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Kesirli tiirev ve integral operatorlerinin en 6nemli avantajlarindan biri olan
hafiza etkisi, bir hastaligin belirgin bir 6zelligidir. Mikobakteriyum
tiiberkiiloz, akcigerleri etkileyen hafizaya bagl bu tiir tehlikeli hastaliklardan
biridir. Bu nedenle, bu ciddi halk sagligi enfeksiyonu hafiza etkisine sahip
Caputo operatdrii araciligiyla arastirilmustir. {1k olarak, ¢dziimlerin pozitifligi,
hastaliksiz denge ve endemik denge noktalar1 gibi 6nerilen modelin bazi temel
ozellikleri sunulmustur. Daha sonra, s6z konusu hastalik modelini karakterize
etmek i¢in temel iireme sayisi hesaplanmigtir. Ayrica, bu temel hesaplamalar
kullanilarak ~ kararlhilik  analizi  gergeklestirilmistir  ve  tiliberkiiloz
enfeksiyonunun seyri hakkinda yorumlar yapilmistir. Ote yandan, tam sayi
olmayan mertebenin mikobakteriyum tiiberkiiloz yayilim1 iizerindeki etkisini
gostermek i¢in sayisal simiilasyonlar gergeklestirilmistir. Son olarak, klasik ve
kesirli matematiksel modeller arasindaki karsilastirma analizi ¢esitli
grafiklerle desteklenmistir. Sonuglar, kesirli siranin tiiberkiiloz yayilmasini
seyrini biiyiik l¢lide etkileyebilecegini ve bu kiiresel saglik sorunu hakkinda
daha spesifik tahminlere izin verdigini gostermektedir.
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The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease
ABSTRACT

Memory effect, one of the most important advantages of fractional derivative
and integral operators, is a prominent characteristic of a disease. Mycobacterium
tuberculosis is one of such memory-dependent precarious disease that affects the
lungs. Therefore, we investigate this serious public health infection by means of
the Caputo operator having memory. Firstly, some fundamental features of the
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proposed model such as the positiveness of solutions, the disease-free
equilibrium, and endemic equilibrium points are presented. Then, the basic
reproduction number to characterize the disease model under consideration is
calculated. In addition, stability analysis is performed by using these basic
calculations, and comments are made on the course of the tuberculosis infection.
On the other hand, we numerical simulations in order to show the effect of non-
integer order on the mycobacterium tuberculosis transmission are carried out.
Lastly, comparison analysis between the classical and fractional mathematical
models is supported by various graphs. The results show that fractional order can
greatly affect the course of the tuberculosis transmission and allow for more
specific predictions about this global health issue.

To Cite: Acay Oztiirk B. The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease.
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2039



1. Introduction
Mycobacterium tuberculosis (MTB) is a dangerous and life-threatening disease causing infection in the

lungs and damage to other organs. It is also a long-term bacterial and contagious infectious disease
caused by the Mycobacterium tuberculosis. Although it is one of the oldest known diseases, its cause is
known with certainty, it can be treated, and it is a preventable disease, it still remains one of the most
common and fatal infectious diseases in the world, and more than 3 million people die from tuberculosis
every year. Moreover, one in three people in the world has contracted tuberculosis, and currently, more
than 10 million new MTB patients are diagnosed each year according to WHO. The MTB disease is
transmitted from human to human through air. The bacillus is spread into the air by droplets in the saliva
of an active tuberculosis patient through coughing, sneezing, or other means, and the infection spreads
by ingesting particles suspended in the air. The most common symptoms of the MTB are fever, chills,
night sweats, loss of appetite, weight loss, and fatigue (Murphy et al., 2003; Khajanchi et al., 2018; Ojo
et al., 2023). In order to control and prevent the infectious diseases, one must be well-versed in the
disease mechanism and transmission dynamics. This helps predict disease progression and develop
eradication strategies. Since diseases change over time, investigating epidemic dynamics is a crucial
theoretical avenue for gaining insight into transmission dynamics and control. Mathematical modeling
enables us to analyze and comprehend the transmission process of various infectious diseases.
Moreover, mathematical models make a major contribution to analyze and comprehend the transmission
dynamics of various diseases. Also, disease models provide better policy to control or prevent the spread
of future infections. Analysis of disease via mathematical tools enables crucial predictions about
infection and estimates of future outcomes that are impossible to calculate by alternative means.
Numerous system models have been developed to understand the biological process of tuberculosis.
They can also be used to assess the impact of public health intervention strategies and to suggest the
best course of action to combat tuberculosis (Qureshi et al., 2021). Moreover, there are many
tuberculosis models in the literature based on real-data to predict the future spread and control of the
disease (Ullah et al., 2018; Khan et al. 2019).

Fractional-order models offer more reliable and accurate results about the process of diseases compared
to traditional models. In addition, the definition of hereditary characteristics and memory gives it an
advantage over traditional models. Fractional mathematical models have the feature of representing the
dynamics between two non-local points (Qureshi et al., 2021). Especially in recent years, various
theories and ideas related to fractional operators have been put forward and developed. Fractional
calculus is frequently used in modeling of real-world problems in engineering, physics, psychology,
medicine, economics and many other areas. Therefore, we prefer to analyze theoretically and
numerically the transmission dynamics of tuberculosis disease by presenting the effect of non-integer
order. Additionally, several studies in the literature have explored the joint analyses of tuberculosis and
fractional derivatives (Sweilam et al., 2016; Zafar et al., 2022; Farman et al., 2023; Olaniyi et al., 2023).

Due to the importance of the combination of non-local fractional derivatives with disease models in the
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literature, we analyze the MTB model with the help of the Caputo derivative, which stands out with its

advantages in application. This useful fractional operator with singular kernel is defined as follows:

oy L[ 07®
DO = s | e (L)

where Re > 0 and n = |Re(w)] + 1 (Miller et al., 1993). Thanks to the Caputo definition, the MTB
system, which is considered in the usual classical form in the study (Mustapha et al., 2022), is redefined

and analyzed in fractional terms, and more precise results are obtained. It is investigated both
theoretically and numerically, and the effect of the fractional order on the results in both cases is shown
by comparing it with the integer-order derivative. We refer the reader to (Jarad et al., 2017; Acay et al.,
2020; Acay et al., 2021a; Acay et al., 2021b; Inc et al., 2021; Ucakan et al., 2021; Yusuf et al., 2021)
for more application of fractional operators and disease models.

The current article is structured as: In Section 2, we present the compartmental disease model for
transmission dynamics of tuberculosis infection with hospitalization and reinfection through Caputo
fractional operator. Model diagram of fractional system and all biological parameter descriptions and
values are given in this section. Then, in Section 3, we address some basic analysis of the fractional
MTB model, that is, positivity of the system solutions, stability analysis. Also, such dynamical features
as the basic reproduction number, disease-free steady-state and endemic steady-state are shown for the
fractional model under consideration. On the other hand, in Section 4, we give a numerical scheme to
visualize the fractional MTB model with Caputo operator. Lastly, some crucial conclusions and future
recommendations of our research study are introduced for better understanding the dynamics of

mycobacterium tuberculosis disease.

2. Description of the Fractional Tuberculosis Transmission Model

In this section, we investigate the mathematical model of mycobacterium tuberculosis (MTB)
transmission in humans with hospitalization and reinfection given in (Mustapha et al., 2022). Due to the
known advantages of fractional derivatives in examining disease models, the mentioned model is
defined and analyzed with the Caputo derivative. We define the tuberculosis transmission model under

Caputo operator as follows:

2041



1 t St

DSO = s | o g = A~ BUSO +yUR® ~ 525,
t '
(DUE(t) = — EW_ 16— pose) - (@ + 69E),
ril—w 0 (t—-9&@
t '
DUAE) = — A _ 4 = noy9E@) - (02 + 12 + aP + 59)A®), 1)
ril—w 0 (t—-&8)@
t It
D10 =125 | _( ;)w dE = (1 — @)y E(t) — (0% + K9 + a + 59)(D),
tOH(t
CDwH(t) = =), G _(f;w dé = 0PA(t) + 051(t) — (af + k9 + S)H(b),
t I
CDwR(t) = R'@® =kPAQR) + k1) + k$H() — (y® + 6°)R(L),

rd-w)l, -9
where

w p?®(0,E(t) + 0, H(t) + 03A(t) + (1))
B = N

and 0 < w < 1. Here, the population is divided into 6 groups: susceptible individuals (S(t)), exposed

individuals (E (t)), asymptomatic MTB infected individuals with no clinical symptoms of MTB (A(¢)),
MTB infected individuals with clinical symptoms (I(¢)), hospitalized individuals (H(t)), and
recovered individuals (R(t)). The total number of population is represented by N(t), so that N(t) =
S+ E®)+A[) +I(t) + H(t) + R(t).

In deriving the analysis of the model under investigation, we assume the following conditions:
e A closed population where the total number of individuals remains constant, considering
recruitment and mortality rates.
e Homogeneous mixing of individuals, meaning that each susceptible individual has an equal
probability of encountering an infectious individual.
o No external interventions (such as vaccination or treatment campaigns) affecting the
transmission dynamics during the study period.
e The fractional-order model maintains the same biological assumptions as integer-order models
while incorporating memory effects.
e The transmission rate remains time-invariant over the study period.
These assumptions are consistent with those in classical epidemiological models, allowing a direct
comparison between integer-order and fractional-order models while investigating the impact of

memory effects on disease dynamics.
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Figure 1: Diagram of the MTB model
Figure 1 shows the flow chart of the MTB mathematical model while Table 1 includes the description
and values of the parameters. We use these all values in Section 4 to obtain the graphs of the system
solutions. Fractional system (2.1) is constructed with care of dimensional analysis among the system
parameters and derivatives. In other saying, the non-integer order w does not invade dimensional
analysis. Because, parameters of the MTB model includes the non-integer order w except g4, 0, 05

(dimensionless parameters).
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Table 1. Description of the parameters of MTB model

Parameter Definition Sample Value Units Source

A Recruitment rate 53 1/Day Mustapha et al., 2022

) Naturel death rate 0.0047 1/Day Mustapha et al., 2022

p Transmission probability 0.000535 1/Day Mustapha et al., 2022
of MTB

X Progression of latent state  0.001 1/Day Mustapha et al., 2022
of MTB

n Proportion of infected 0.00071 1/Day Mustapha et al., 2022
individuals

kl, k2, K3 Recovery rates 0.000453,0.000543,0.000234 1/Day Mustapha et al., 2022

Y Loss of immunity 0.00271 1/Day Mustapha et al., 2022

al,a2,03 Death rate 0.0002,0.0003,0.0004 1/Day Mustapha et al., 2022

01,062 Hospitalization rate 0.2849,0.22806 1/Day Mustapha et al., 2022

61,62,63 Modification for the [0,1) Dimensionless Mustapha et al., 2022

decrease/increase of MTB

The fractional system model given above is studied biologically and mathematically, and a comparative
analysis is performed between the solutions obtained by classical derivative and those obtained by

Caputo fractional derivative.

3. Mathematical Analysis of the Fractional MTB Infection Model
In this section, we show the fundamental properties of the fractional-type model under investigation.

Firstly, positive invariant set for the fractional MTB model is given by Theorem 1 as below:
Theorem 1. The closedsetI = {(S,E,A,I,HLR) ER*:0<S+E+A+I+H+R< 2—:} is a positive

invariant set for the fractional model (2.1).

Proof. The following steps are utilized to prove the non-negativity of system (2.1) solution:

chs(th(t):o =1°+y? =0,

cDYE@®)|gy=0 = BS() =0,

cDPA®) | ay=0 =N“XE(t) 2 0, (3.1)
DI 1ty=0 = (1 —n*)¥?E(t) =0,

cDHO|a(y=0 = 07°A() + 621(t) 2 0,

DR ry=0 = kAWM +k51(t) + k§H() 2 0,

This means that the solutions of the model handled are non-negative. On the other hand, by adding the

equations of the fractional system (2.1), we have
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DON(E) < A — §ON(E) — (af A(t) + af I(t) + af H(D)) < 12 — §°N(2). (3.2)

If we use the property of Caputo operator, we get

N(t) < <N(0) - §—Z> x E, (—59t®) + (’;—z. (3.3)

Under the property of Mittag-Leffler function E,, (.), we reach

w

SO+EQ)+A@ +I®)+H(@®)+R(@®)) < 30’

(3.4)

and so the defined set I is positive invariant region for the fractional MTB infection model including

Caputo operator.

The effective reproduction number is a critical threshold parameter for characterizing mathematical
disease models. So let us calculate the reproduction number (R,) for the proposed fractional model. But
before that we show the existence of disease-free equilibrium point (DFE), E°. In the absence of the
MTB infection (E* =0,4" =0,I" = 0,H" = 0), the system (2.1) reduces to 1 — §*S = 0. Solving,

we obtain DFE as

w

A
E® = (§* E* A" I",H*,R*) = (5_0)' 0,0,0,0). (3.5)
Now, benefiting from the DFE, we calculate R, with the help of next generation matrix method as
follows. Also, the stability of DFE is investigated by using this efficient method (Van den Driessche et
al., 2002). The matrix F; (the rate of appearance of new infections in compartment i) and the matrix V;
(substracting the transfer of indivuals out of the compartment i from the rate of transfer of individuals

into compartment i) are given by

p®(01E + 0,H + a3A + 1) - (x® — 6°)E
N —N“x“E + (0 + kP +af + §?)A
. 8 v = |@¢ = Dx“E + (68 + k5 +ap +6)]
! 0 ' ' —0PA—- 01+ (af +k$ +8°)H |
0 —A? 4+ B?S —y“R + 6°S
0 —kPA— k1 —k$H+ (y® +6°)R

By using matrices F; and V;, we can get the matrices F (the rate of new infection cases) and V (the matrix

including rest of the terms):

p¥oy pPoz p® p%o,
Fo| O 0 0 0

0 o o0 o0 [

0 0 0 0
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O — 59 0 0 0

V= —n®y® 0 + k¥ —a +6¢ 0 0
=x2@=n®) 0 0 0
0 -6y -0 af + k9 + 5%

So the matrix V=1 can be written as

! 0 0 0_
B,
w ,, W
1
nx L 0 0
vl = B, B, B,
X*Bs 0 1 0 '
BB Bs
x“M®B36° + B,Bs6y’) 6 67 1
B,B,B.B, B,B, BB, B,

Here, B; = y“8“, B, =09 + k¥ +ay + 8%, B3 =05 +k5 +a +6%, B,=af +k§ +56¢,

Bs = 1 —n®. On the other hand, the natrix FV 1 is

[B pPos  poy07 ﬁ p©oy07 p‘“az]
|7 B B:Bs By BB B
FV="=10 0 0 o |
l0 0 0 0 J
0 0 0 0
and B, = y©6® B, = P20 pPosnx® | pPx®Bs | pPoax®(1¥BsO4B:Bs02)  ac 4 result of all
6=V O By =g B, B, ByBs B,B;B3B, '

calculations performed the reproduction number is given by

_ p?(M®x?B3Byo3 + n®x¥B30,07 + x“B;B50,0” + x“B,B4Bs + B, B3B,01)

R
0 ByB,Bs3B,

So the following theorem can be given:

Theorem 2. The DFE of the proposed fractional model (2.1) is locally asymptotically stable if Ry < 1

and unstable when Ry > 1.

Now we present the analysis of the endemic equilibrium of the fractional MTB model. It is well-known
that if £+ 0,A+ 0,1 #0,H # 0, the infection persists and the disease model has en endemic
equilibrium (EE) point indicated by EE = (S*,E*, A*,I*, H*, R™). Also, it can be noted that when R, <
1, the infection may disappear and for R, > 1, the infection persists. In order to obtain EE, we solve the

fractional model (2.1) in terms of the £ and obtain
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B,B,B3B,BsBcA”

S* = ,
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E*

~ B, B3 B,BsfA®

~ ByB,B3B,B — X°Y¥ByBs(Byky + 05°k5) — n@x Py @ B3 (By @Ky + B0 KS) + B1ByB3ByBs6®’
A*

_ B3ByBen®x“ B2
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_ B;ByBsBex B A

" BB,B3B4Bg — x®yY®B,Bs(B4k? + 0LKL) —n@x@y® LY (Byk® + 0PkS) + ByB,B3B,Bc8Y’
H*

I*

_ X“B“A”Bs(B,Bs67’ + B361°'n®)

 ByByB3ByBg — x“y®ByBs(Byky + 0PkS) — n@x@y®BYB;(Byk® + 0LkL) + BB, B3B,Bs5%’
_ X¥B®2A°(ByBs(Byky’ + 05°k5’) + 1 x“ B B3(Byky’ + 01°k3’))

 ByB3B,B(B® + 69) — x©y®B®B,Bs(Byk§ + 05°K$) — N x Py BPB3(Byky + 07°kS)

R*

Theorem 3. The EE points of the fractional system (2.1) is globally asymptotically stable when Ry > 1
and unstable for R, < 1.

After performing some basic mathematical calculations for the fractional MTB infection model above,
numerical analysis is carried out and how the fractional-order affects the disease dynamics is clearly

observed in the graphs as follows:

4. Visual Results and Discussions

In the current section, we carry out numerical analysis of the fractional MTB disease model with the
help of the Caputo operator. For this objective, fractional predictor-corrector method (Diethelm et al.,
2002, Diethelm et al., 2004, Qureshi et al., 2019 ) is employed and we show the effect of non-integer

order m on the solutions with various graphs. The predictor-corrector method is given as follows.

Firstly, we write the fractional MTB infection model in the following form:

D?S(t) = G,(t,S,E, A, 1,H,R),
DYE(t) = G,(t,S,E, A, 1,H,R),
D@A(t) = G5(t,S,E, A, IH,R), (4.1)
DI(t) = G,(t,S,E, A, IH,R),
DPH(t) = Gs(t,S,E, A, 1,H,R),
DR(t) = G¢(t,S,E, A, 1,H,R).
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For the time step interval At such that t; = iAt,i = 0,1, ..., N and T is the upper limit of the integration
interval, let At = % Accordingly, the algorithm of the predictor part required for the numerical method

to be used is

n
Stas = SO) + ) @ inerGalts, Sy By Ap Ty Hi R,

=1

n
By = EO)+ ) @uines Galts, Sy By Ap Ty Hy R,

=1

n
Ay = A) + ) Quyinsa Gt So By A T, Hi Ry,

i=1

n
Iy =1(0) + Z Ao in+1Ga(ti, Siy Eiy Ay 1, Hy, Ry),

i=1

n
Hivy = HO) + ) @y inenGs (o Si B As i Hy R,

=1

n
Risn = RO+ ) @yinanGolt Si B Ay 1o Hy, RO,

=1

and in a similar way, the algorithm of the corrector part for the numerical technique is given by

n
ne1 = S(0) + by ny1n+1G1 (8, ST E] AL I HY, RY) + Z by in+1G1(ti, Si, Ei, Ay, Iy Hy, Ry),
i=1
n
Efy1 = EQ0) + byns1,ne1G2(t, ST EL AL L H R)) + ) by ins1Ga(ti, Sy Eiy Ay 1, Hy, Ry),
=1

i

n
A1 = A(0) + by n1n+1G3(ti, ST E] AL T HE L RY) + Z be,in+1G3(ti, Siy Ei, Ay, 1, Hy, Ry),
i=1

i=

NGE

Iigq = 1Q0) + by ni1,n41Ga(ti, ST E AL I H R + ) by ing1Ga(ti, Siy Egy Ay 1, Hy Ry,

4

Hyyq = H(0) + by ns1n+1Gs (i, ST EL AL I H R + ) by ins1Gs(ti, Siy Eiy Ap Iy Hy, Ry),

M= I

i

1l
=

1 = R(0) + boyns1.ne1Ge(ti, ST EL AL L HT L RY) + ) by iner Ge(ti, Sy Eiy Ay 1, Hi, Ry).

NIE

1=

=

On the other hand, the following equations are valid:
1
Uintt = T D) [(n—i+1D? - (—-D%]
N (O
w,i,n+1 - I—v(w + 2)’
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and

ntl—(m—w)(n+1% i=0
m—i+2)*"1-2n—i+ D1+ (n-0)%*, 1<i<n
1, i=n+1

Also, r = min(1 + w, 2) is the accuracy order of the fractional predictor-corrector method.

The graphs obtained for different values of w and the biological parameter values in Table 1 are shown
in Figure 2 and 3 by means of fractional-type predictor-corrector method. On these graphs, the MTB
disease model containing the classical derivative and the model containing the Caputo derivative are
compared. The time-dependent change of the state variables S(t), E(t), A(t), I(t), H(t), R(t) belonging
to the system (2.1) is first plotted in the classical case in Figure 2. Then, the comparison of the classical
model (when w = 1) with the fractional model for w = 0.9,0.8,0.7 is given in Figure 3. The point to
note here is how the fractional order w changes the behavior of the solution curves. Moreover, the
increase and decrease in number of susceptible individuals, exposed individuals, asymptomatic MTB
infected individuals with no clinical symptoms of MTB, MTB infected individuals with clinical
symptoms, hospitalized individuals, and recovered individuals can be easily observed on the graphs. For
instance, in Figure 2, while the susceptible class increase more rapidly for the integer-order version
(w = 1), in Figure 3, it increases more slowly for non-integer order values smaller than 1. Similarly, by
looking at the increase and decrease rates of the other classes, we can see the effect of the non-integer

order w on the state variables.
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Figure 2: Profiles of solution functions of the classical-type MTB disease model (for w = 1 in the

system (2.1)).
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Figure 3: Comparison of solution functions between classical derivative (w = 1) and Caputo
derivative (when w = 0.9,0.8,0.7) for the MTB disease model in (A), (B), (C), (D), (E), (F).

5. Concluding Remarks
Some crucial points and future directions of this study can be listed as follows:
1. It is well-known that non-integer order models have outperformed by their integer-order
versions in many research area including biology, engineering, physics, epidemiology. For this

reason, we preferred to employ an effective fractional derivative operator called Caputo for
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investigating the mycobacterium tuberculosis disease model with reinfection and
hospitalization. In this way, it is possible to reach more precise results regarding the course of
the transmision dynamics of tuberculosis.

We perform an effective mathematical analysis belonging to the MTB model. Both theoretical
and numerical results obtained with the fractional Caputo operator aim to contribute to disease
eradication studies by shedding light on understanding the disease process.

In the numerical simulations, we considered fractional orders »w=0.7,0.8,0.9 alongside the
classical case (w = 1). The choice of these specific values is motivated by both mathematical
feasibility and biological relevance. Fractional-order derivatives inherently capture memory
effects in disease progression, meaning that past states influence the current infection dynamics.
From an epidemiological perspective, the fractional-order parameter ® can be interpreted as a
measure of disease persistence and immune memory. Lower ® values (o < 1) represent
scenarios where the disease exhibits stronger memory effects, potentially due to reinfection,
prolonged latent periods, or variability in immune response. Higher o values closer to 1 suggest
that the disease follows dynamics similar to classical integer-order models, where recovery and
transmission rates are more instantaneous.

The selected values (©=0.7,0.8,0.9) align with existing studies in fractional epidemiological
modeling and allow us to observe the progressive impact of memory effects on tuberculosis
dynamics. This approach provides a systematic way to compare the fractional and classical
models and offers insights into how different memory effects influence disease transmission
and control strategies. Future studies can further explore the impact of m\omegaw by fitting
fractional models to real epidemiological data, optimizing ®w\omegaw based on empirical
observations.

The theoretical results of this study include positive invariant set of fractional MTB model,
stability analysis, reproduction number, disease-free and endemic steady-states. In accordance
with the results of our current study, the DFE of the fractional model addressed is locally
asymptotically stable if R, < 1 and stable if R, > 1. Also, the EE point of the proposed system
is globally asymptotically stable for R, > 1 and unstable for R, < 1. It is worth noting that the
reproduction number can be controlled much better via non-integer order as done in many
studies in the literature.

Numerical results have been introduced to provide a better understanding of the transmission
dynamics of tuberculosis infection. We have shown the effect of the non-integer order w on the
system solutions of the fractional MTB model on graphs. We have mentioned that non-integer
order systems can express the complex dynamics of tuberculosis disease more accurately rather
than traditional models.

Future studies would contain real-data on the tuberculosis disease to determine the better

derivative definition more precisely. On the other hand, optimal control can be carried out in
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the MTB model via the Caputo derivative. Moreover, other types of fractional operator
definitions can be tried for better results.

9. Inthis study, the tuberculosis transmission model is analyzed for the first time using the Caputo
fractional derivative, providing a novel perspective on the impact of memory effects in
epidemiological modeling. Future studies can extend this work by validating the proposed
model with real-world epidemiological data, further enhancing its applicability and reliability
in predicting tuberculosis dynamics.
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