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Introduction

Advanced evaluations in voice disorders are applied for diagnostic purposes in analysis labo-
ratories with analyzing devices. Depending on the features, the results provide feedback for 
experts and patients, both visually and audiologically. It can be quite restrictive that human 
voice specialists, called foniatrists, work with a limited number of features to be examined on 
the axis of voice, frequency and time domain. This leads to inability to diagnose patients cor-
rectly in some special cases without going through the detailed investigations.

Although higher digital technologies have recently been used in acoustic signal analysis, it is 
still important to obtain meaningful and useful information. In signal processing studies, voice 
pathologies and problems have recently begun to be more carefully scrutinized [1,2]. Since 
the sounds have dynamic and complex characteristics, especially when different language 
constructions are taken into consideration, the complexity is increased depending on these 
different notations and emotions. For these reasons, the need for reliable software and anal-
ysis methods is increasing day by day. Language analysis can be done with the help of these 
methods and software, the diversity of pathologies can be examined and techniques can be 
investigated. Today, scientists are spending a lot of time developing tools that use different 
characters and traits and can predict different voice pathologies.

In clinical voice studies, patients’ voice quality can be predicted by a sustained vocal phonetics 
or by mutual speaking. It is thought that sustainable vowels give useful results as they are 
avoided from linguistic artifacts and are observed to be sufficient in many sound estimations. 
Specialists examine whether or not it is possible for patients to maintain a sustainable vowel 
and their performances of voice analysis.

Voice quality analyzes can generally be performed in titles such as acoustics, aerodynam-
ics, endoscopy, and a percentage of the patients’ self-examination. It is observed that the 
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results of different methods are examined, in cases where 
the obtained results are uncertain [3]. It is shown from the 
literature that the acoustic properties of different features 
are evaluated together in the literature. Mostly preferred 
properties; fundamental frequency [4], jitter (frequency 
perturbation), shimmer (amplitude perturbation) [5-7], Har-
monics to Noise Ratio [8] and Mel frequency celpstral coeffi-
cients (MFCC) [9,10].

According to [11], in vocal tract pathology, voice impair-
ment is detected by interpreting the stimulation of the sig-
nal. It is observed that researchers devote a considerable 
amount of time to systems that can automatically calculate 
and group voice impairment with traditional diagnostic ap-
proaches. Some studies have shown that the correct diag-
nosis of the sound level increases the predictive accuracy of 
the noise impairment [1]. In addition to these studies, a uni-
versal method and approach is still not found for these kind 
of problems. Have obtained 100% accuracy with long-term 
average spectral properties, glottal noise measures and lin-
ear predictive modeling techniques [12]. Obtained 100% ac-
curacy for diagnosed pathologies and 96.1% for ambiguous 
pathological conditions [13]. Has obtained 89.3% accuracy 
for Asthenia disease with MFCC, HNR, NNE, GTNE and PCA 
[14]. In [15] studies, adaptive time-frequency transform, 
octave max, octave mean, energy ratio, length ratio and 
frequency ratio together with Linear Discriminant Analysis 
(LDA) were used as properties and pathological classifica-
tion was made.  They obtained the 93.4% accuracy classi-
fication results. Again only used MFCC and obtained 96% 
accuracy with the help of the neural network – multi layer 
perceptron [16].

There are some other studies available in the literature, trying 
to detect vocal disorders by using different classification meth-
ods. For instance, [14] has helped to extract useful features. 
In their study, have shown that parameter reduction affects 
speech robustness in inner classificatios [17].

In some studies, acoustic signals and vocal cord images were 
combined for more precise analysis. Kymography and high-

speed digital videoendoscopy (HSV) has played a major role 
in classifiying pathological disorders for clinicians [18]. In ad-
dition, [19], in their study, examined the correlation between 
the vocal cord vibration of the system and acoustic analysis of 
the voice.

Calculated the root mean square, delay spread and stan-
dard deviation of the voice signal. In the study, they have 
considered two situations; having disorders or not [11]. 
Additionally, 4 polyptical and 8 healthy person’s wovel 
/ a / or / i / were examined. Depending on the method, 
False alarm rate %0 and true negative 25% were calcu-
lated.

Some studies have used the Empirical mode decomposition 
(EMD) method to classify voice pathology. It was used by [20] 
at EMD Chemical plant controls. Could be classify into classes 
according to their pathology by using Maximum power spec-
tral density of the intrinsic mode function as a feature [21]. For 
this operation used K-Nearest Neighbor (KNN) as a classifier. 
With the results of this process, they obtained 95.7% accuracy 
results.

In this study, fewer features were used than in previous 
studies, and features were calculated after voice modeling. 
In the aim of the study, classification of patients with 4 dif-
ferent pathologies was performed by using nonlinear, and 
linear time, frequency features with the help of the SVMs 
as a classifier. First, the sounds were recorded at specific 
phonetic intervals, then the LPC and MFCC coefficients 
were calculated and the voices were modeled with these 
coefficients. So, the modeled signals’ features were then 
extracted, and pathological classification was performed 
with the SVMs depending on the characteristic values of 
the features. The flow chart of the events are given in Fig-
ure 1. 

The study continuous as follows: second part is materials and 
methods, third part is results and discussions, and fourth part 
is conclusions.

Figure 1. Block diagram of the proposed detection system

Vocal fold cystSulcus vocalisVocal fold polyp

Classification (SVMs)

Feature extraction

Recording

Normal (healthy)
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Materials and Method

Database
In this study, voice recordings were made through a dynamic 
one-way microphone (Shure SM58). EMU-Tracker Pre was pre-
ferred as the recording interface. The reason for this preference 
is that the recorded data can be used later in other programs. 
Recording was done in a sufficiently quiet room with a back-
ground noise of 45-60 dB. The sampling frequency of the re-
corded data is 44100 Hz and is in single channel PCM format 
with 16 bit resolution.

The sound data is recorded in different settings. A record of 
10 seconds is executed for wovel / a /, and also, a paragraph 
is read about this time period. Many studies in the literature 
use this vowel because of the stationary acoustic features of / 
a /. 120 patients were examined in this study. The details of the 
patients are given in Table 1.

With the software developed for the study, the features of the 
sounds can be extracted and can be divided into sub classes 
depending on the features.

Methodology
In this study, differently from the previous ones, the sounds 
were modeled before the feature extraction using two differ-
ent models; linear predictive coding (LPC) and Mel frequency 
cepstral coefficients (MFCC). The modelling process was carried 
out in three stages as given in Figure 2.

In the scope of the study, two different coefficient types were 
taken as basis for modeling of signals. LPC and MFCC coef-
ficients of the signals were calculated after the preliminary 
steps were completed. The sound data is re-modeled with the 
calculated coefficients, and so the recorded speech is divided 
into two different signal types, clean and residual signals. In 
the aimed study, it was investigated whether some informa-
tion was extracted from the signals obtained from the mod-
els.

Preprocessing
The modeling of the sounds and the calculation of the attri-
butes from the modeled data are performed after some pre-
processing. First, the audio data is automatically divided into 
sub-segments at specific lengths. Discretized signal is shown in 
the low-order linear difference model for use in the preprocess-
ing steps as follows:

ŝ(n) = s(n)−αs(n−1)  (1)

In this study, it is stated that it is appropriate to take α  around 
0.95 [17]. It is also assumed in this study that the characteris-
tics of the voice data change slowly in time. In the scope of the 
study, the discrete M samples were taken and the sound win-
dows with N samples were shown as follows;

 (2)

Figure 2. Flow chart of the modeled signal and residual signals from LPC and MFCC coefficients.

Modeled signal obtained 
from LPC Coeff.  Feature 

Extraction, (# of Features)

Residual signal Residual signal 

(Preproc. signal) - (Modeled signal obtained from  
MFCC Coeff) = (Residual signal)

(Preproc. signal) - (Modeled signal obtained from LPC Coeff) 
= (Residual signal)

MFCC Coeff. estimation LPC Coeff. estimation

Preprocessing

Speech samples

Modeled signal obtained 
from MFCC Coeff. Feature 
Extraction, (# of Features)

Table 1. Patient database knowledge

Pathology Total Women Men

Vocal fold polyp 30 18 12

Vocal fold cyst 34 18 16

Sulcus vocalis 24 14 10

Normal (Healthy) 34 12 22
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The purpose in the framing is to block the interruption of fea-
ture characteristics in the signal. Hamming windowing method 
is preferred for study by taking samples from similar studies. 
The window w(n)  is defined in interval 0 ≤ n ≤ N −1 , so the 
windowed signal is given as

xl (n) = xl (n)w(n) 0 ≤ n ≤ N −1  (3)

Hamming windowing methods for this study is given as

w(n) = 0.54− 0.46cos 2πn
N −1

⎛
⎝⎜

⎞
⎠⎟
0 ≤ n ≤ N −1  (4)

Linear Predictive Coding (LPC)
Linear predictive coding is one of the most important analysis 
techniques [22]. In particular, it has become a superior method 
for estimating audio parameters such as pitch, formant, spectrum, 
and vocal tract, when speech signals are stored and transmitted. 
The main ability of LPC is to be able to obtain a sound sample by 
linear combination from previous sound samples [22]. The sound 
data given at time n is expressed in linear form with p coefficients:

s(n) ≈ a1s(n−1)+ a2s(n− 2)+ ...+ aps(n− p)  (5)

where a1 a2 ... ap denotes the parameter coefficients 
of the LPC. Once the autocorrelation of the window frames 
is established, these coefficients are obtained by the Levin-
son-Durbin method [23]. The signal modeled from the ob-
tained coefficients is now cleaned from the recorded speech 
voice thanks to the coefficients.

Mel Frequency Cepstral Coefficients (MFCC)
The spectral coefficients of the windowed frames after the pre-
processing are calculated using Fast Fourier Transform (FFT). 
In here, FFT gives the information of the amount of energy of 
each frequency band of the signal. The calculation of MFCC de-
pending on the this procedure is given in Figure 3;

Human ears are not sensitive enough to detect sounds below 
1000Hz [24]. Owing to these information, MFCC coefficient es-
timation is realized.  Mel scaling frequency mapping isshown 
as linear below 1000Hz, logarithmic above 1000Hz [24]. Thus, 
at low frequencies, the corner and center frequencies are linear 
and logarithmic at high frequencies. Figure 4 gives information 
about this process.

Mel scaling is given in (6),

Mel( f ) = 2595log10 1+
f
700

⎛
⎝⎜

⎞
⎠⎟  (6)

When this process occurs, the coefficients of each short time 
Fourier Transform (FT) are multiplied by the corresponding fil-
ter gain. So, the total is obtained by this process. Thus, DCT is 
applied to the log of Mel cesptral coefficients, so that MFCC is 
obtained.

Chaotic Model of  System
The phase space must first be calculated before the chaotic mod-
el of a system can be obtained. According to Takens [25], if the 
size of the embedded dimension is chosen as large, the phase 
space of the time series can be constructed. One of the best tech-
niques for the constructing phase space is the delay method.

An unknown dynamic system is defined as a time series s(t) . In 
this case, the m-dimensional %s(t)  vector is obtained from the 
time delay of s(t) .

%s(t) = s(t), s(t +τ ), ... s(t + (m−1)τ )⎡
⎣

⎤
⎦  (7)

where τ and m represent the time delay and embedded dimen-
sion. These values are not known in practice and are calculated. 
In the study, it was observed that depending on the voice pa-
thologies, the voice data have different characteristics, result-
ing in the reconstruction of phase space. The pathology related 
phase space representation is given in Figure 5.

When the figure 5 is examined, it is observed that the phase 
spaces obtained from the voices of the pathological signals 
also have different views.

Feature Extraction
In the study, features that can be evaluated in different charac-
teristics, such as linear and nonlinear, were extracted. In here, 
before the features extraction, the voice signals were separated 
into frames, which were then used to calculate the features. In 

Figure 3. Flowchart of the MFCC coefficient estimations.
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this study, jitter, shimmer, skewness, kurtosis, entropy, and larg-
est Lyapunov exponents (LLEs) were calculated.

Jitter
Jitter is known as the average approximate difference in divid-
ed time between consecutive periods [5-7].

 (8)

Where, Ti  is the period length of the F0  and N is the number 
of period of F0  [5].

Shimmer
Shimmer is defined as the average approximate difference be-
tween the amplitudes of successive periods [5,6].

 (9)

where, Ai  represents the amplitude of the peak to peak, and N 
is number of the extracted fundamental frequency F0 .

Skewness and Kurtosis
The skewness of any variable or signal  is defined as the 
standardized third moment of this signals [26].

 (10)

where, E[.] represents the expected operator,  represents av-
erage, and  represents standard deviation.

The kurtosis of any variable or signals  is defined as the 
standardized fourth moment of the signals [27]. The kurtosis 
is given as,

 (11)

Entropy
Entropy, the probability distribution of a random variable or 
signal , or a level of uncertainty [28]. Shannon has defined 
the definition of entropy as the uncertainty of a probabilistic 
distribution [28]. Shannon has proposed a method, which is a 
self-knowledge, has a logarithmic function, the values between 
0 and 1. If the relational probability of the events is defined as 

. Then, self probability ,

 (12)

Entropy is derived as the weights of n number of self-informa-
tion values.

 (13)

Largest Lyapunov Exponent (LLE)
Dynamic systems have characteristic exponents that deter-
mine the precision of the initial conditions. Attractors deter-
mine the convergence, the measure of the average ratio, or the 
divergence of the trajectory. According to Rosenstein [29], after 
the time delay vectors are reconstructed, the closest negihbour 
of the state in the phase space orbital is searched. The nearest 
neighbor pairs by LLEs in a given position are expressed by the 
divergence formula,

 (14)

where, jC   represents the initial separation, Δt  represents the 
sampling period, and d j (i)  represents the nearest neighbour 
of the jth pairs. After taking the logarithm of the two sides,

 (15)

The LLEs are calculated as follows for the voice signals;

 (16)

where, ....   represents the average of the j values.

MultiClass Support Vector Machines (M-SVMs)
M-SVMs can be used in many different areas [30]. In the first 
stage, two different sets of data were used to separate each 
other under certain conditions. This process was done via 
binary SVMs. Later, it is also being used in multiple classifica-
tion operations. According to Vapnik [30], if having training 
data ( ) and can transform 
it into a higher dimensional space, the feature space will be 

.

Figure 5. Phase space of the Cyst (a), Normal Person (b), Polyp (c), 
Sulcus (d) modeled signals.
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 (17)

Here, (w, b) defines a linear classifier in the features space. For 
forming two classes, SVMs force positive samples to +1 de-
nominator and negative samples force -1 denominator lower. If 
these samples do not fulfill this condition, and if needing zero 
in the formulation, then there is a forcing/punishment in the 
objective function.

In (17), the included norm of w, checks whether margin is the 
maximum. The objective of  is to check the number of mis-
classified samples. When optimization is applied to solving the 
problem, there is a degradation between the classes due to un-
even density of feature space clusters. In multiple SVMs, binary 
SVMs use different weight vectors and bias is applied for each 
class ( ). Classifier function of SVMs,

 (18)

If equation(18) applies for each class,

 (19)

where, j
ix  represents the ith samples of the jth class, jn  also 

represents the number of samples of training data. We have 
focused our study on non-linearly separable problems. To ex-
tend this simple model to solve non-linear separable problems, 
researchers have developed kernel based methods. This type 
of methods apply  mapping functions on the input features 
and carry them into a very high dimension space and then 
construct a hyperplane in that feature space. The properties of 
the feature space depend on the kernel functions of the SVMs. 
The generally used kernel functions are polynomial, Radial Ba-
sis Function (RBF), and sigmoidal functions. To find out more 
about kernel functions and implementation of SVMs, the read-
er is referred to [30,31].

Results and Discussion

In this work, the preprocessing step has been carried out since 
the recording of the sound data. After the preprocessing, the 
recorded data are modeled by calculating LPC and MFCC co-
efficients. The modeled signals were first separated into sub-
frames, then the characteristics of each frame were extracted 
and pathological classification was made depending on these 

features. When classification was performed, 30% of the data 
were randomly selected as test and 70% were randomly select-
ed as training data.

The signals modeled from the coefficients are called clean data 
and are removed from the recorded data to generate the resid-
ual data. Thus, the main audio data is composed of two signal 
components, clean and residual. The signals split in two are an-
alyzed in two dimensions. First, features extraction of the sig-
nals is performed. Features spaces of the clean signals owing to 
the different coefficients are given in Figure 6.

Figure 6 shows the spatial distribution of pathological data us-
ing 3 different features. When the entropy data obtained from 
the MFCC coefficients are analyzed, it is observed that the nor-
mal person and the patohological diagnosed person data can 
be distinguished from each other seriously. In the model based 
on LPC coefficients, this separation can be observed more 
clearly. Especially when the results of entropy, jitter and shim-
mer are examined, it is observed that the data can be separated 
from one another. Owing to the Student-T test results, the asso-
ciation of pathological and normal people with these traits can 
be distinguished, giving the following results.

When Table 2 is examined, it is observed that the signal ob-
tained from the LPC-based model gives more meaningful re-
sults than the signal obtained from the MFCC-based model. 
The model features formed by LPC coefficients are seen from 
the results that pathological and normal person data can be 
separated from each other. Among the features, LLE is deter-
mined from the results that it does not give meaningful results 
in the analysis and separation of the data of pathological and 
normal person data. When the characteristics of the signals ob-
tained from the MFCC coefficients are examined, it is observed 
that only the Shannon entropy feature values have distinctive 
meanings obtained from normal and pathological data.

Figure 7 shows histogram curves of voices based on feature 
values. By looking at the Figure 7, especially the entropy val-
ues, it can be said that their distributions are approximately 
separated from each other. This has also improved the sense of 
classification accuracy.

On the graph of entropy and skewness histogram, it is ob-
served that the values are approximately separated from each 
other. Kurtosis, shimmer, and jitter, there is no clear separation. 
However, there is a small discrimination in the LLE values. When 
we use all the features together for the classifier, the differences 
are significant for the classifier.

BoxPlot graphs based on the values of the features are shown 
in Figure 8. Figure 8, information about the property-specific 
distribution of pathological and healthy people. Again, based 
on previous findings, similar results were obtained on the basis 
of the evaluations. In entropy values, it differs from the normal 
and pathological patients in distinguishing qualities. Is is ob-
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served from the Figure 8 that while skewness and kurtosis are 
not determinant for cystic pathology, entropy, LLE and shim-
mer values are determinant. For sulcus pathologies, shimmer is 
the most defining feature.

Classifier Results
In the scope of the study, SVMs with multiple classification fea-
tures were preferred. Especially in multiple classifications, the 
ability of SVMs to be high is the reason for selecting the classifi-
cation and training accuracy in the same conditions to be high 
compared to some other classifiers [32]. 

Throughout this paper, it is carried out experiments using the 
one-against-all SVMs design scheme. Given a five-class prob-
lem, there are five binary SVMs and each is trained to separate 
one class of samples, which are positive in the experiments dif-
ferent than the others. The decision is made according to the 
maximal output among these binary classifiers [30]. It has been 
conducted the experiments using SVMs tool, which efficiently 
handles large-scale SVMs learning problems [33].

Gaussian kernel as kernel and 1e-5 as lambda value are select-
ed. In case of experimental studies, the obtained experimental 

Figure 6. Features spaces of the pathological signals
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Table 2. Student-t Test results

Separation Group LPC coeff. Based model signal MFCC coeff. Based model signal

Jitter

N-P 0.005987885 0.651831

N-S 7.43402E-07 0.248628

N-C 0.000549804 0.159287

Entropy

N-P 0.0165838 0.006515

N-S 2.27914E-06 0.01639

N-C 0.007125662 0.033019

Kurtosis

N-P 0.545246 0.073383

N-S 0.589144 0.189005

N-C 0.587493 0.465145

Shimmer

N-P 0.005434 0.182185

N-S 0.000626 0.122752

N-C 0.021906 0.002425

Skewness

N-P 0.368412 0.945534

N-S 0.001053 0.250572

N-C 0.082233 0.349198

LLE

N-P 0.593211 0.173884

N-S 0.839202 0.210503

N-C 0.583968 0.433694

Figure 7. Histogram of the feature values
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results have been compared with the other kernel functions 
(polynomial and sigmoid functions). However, the best (maxi-
mum classification results) results have been obtained with the 
Gaussian RBF. Classification results are given in Figure 8.

Entropy values play a critical role when looking at the classi-
fication results. Effect on the results of all classification, and 
other features, together with significant results. Entropy as 
well as the jitter that contributed most to the accuracy of the 
classification. It is observed from the results that the LLE is the 
least contribution feature. It can be seen from the student-t 
test the reason why we have to reach this results already. The 
effects that multiple features have added to the classifier are 
still observed on the Table 3. It can be seen from the Table 3 
that each feature increased the classification accuracy of the 
test data results. Previous studies on the pathologic classifi-
cation of voice data and a comparison of our study are given 
in Table 4.

When Table 4 is examined, it seems that working has some 
advantages. The number of features is reduced first. The 
process complexity is reduced and the system speed is in-
creased. Especially in lesser numbers of reatures, the accu-
racy rate seems to be increased. On this count, the need for 
less data storage arises. In addition, chaotic analysis of the 
sounds was performed as a result of the operation of the 
proposed model. As well as pathological classification based 
on the characteristics of the data was performed. Thus, the 
study shows that pathological data can be separated less 
number of features.

Conclusions

In this paper, we showed multi-class SVMs whether can clas-
sify the pathological and normal voices into sub classes. It is 
concluded from the experimental results that multi-class SVMs 
provide good performance for classification of these voice data 

Figure 8. Boxplot graphs of the features
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Figure 9. M-SVMs classification results depending on the related features

Table 3. M-SVMs classification results for the features
Features Data (%)

Entropy-Kurtosis
Training 100.00

Test 93.45

Entropy-Jitter
Training 85.76

Test 80.79

Entropy-Shimmer
Training 77.89

Test 70.56

Entropy-Skewness
Training 72.67

Test 66.60

Entropy-LLE
Training 78.87

Test 67.00

Entropy-Kurtosis-Jitter
Training 100.00

Test 94.57

Entropy-Kurtosis-Jitter-Shimmer
Training 100.00

Test 96.60

Entropy-Kurtosis-Jitter-Shimmer-Skewness
Training 100.00

Test 97.05

Entropy-Kurtosis-Jitter-Shimmer-Skewness-LLE
Training 100.00

Test 97.20

10 features
Training 100.00

Test 99.56
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depending on used the features. For one-against-all SVMs, we 
proved that in associated with LLE, entropy, skewness, kurtosis, 
shimmer, jitter and LPC, MFCC based model coefficients, the 
SVMs classification performance is very good. Using the ten 
features, the accuracy rate of training data is 100 % for optimal 
C values and chossing Gaussian kernel, however, estimated ac-
curacy rate for testing data is 99.56 %.  

From the previous studies, [34-38] that showed that the re-
lated voices could be classified into normal / pathological as 
depending on sounds’ characteristic features. On the other 
hand, their used classifier and methods, in [34] as accuracy rate 
98.3%, in [35] as accuracy rate 97.01%, in [36] as accuracy rate 
100%, in [37] as accuracy rate 94.26%, and in [38] as accuracy 
rate 98.23%. However, in this study we not only have increased 
accuracy rate of correct class for pathological and normal clas-
sification, but also are able to classify the related voices as four 
different classes, which are important for diagnosying speech 
voice’ analysis. Additionally, with less number of features, ob-
taining the accuracy rate. So, the database storage could be 
reduced, not only processing complexity has gone to reduce, 
but also system performance being increased.

Additionally, we can easily see that gaussian RBF kernel pro-
vides good performance for classifying data. Finally, we 
demonstrated by computer experiment that multi-class SVMs 
can provide good result and can detect normal, voice sound 
segments. 
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