +1) %) sinh (F(a +1) %) is written and

t* t*
el"(y+1)7_e—l"(y+1)7

sinh (F(y +1) g) =

2

er(a+1)%_e—r(o+1)%

ve sinh (F(a +1) %B) = 2

expansions are taken into account,

MpaM B lsink (r( +1) f) sinh(I'(o+1) il
t X Y a ﬂ
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xB
= fom fooo r(+ 1)e—pr(a+1)7r(y +1)
x[sinh (F(y +1) %) sinh (F(a +1) %)] e ST+
x dqtdgx

B P
—pro+ 1)% eF(JH)T—e_F(GH)?

=["I(c+1e .

. % F(Y+1)£_ —1"(1’+1)ﬂ
X(fg F(Y + l)e—sl‘(y+1)7 [e a 2e a dat
xdgx

—pF(J+1)§

=f°ol"(a+1)e
0

xB xB
el“(a+1)7 _ e—F(a+1)7 ( 1 ) d
x X
2 s2—1)F

xP xP
1 F(o+1)7_e—1"(o+1)7

B
_ —pr(o+ 1)% e
T s2-1

fooof(a +1)e

> dﬁx

B B
1|2 -pr(o+1% ro+1)*-
=( )[Efo ro+1e ™" re ™ B dgx

s2-1

B d[,»x

—pF(J+1)%e—F(G+1)£ ]
2

1 (o)
——J; I'(c+ e

- (ﬁ) [2(1)1—1) - 2(p1+1)] - (52—1)1(;;2—1)'

o Mpamph {COSh (F(Y +1) g)
x cosh (F(a +1) %)} =$

Proof.

(9) instead of the function u(x, t) in the double M-Laplace
transform given by the definition

a B
cosh (F(y +1) t;) cosh (F(a +1) %) is written, the

proof is completed if the

e+ —rens
e (Y+1)7+e— +D%

cosh (F(y +1) %) =

2

er(a+1)%+e—r(a+1)%

B
,cosh (1"(0 +1) %) = . expansions

are taken into account and similar operations are
performed as in the (vii) form of the theorem.

. MLaMLﬁ {ecr(y+1)§+dr(a+1)%
t x
a B
x cos (al'(y + 1) t;)cos (bI'(c + 1) %)}

= ®=d)(s=¢)
= @+G-0D) b2+ (p-)?) a,b,candd are any

constant.

o B
MLchLf {ecl"(w1)%+alr(a+1)"7

xsin (al'(y + 1) g)sin (br(c+1) %B)}

_ ab
T (@Z+(s+0)2) (b2 +(p+d)?) '
constant.

a,b,cand d are any

& B
ML?Mij {ecl"(y+1)7+dr(a+1)%

xsinh (F(y +1) %) sinh (I"(cr +1) %)}

1
= ,¢ and d are any constant.
((s-0)2-1)((p-d)?-1) y

t& B
ML?Mij {ecl"(y+1)7+dr(a+1)%

xcosh (F(y +1) %) cosh (I"(a +1) %ﬁ)}

__ -d-9
(s-0*-D((P-)?-1)’

¢ and d are any constant.

MpraM B t% b x_{ C}
o Mpo Lx{(l"(y+1)a) (F(a+1)€,)

_r(1+b) F(1+c)

T gl+b pl+c ’

Re (b) >0,Re (c) >0,s >0andp > 0.
Proof.

(9) instead of the function u(x, t) in the double M-Laplace
transform given by the definition

a\ b N\ €
(l"(y+ 1)%) (F(0+1)x?) is written and similar

operations are performed
t\? x5\°
MpaMph {(F(y + 1);) (F(a +1) ?> }
0 roo —pr( +1)£ Lo
=fo fo r(o._l_ 1)6 pli'lo Be—SF(Y‘Fl); I"(y_l_ 1)
ta\b ¢
x[(F(y +1) ;) (F(a +1) x?) ]datd/;x

xB c
o - i 4
=[, I'(d + e prio+1)% (F(a +1) x?)

a. b

x (Jo Iy + 1)e ST0+3 (F(y +1) ;) dat) dgx

x! c
r(i+ [e9] —pI +1)=— 4
(1 b) J‘ 1—'( ]) p (0’ 1)3 (F( ])X ) l

s1+b
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r(1+b) ¢
e e f(re+ %)

_ I(1+b) I(1+c)
T sltb  pltc

Definition 3.2. Let f(x,t) and g(x,t) be continuous
functions. M-derivative double convolution in the sense
of derivative

(f *+ 9)(x,t)

=T+ DI+ [ [ fx
xdgvd g

—v,t —wg(v,u)

it is defined by its integral.

Theorem 3.6. (Convolutions Theorem) Let U(x,t) and
v(x,t) functions U(p,s) = ML?MLf{u(x, t)} and
V(p,s) = ML?‘MLf{v(x, t)} have a double M-lLaplace
transform for s > 0 and p > 0. In this case, to express the
double convolutions of the functions u(x, t) ** v(x,t) to

Mpam B o (e, £) #x v(x, )= Up,s) V(p,s)
is in the form.

Proof.

Mpam B (e, t) «x v(x, £)}

B
() ()

B a
- v((F(aﬁ i 1)) ’<F(]/ai 1)) >]

It can be written. Since the double M-derivative Laplace
transform on the right side of the above equation is
known to provide the convolution property

, 5
ML ((r(f ) (o) )

B
() () )
B a

B
ettt () () )

=U(p,s)V(p,s),

this proves the theorem.

Applications 3.1.
wDeP%u(x, t) — D, PPux, t)+ulx, t)

o fotl"(o' +1D) Iy +1)

L=, ooy @=0)P
xe @ B

u(U, :u) dﬁ Udaﬂ

t% xB ta xB

_ TS ( 1+ eF(y+1)7+F(a+1)T> (13)
about to be

r(y+1)t%
u(0,t)=e «

B
X

u(x,0) = e (14)

r(y+1)t%

MDxBu (0,t)=e @

B
X
el"(a+1)7

uD"u(x,0) =

solve the M-derivative partial integro-differential
equation given by the initial conditions.

Solution.

(13) if the double M-Laplace transform is applied to both
sides of the M-derivative integro-differential equation
given by the equation and the convolution theorem is
applied

MeampBl, D, @%u(x, 1)}
=52 U(p,s) — sU(p,0) — ,D:*u(p,0) (15)

MpaM Bl D PPu(x, )}

=p? U(p,s) — pU(0,5) — yDx u(0,5) (16)
£ f Cy+1)(t-p) x-v)f
y+D(t-w* Ne=
ff]“(a+ 1) 'y + e a o+
00
xu(v, wdgvdep = m U(p,s) (17)
is acquired.
ry+1)t%

MeraMrB —+r( +1)=— 1

L L"{ B} (s=D@-1) (18)

B
Mpamph {F(y+1)t I+ 1) ﬁemw(au)’%}

1

T G012 (19)

equations (15), (16), (17), (18), and (19). If the provided
M-derivative Integro-differential equation is substituted
with equation (13)

s2U(p,s) —sU(p,0) — yD:“u(p,0) —p* U(p,s)
+pU(0,5) + yD*u(0,5)+ U(p,s)

Up,s) =

1
(s—=1)2%(p-1)2

(20)

+(s 1)(p 1) (s— 1)(10 1)

the equation is found. If the double M-Laplace transform
is applied to the initial conditions given by (14), then
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ry+nt® 1
Mpa),——Fm—_
U(0,s)="L{ {e } =y

xB
U(p,0) = M,Cﬁ F(U+1)7 _ 1
(»,0) x {e p—ry

xB
r 1)—% 1
uD:“u(p, 0) = Mcf {e o )ﬁ} =55 1)

r(y+1)t%
B _Mpra) ————(__1
uDFu(0,5) =ML {e a }- =

(21) equations are written in place in equation (20) and

_ 1
-1 (p-1)

p 1
(s-1) + (s-1)

s2U(p,s) -p*U(p,s) +

1
G-Dep-D
_ 1 1
TG-De-D  G-12p-1D

if the necessary actions are taken

U,s) + U(p,s)

Up,s) = (22)

_r
(s-D(p-1)

is obtained. From here, similar operations to the
examples given above are performed by

ry+t® P

ulx,t)=e « e+ (23)
Applications 3.2.
wDEu(x, t) + 4D, P%u(x, t)

t . ry+1)(t-y)*
o PO + Dsinh (T2 1D, PP ulx, y)d,y =
0 (24)
about to be
u(0,t) =0

I'y + 1)t«

wDPu (0,8) = sin (%)
wDyPPu (0,t) =0 (25)
u(x,0) =0

xﬁ
uDe*u(x,0) = I'(c + 1)?
wD:@*u(x,0) =0

solve the M-derivative partial integro-differential
equation given by the initial conditions.

Solution.

If the double M-Laplace transform is applied to both sides
of the M-derivative integro-differential equation given by
(24), then,

MLEM LB (D u(x, )}=sU(p,s) — U(p,0) (26)

MLE‘MLf{MDt(3)“u(x, 0)}=s*U(p,s) — s*U(p,0)
~suDe“u(p, 0) — D, P%u(p,0) (27)

Definition 3.2. and Theorem 3.5 in the integral on the
right side of the M-derivative integro-differential
equation given by (24). If applied,

ry+n(- y)“)

a

t

fl“(y + l)sinh(

0

xMDx(3)ﬁu(x! y)day

I'y+1D(@®)*
= Mpamph {sinh <%) D PPu(x, t)}

=M ef {sinh (FEDONm pem e P, D, OPux, 6))

_ 1
s2-1

(p* U(p,s) — p2U(0,s) — puDPu(0,s)
—uD:Pu(0,5)) (28)

is acquired. If we apply the double M-Laplace transform
to the initial conditions given by (25)
MpaMBa0,03 =0

1
s24+1

MeampBl D Fu(o,6))=
MpaM B a(x,00} = 0
meampBe D @Fu(0,6)}=0 (29)
MpraM B a 1
LEMLAMD " u(x,0)} = F
MpaM B D@ % (x, 0)})=0.

If (26), (27), (28) and (29) are considered in the M-
derivative integro-differential equation given by their
equation (24), then

SU(p» S) - U(p» 0)+S3 U(p! S) - SZU(p; 0)

—syD"u(p,0) — MDt(z)au(P: 0)

1
s2-1

(p® U(p,s) — p2U(0,s) — puDPu(0,s)
— D, @Pu(0, s))=0

If the necessary actions are taken here

1
(s2+1)p?

Ulp,s) = (30)

can be found. If a double inverse M-Laplace transform is
performed on both sides of the resulting U(p, s), then

_ P . ry+Dt®
ulx,t) = Ir'(c + 1)?5171 (T) (31)

the solution is reached.
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Figure 1. The image of the solution of the equation (31) for
different x and t values with the values a= =0.5, y= 0 =0,
,yv=0=0.5andy=0=0.8

Figure 2. The image of the solution of the equation (31) for
different x and t values with the values a= $=0.8, y= 0 =0,
,y=0=0.5andy=0=0.8

Figure 3. The image of the solution of the equation (31) for
different x and t values with the values a= B=0.95,y=0=0, ,y=
o=0.5andy=0=0.8

4. Visural result and scientific discusison

The double conformable derivative Laplace transform has
been converted to the double M derivative Laplace form
by taking advantage of increasing the parameters. (9)
when we consider the equation, there are variables y, o,
unlike the conformable fractional equation, there are
variables 0 < a, 8 <1, y,0. The parameters of the
conformable derivative are a,f,t,x, while the M-
derivative also varies depending on the parameters
a,f,t,x,y,0 This change is shown in Figure 1. Figure 2

and Figure 3. with different values y=0=0, y=0=0.5 and
y=0=0.8 for @« = f = 0.5. y=0=0, y=0=0.5 and y=0=0.8 for
a = B = 0.8, y=0=0, y=0=0.5 and y=0=0.8 fora = [ =
0.95 the solution curves of the equation for different
values y=0=0, y= 0=0.5 and y= 6=0.8 (13) The solution
curves of the equation are shown. When we evaluate
these solution curves, a and B tend to be the same as the
conformable derivative for the value y=0=0, approaching
the derivative in the classical sense when approaching 1.
while the M-derivative comparison is made with the
classical derivative by changing the a and 8 parameters,
the derivative comparison compatible with the M-
derivative is made within the values of y, o.

5. Conclusions

In this study, the definition of M-derivative double
Laplace transforms, the theorems and values
corresponding to these double M-Laplace
transformations were expressed and proved. With these
theorems, partial differential equations containing
M —derivatives were solved using values corresponding
to double M-Laplace transformations, and comparisons
were made between double comformable Laplace
transformations and double M-Laplace transformations
by showing these solutions with graphs. It is thought that
this transformation will be an effective technique for
finding solutions to partial differential equations
containing M-derivatives and that it will be used in
modeling in mathematical, physical and engineering
sciences using this technique.
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