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Kesirli türev ve integral operatörlerinin en önemli avantajlarından biri olan 

hafıza etkisi, bir hastalığın belirgin bir özelliğidir. Mikobakteriyum 

tüberküloz, akciğerleri etkileyen hafızaya bağlı bu tür tehlikeli hastalıklardan 

biridir. Bu nedenle, bu ciddi halk sağlığı enfeksiyonu hafıza etkisine sahip 

Caputo operatörü aracılığıyla araştırılmıştır. İlk olarak, çözümlerin pozitifliği, 

hastalıksız denge ve endemik denge noktaları gibi önerilen modelin bazı temel 

özellikleri sunulmuştur. Daha sonra, söz konusu hastalık modelini karakterize 

etmek için temel üreme sayısı hesaplanmıştır. Ayrıca, bu temel hesaplamalar 

kullanılarak kararlılık analizi gerçekleştirilmiştir ve tüberküloz 

enfeksiyonunun seyri hakkında yorumlar yapılmıştır. Öte yandan, tam sayı 

olmayan mertebenin mikobakteriyum tüberküloz yayılımı üzerindeki etkisini 

göstermek için sayısal simülasyonlar gerçekleştirilmiştir. Son olarak, klasik ve 

kesirli matematiksel modeller arasındaki karşılaştırma analizi çeşitli 

grafiklerle desteklenmiştir. Sonuçlar, kesirli sıranın tüberküloz yayılmasını 

seyrini büyük ölçüde etkileyebileceğini ve bu küresel sağlık sorunu hakkında 

daha spesifik tahminlere izin verdiğini göstermektedir. 
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 Memory effect, one of the most important advantages of fractional derivative 

and integral operators, is a prominent characteristic of a disease. Mycobacterium 

tuberculosis is one of such memory-dependent precarious disease that affects the 

lungs. Therefore, we investigate this serious public health infection by means of 

the Caputo operator having memory. Firstly, some fundamental features of the 

proposed model such as the positiveness of solutions, the disease-free 

equilibrium, and endemic equilibrium points are presented. Then, the basic 

reproduction number to characterize the disease model under consideration is 

calculated. In addition, stability analysis is performed by using these basic 

calculations, and comments are made on the course of the tuberculosis infection. 

On the other hand, we numerical simulations in order to show the effect of non-

integer order on the mycobacterium tuberculosis transmission are carried out. 

Lastly, comparison analysis between the classical and fractional mathematical 

models is supported by various graphs. The results show that fractional order can 

greatly affect the course of the tuberculosis transmission and allow for more 

specific predictions about this global health issue. 
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1.   Introduction  

Mycobacterium tuberculosis (MTB) is a dangerous and life-threatening disease causing infection in the 

lungs and damage to other organs. It is also a long-term bacterial and contagious infectious disease 

caused by the Mycobacterium tuberculosis. Although it is one of the oldest known diseases, its cause is 

known with certainty, it can be treated, and it is a preventable disease, it still remains one of the most 

common and fatal infectious diseases in the world, and more than 3 million people die from tuberculosis 

every year. Moreover, one in three people in the world has contracted tuberculosis, and currently, more 

than 10 million new MTB patients are diagnosed each year according to WHO. The MTB disease is 

transmitted from human to human through air. The bacillus is spread into the air by droplets in the saliva 

of an active tuberculosis patient through coughing, sneezing, or other means, and the infection spreads 

by ingesting particles suspended in the air. The most common symptoms of the MTB are fever, chills, 

night sweats, loss of appetite, weight loss, and fatigue (Murphy et al., 2003; Khajanchi et al., 2018; Ojo 

et al., 2023). In order to control and prevent the infectious diseases, one must be well-versed in the 

disease mechanism and transmission dynamics. This helps predict disease progression and develop 

eradication strategies. Since diseases change over time, investigating epidemic dynamics is a crucial 

theoretical avenue for gaining insight into transmission dynamics and control. Mathematical modeling 

enables us to analyze and comprehend the transmission process of various infectious diseases. 

Moreover, mathematical models make a major contribution to analyze and comprehend the transmission 

dynamics of various diseases. Also, disease models provide better policy to control or prevent the spread 

of future infections. Analysis of disease via mathematical tools enables crucial predictions about 

infection and estimates of future outcomes that are impossible to calculate by alternative means. 

Numerous system models have been developed to understand the biological process of tuberculosis. 

They can also be used to assess the impact of public health intervention strategies and to suggest the 

best course of action to combat tuberculosis (Qureshi et al., 2021). Moreover, there are many 

tuberculosis models in the literature based on real-data to predict the future spread and control of the 

disease (Ullah et al., 2018; Khan et al. 2019). 

Fractional-order models offer more reliable and accurate results about the process of diseases compared 

to traditional models. In addition, the definition of hereditary characteristics and memory gives it an 

advantage over traditional models. Fractional mathematical models have the feature of representing the 

dynamics between two non-local points (Qureshi et al., 2021). Especially in recent years, various 

theories and ideas related to fractional operators have been put forward and developed. Fractional 

calculus is frequently used in modeling of real-world problems in engineering, physics, psychology, 

medicine, economics and many other areas. Therefore, we prefer to analyze theoretically and 

numerically the transmission dynamics of tuberculosis disease by presenting the effect of non-integer 

order. Additionally, several studies in the literature have explored the joint analyses of tuberculosis and 

fractional derivatives (Sweilam et al., 2016; Zafar et al., 2022; Farman et al., 2023; Olaniyi et al., 2023). 

Due to the importance of the combination of non-local fractional derivatives with disease models in the 
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literature, we analyze the MTB model with the help of the Caputo derivative, which stands out with its 

advantages in application. This useful fractional operator with singular kernel is defined as follows: 

                            𝐷𝜔𝜙(𝑡) =
1

𝛤(𝑛 − 𝜔)
∫

𝜙(𝑛)(𝜉)

(𝑡 − 𝜏)𝜔−𝑛+1
𝑑𝜉,

𝑡

𝑎
                              𝐶                                                (1.1)      

where 𝑅𝑒 ≥ 0 and 𝑛 = ⌊𝑅𝑒(𝜔)⌋ + 1 (Miller et al., 1993). Thanks to the Caputo definition, the MTB 

system, which is considered in the usual classical form in the study (Mustapha et al., 2022), is redefined 

and analyzed in fractional terms, and more precise results are obtained. It is investigated both 

theoretically and numerically, and the effect of the fractional order on the results in both cases is shown 

by comparing it with the integer-order derivative. We refer the reader to (Jarad et al., 2017; Acay et al., 

2020; Acay et al., 2021a; Acay et al., 2021b; Inc et al., 2021; Ucakan et al., 2021; Yusuf et al., 2021) 

for more application of fractional operators and disease models. 

The current article is structured as: In Section 2, we present the compartmental disease model for 

transmission dynamics of tuberculosis infection with hospitalization and reinfection through Caputo 

fractional operator. Model diagram of fractional system and all biological parameter descriptions and 

values are given in this section. Then, in Section 3, we address some basic analysis of the fractional 

MTB model, that is, positivity of the system solutions, stability analysis. Also, such dynamical features 

as the basic reproduction number, disease-free steady-state and endemic steady-state are shown for the 

fractional model under consideration. On the other hand, in Section 4, we give a numerical scheme to 

visualize the fractional MTB model with Caputo operator. Lastly, some crucial conclusions and future 

recommendations of our research study are introduced for better understanding the dynamics of 

mycobacterium tuberculosis disease. 

 

2.  Description of the Fractional Tuberculosis Transmission Model 

In this section, we investigate the mathematical model of mycobacterium tuberculosis (MTB) 

transmission in humans with hospitalization and reinfection given in (Mustapha et al., 2022). Due to the 

known advantages of fractional derivatives in examining disease models, the mentioned model is 

defined and analyzed with the Caputo derivative. We define the tuberculosis transmission model under 

Caputo operator as follows: 
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𝐷𝜔𝑆(𝑡) =
1

𝛤(1 − 𝜔)
∫

𝑆′(𝑡)

(𝑡 − 𝜉)𝜔
𝑑𝜉 = 𝜆𝜔 − 𝛽𝜔𝑆(𝑡) + 𝛾𝜔𝑅(𝑡) − 𝛿𝜔𝑆(𝑡),                  

𝑡

0
𝐶  

  𝐷𝜔𝐸(𝑡) =
1

𝛤(1 − 𝜔)
∫

𝐸′(𝑡)

(𝑡 − 𝜉)𝜔
𝑑𝜉 = 𝛽𝜔𝑆(𝑡) − (𝜒𝜔 + 𝛿𝜔)𝐸(𝑡),

𝑡

0
𝐶                                     

      𝐷𝜔𝐴(𝑡) =
1

𝛤(1 − 𝜔)
∫

𝐴′(𝑡)

(𝑡 − 𝜉)𝜔
𝑑𝜉 = 𝜂𝜔𝜒𝜔𝐸(𝑡) − (𝜃1

𝜔 + 𝜅1
𝜔 + 𝛼1

𝜔 + 𝛿𝜔)𝐴(𝑡),
𝑡

0
           𝐶                     (2.1)      

     𝐷𝜔𝐼(𝑡) =
1

𝛤(1 − 𝜔)
∫

𝐼′(𝑡)

(𝑡 − 𝜉)𝜔
𝑑𝜉 = (1 − 𝜂𝜔)𝜒𝜔𝐸(𝑡) − (𝜃2

𝜔 + 𝜅2
𝜔 + 𝛼2

𝜔 + 𝛿𝜔)𝐼(𝑡),
𝑡

0
𝐶   

𝐷𝜔𝐻(𝑡) =
1

𝛤(1 − 𝜔)
∫

𝐻′(𝑡)

(𝑡 − 𝜉)𝜔
𝑑𝜉 = 𝜃1

𝜔𝐴(𝑡) + 𝜃2
𝜔𝐼(𝑡) − (𝛼3

𝜔 + 𝜅3
𝜔 + 𝛿𝜔)𝐻(𝑡),

𝑡

0
𝐶     

𝐷𝜔𝑅(𝑡) =
1

𝛤(1 − 𝜔)
∫

𝑅′(𝑡)

(𝑡 − 𝜉)𝜔
= 𝜅1

𝜔𝐴(𝑡) + 𝜅2
𝜔𝐼(𝑡) + 𝜅3

𝜔𝐻(𝑡) − (𝛾𝜔 + 𝛿𝜔)𝑅(𝑡),
𝑡

0
𝐶    

where  

𝛽𝜔 =
𝜌𝜔(𝜎1𝐸(𝑡) + 𝜎2𝐻(𝑡) + 𝜎3𝐴(𝑡) + 𝐼(𝑡))

𝑁
 

and  0 < 𝜔 ≤ 1. Here, the population is divided into 6 groups: susceptible individuals (𝑆(𝑡)), exposed 

individuals (𝐸(𝑡)), asymptomatic MTB infected individuals with no clinical symptoms of MTB (𝐴(𝑡)), 

MTB infected individuals with clinical symptoms (𝐼(𝑡)), hospitalized individuals (𝐻(𝑡)), and 

recovered individuals (𝑅(𝑡)). The total number of population is represented by 𝑁(𝑡), so that 𝑁(𝑡) =

𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝐻(𝑡) + 𝑅(𝑡). 

 

In deriving the analysis of the model under investigation, we assume the following conditions: 

 A closed population where the total number of individuals remains constant, considering 

recruitment and mortality rates. 

 Homogeneous mixing of individuals, meaning that each susceptible individual has an equal 

probability of encountering an infectious individual. 

 No external interventions (such as vaccination or treatment campaigns) affecting the 

transmission dynamics during the study period. 

 The fractional-order model maintains the same biological assumptions as integer-order models 

while incorporating memory effects. 

 The transmission rate remains time-invariant over the study period. 

These assumptions are consistent with those in classical epidemiological models, allowing a direct 

comparison between integer-order and fractional-order models while investigating the impact of 

memory effects on disease dynamics. 
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                                                             Figure 1: Diagram of the MTB model 

Figure 1 shows the flow chart of the MTB mathematical model while Table 1 includes the description 

and values of the parameters. We use these all values in Section 4 to obtain the graphs of the system 

solutions. Fractional system (2.1) is constructed with care of dimensional analysis among the system 

parameters and derivatives. In other saying, the non-integer order 𝜔 does not invade dimensional 

analysis. Because, parameters of the MTB model includes the non-integer order 𝜔 except 𝜎1, 𝜎2, 𝜎3 

(dimensionless parameters). 
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Table 1. Description of the parameters of MTB model 

                                      

The fractional system model given above is studied biologically and mathematically, and a comparative 

analysis is performed between the solutions obtained by classical derivative and those obtained by 

Caputo fractional derivative. 

 

3. Mathematical Analysis of the Fractional MTB Infection Model

In this section, we show the fundamental properties of the fractional-type model under investigation. 

Firstly, positive invariant set for the fractional MTB model is given by Theorem 1 as below: 

Theorem 1. The closed set 𝐼 = {(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) ∈ 𝑅6: 0 ≤ 𝑆 + 𝐸 + 𝐴 + 𝐼 + 𝐻 + 𝑅 ≤
𝜆𝜔

𝛿𝜔} is a positive 

invariant set for the fractional model (2.1). 

 

Proof. The following steps are utilized to prove the non-negativity of system (2.1) solution: 

 

𝐷𝜔
𝐶 𝑆(𝑡)|𝑆(𝑡)=0 = 𝜆𝜔 + 𝛾𝜔 ≥ 0,                                             

𝐷𝜔
𝐶 𝐸(𝑡)|𝐸(𝑡)=0 = 𝛽𝜔𝑆(𝑡) ≥ 0,                                              

                                        𝐷𝜔
𝐶 𝐴(𝑡)|𝐴(𝑡)=0 = 𝜂𝜔𝜒𝜔𝐸(𝑡) ≥ 0,                                                                       (3.1) 

𝐷𝜔
𝐶 𝐼(𝑡)|𝐼(𝑡)=0 = (1 − 𝜂𝜔)𝜒𝜔𝐸(𝑡) ≥ 0,                             

𝐷𝜔
𝐶 𝐻(𝑡)|𝐻(𝑡)=0 = 𝜃1

𝜔𝐴(𝑡) + 𝜃2
𝜔𝐼(𝑡) ≥ 0,                        

𝐷𝜔
𝐶 𝑅(𝑡)|𝑅(𝑡)=0 = 𝜅1

𝜔𝐴(𝑡) + 𝜅2
𝜔𝐼(𝑡) + 𝜅3

𝜔𝐻(𝑡) ≥ 0,      
 

This means that the solutions of the model handled are non-negative. On the other hand, by adding the 

equations of the fractional system (2.1), we have 

Parameter Definition Sample Value  Units  Source 

     

λ Recruitment rate 

 

53  1/Day Mustapha et al., 2022 

δ 

 

Naturel death rate 0.0047                                        1/Day Mustapha et al., 2022 

ρ 

 

Transmission probability 

of MTB 

0.000535  1/Day Mustapha et al., 2022 

χ  

 

Progression of latent state 

of MTB 

0.001  1/Day Mustapha et al., 2022 

η Proportion of infected 

individuals 

0.00071  1/Day Mustapha et al., 2022 

κ1, κ2, κ3 

 

Recovery rates 0.000453,0.000543,0.000234  1/Day Mustapha et al., 2022 

γ Loss of immunity 0.00271  1/Day Mustapha et al., 2022 

 

α1,α2,α3 

 

Death rate  

 

0.0002,0.0003,0.0004 

 

 1/Day 

 

Mustapha et al., 2022 

 

θ1,θ2 

 

Hospitalization rate 

 

0.2849,0.22806 

 

 1/Day 

 

Mustapha et al., 2022 

 

σ1,σ2,σ3 

 

Modification for the 

decrease/increase of MTB 

 

[0,1) 

 

Dimensionless 

 

Mustapha et al., 2022 
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 𝐷𝜔
𝐶 𝑁(𝑡) ≤ 𝜆𝜔 − 𝛿𝜔𝑁(𝑡) − (𝛼1

𝜔 𝐴(𝑡) + 𝛼2
𝜔 𝐼(𝑡) + 𝛼3

𝜔 𝐻(𝑡)) ≤ 𝜆𝜔 − 𝛿𝜔𝑁(𝑡).                            (3.2) 

 

If we use the property of Caputo operator, we get 

  𝑁(𝑡) ≤ (𝑁(0) −
𝜆𝜔

𝛿𝜔) × 𝐸𝜔(−𝛿𝜔𝑡𝜔) +
𝜆𝜔

𝛿𝜔
.                                                                                             (3.3) 

 

Under the property of Mittag-Leffler function 𝐸𝜔(. ), we reach 

 

(𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝐻(𝑡) + 𝑅(𝑡)) ≤
𝜆𝜔

𝛿𝜔
,                                                                                (3.4) 

 

and so the defined set 𝐼 is positive invariant region for the fractional MTB infection model including 

Caputo operator. 

 

The effective reproduction number is a critical threshold parameter for characterizing mathematical 

disease models. So let us calculate the reproduction number (𝑅0) for the proposed fractional model. But 

before that we show the existence of disease-free equilibrium point (DFE), 𝐸0. In the absence of the 

MTB infection    (𝐸∗ = 0, 𝐴∗ = 0, 𝐼∗ = 0,𝐻∗ = 0), the system (2.1) reduces to 𝜆𝜔 − 𝛿𝜔𝑆 = 0. Solving, 

we obtain DFE as 

 

    𝐸0 = (𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐻∗, 𝑅∗) = (
𝜆𝜔

𝛿𝜔
, 0,0,0,0).                                                                                         (3.5) 

 

Now, benefiting from the DFE, we calculate 𝑅0 with the help of next generation matrix method as 

follows. Also, the stability of DFE is investigated by using this efficient method (Van den Driessche et 

al., 2002). The matrix 𝐹𝑖 (the rate of appearance of new infections in compartment i) and the matrix 𝑉𝑖 

(substracting the transfer of indivuals out of the compartment i from the rate of transfer of individuals 

into compartment i) are given by 

 

Fi =

[
 
 
 
 
 
 
𝜌𝜔(𝜎1𝐸 + 𝜎2𝐻 + 𝜎3𝐴 + 𝐼)

𝑁
0
0
0
0
0 ]

 
 
 
 
 
 

,           Vi =

[
 
 
 
 
 
 

(𝜒𝜔 − 𝛿𝜔)𝐸

−𝜂𝜔𝜒𝜔𝐸 + (𝜃1
𝜔 + 𝜅1

𝜔 + 𝛼1
𝜔 + 𝛿𝜔)𝐴

(𝜂𝜔 − 1)𝜒𝜔𝐸 + (𝜃2
𝜔 + 𝜅2

𝜔 + 𝛼2
𝜔 + 𝛿𝜔)𝐼

−𝜃1
𝜔𝐴 − 𝜃2

𝜔𝐼 + (𝛼3
𝜔 + 𝜅3

𝜔 + 𝛿𝜔)𝐻

−𝜆𝜔 + 𝛽𝜔𝑆 − 𝛾𝜔𝑅 + 𝛿𝜔𝑆

−𝜅1
𝜔𝐴 − 𝜅2

𝜔𝐼 − 𝜅3
𝜔𝐻 + (𝛾𝜔 + 𝛿𝜔)𝑅 ]

 
 
 
 
 
 

, 

 

By using matrices Fi and Vi, we can get the matrices 𝐹 (the rate of new infection cases) and 𝑉 (the matrix 

including rest of the terms): 

 

𝐹 = [

𝜌𝜔𝜎1 𝜌𝜔𝜎3 𝜌𝜔 𝜌𝜔𝜎2

0 0 0 0
0 0 0 0
0 0 0 0

],   
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𝑉 =

[
 
 
 

𝜒𝜔 − 𝛿𝜔 0 0 0

−𝜂𝜔𝜒𝜔 𝜃1
𝜔 + 𝜅1

𝜔 − 𝛼1
𝜔 + 𝛿𝜔 0 0

−𝜒𝜔(1 − 𝜂𝜔) 0 0 0

0 −𝜃1
𝜔 −𝜃2

𝜔 𝛼3
𝜔 + 𝜅3

𝜔 + 𝛿𝜔]
 
 
 
. 

 

So the matrix 𝑉−1 can be written as 

 

𝑉−1 =

[
 
 
 
 
 
 
 
 

1

𝐵1
0 0 0

𝜂𝜔𝜒𝜔

𝐵1𝐵2

1

𝐵2
0 0

𝜒𝜔𝐵5

𝐵1𝐵3
0

1

𝐵3
0

𝜒𝜔(𝜂𝜔𝐵3𝜃1
𝜔 + 𝐵2𝐵5𝜃2

𝜔)

𝐵1𝐵2𝐵3𝐵4

𝜃1
𝜔

𝐵2𝐵4

𝜃2
𝜔

𝐵3𝐵4

1

𝐵4]
 
 
 
 
 
 
 
 

. 

 

Here, 𝐵1 = 𝜒𝜔𝛿𝜔, 𝐵2 = 𝜃1
𝜔 + 𝜅1

𝜔 + 𝛼1
𝜔 + 𝛿𝜔, 𝐵3 = 𝜃2

𝜔 + 𝜅2
𝜔 + 𝛼1

𝜔 + 𝛿𝜔, 𝐵4 = 𝛼3
𝜔 + 𝜅3

𝜔 + 𝛿𝜔, 

𝐵5 = 1 − 𝜂𝜔. On the other hand, the natrix 𝐹𝑉−1 is 

 

𝐹𝑉−1 =

[
 
 
 
 𝐵7

𝜌𝜔𝜎3

𝐵2
+

𝜌𝜔𝜎2𝜃1
𝜔

𝐵2𝐵4

𝜌𝜔

𝐵3
+

𝜌𝜔𝜎2𝜃2
𝜔

𝐵3𝐵4

𝜌𝜔𝜎2

𝐵4

0 0 0 0
0 0 0 0
0 0 0 0 ]

 
 
 
 

, 

 

and 𝐵6 = 𝛾𝜔𝛿𝜔, 𝐵7 =
𝜌𝜔𝜎1

𝐵1
+

𝜌𝜔𝜎3𝜂𝜔𝜒𝜔

𝐵1𝐵2
+

𝜌𝜔𝜒𝜔𝐵5

𝐵1𝐵3
+

𝜌𝜔𝜎2𝜒𝜔(𝜂𝜔𝐵3𝜃1
𝜔+𝐵2𝐵5𝜃2

𝜔)

𝐵1𝐵2𝐵3𝐵4
. As a result of all 

calculations performed the reproduction number is given by 

 

𝑅0 =
𝜌𝜔(𝜂𝜔𝜒𝜔𝐵3𝐵4𝜎3 + 𝜂𝜔𝜒𝜔𝐵3𝜎2𝜃1

𝜔 + 𝜒𝜔𝐵2𝐵5𝜎2𝜃2
𝜔 + 𝜒𝜔𝐵2𝐵4𝐵5 + 𝐵2𝐵3𝐵4𝜎1)

𝐵1𝐵2𝐵3𝐵4
. 

 

So the following theorem can be given: 

 

Theorem 2. The DFE of the proposed fractional model (2.1) is locally asymptotically stable if 𝑅0 < 1 

and unstable when 𝑅0 > 1. 

 

Now we present the analysis of the endemic equilibrium of the fractional MTB model. It is well-known 

that if 𝐸 ≠ 0,𝐴 ≠ 0, 𝐼 ≠ 0,𝐻 ≠ 0, the infection persists and the disease model has en endemic 

equilibrium (EE) point indicated by 𝐸𝐸 = (𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐻∗, 𝑅∗). Also, it can be noted that when 𝑅0 <

1, the infection may disappear and for 𝑅0 > 1, the infection persists. In order to obtain EE, we solve the 

fractional model (2.1) in terms of the 𝛽𝜔 and obtain 
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𝑆∗ =
𝐵1𝐵2𝐵3𝐵4𝐵5𝐵6𝜆

𝜔

𝐵2𝐵3𝐵4𝐵6(𝛽
𝜔 + 𝛿𝜔) − 𝜒𝜔𝛾𝜔𝛽𝜔𝐵2𝐵5(𝐵4𝜅2

𝜔 + 𝜃2
𝜔𝜅3

𝜔) − 𝜂𝜔𝜒𝜔𝛾𝜔𝛽𝜔𝐵3(𝐵4𝜅1
𝜔 + 𝜃1

𝜔𝜅3
𝜔)

, 

𝐸∗

=
𝐵2𝐵3𝐵4𝐵6𝛽

𝜔𝜆𝜔

𝐵1𝐵2𝐵3𝐵4𝐵6 − 𝜒𝜔𝛾𝜔𝐵2𝐵5(𝐵4𝜅2
𝜔 + 𝜃2

𝜔𝜅3
𝜔) − 𝜂𝜔𝜒𝜔𝛾𝜔𝐵3(𝐵4𝛽

𝜔𝜅1
𝜔 + 𝛽𝜔𝜃1

𝜔𝜅3
𝜔) + 𝐵1𝐵2𝐵3𝐵4𝐵6𝛿

𝜔
, 

𝐴∗

=
𝐵3𝐵4𝐵6𝜂

𝜔𝜒𝜔𝛽𝜔𝜆𝜔

𝐵1𝐵2𝐵3𝐵6 − 𝜒𝜔𝛾𝜔𝐵2𝐵5(𝐵4𝜅2
𝜔 + 𝜃2

𝜔𝜅3
𝜔) − 𝜂𝜔𝜒𝜔𝛾𝜔𝛽𝜔𝐵3(𝐵4𝜅1

𝜔 + 𝜃1
𝜔𝜅3

𝜔) + 𝐵1𝐵2𝐵3𝐵4𝐵6𝛿
𝜔

, 

𝐼∗ =
𝐵2𝐵4𝐵5𝐵6𝜒

𝜔𝛽𝜔𝜆𝜔

𝐵1𝐵2𝐵3𝐵4𝐵6 − 𝜒𝜔𝛾𝜔𝐵2𝐵5(𝐵4𝜅2
𝜔 + 𝜃2

𝜔𝜅3
𝜔) − 𝜂𝜔𝜒𝜔𝛾𝜔𝛽𝜔(𝐵4𝜅1

𝜔 + 𝜃1
𝜔𝜅3

𝜔) + 𝐵1𝐵2𝐵3𝐵4𝐵6𝛿
𝜔
, 

𝐻∗

=
𝜒𝜔𝛽𝜔𝜆𝜔𝐵6(𝐵2𝐵5𝜃2

𝜔 + 𝐵3𝜃1
𝜔𝜂𝜔)

𝐵1𝐵2𝐵3𝐵4𝐵6 − 𝜒𝜔𝛾𝜔𝐵2𝐵5(𝐵4𝜅2
𝜔 + 𝜃2

𝜔𝜅3
𝜔) − 𝜂𝜔𝜒𝜔𝛾𝜔𝛽𝜔𝐵3(𝐵4𝜅1

𝜔 + 𝜃1
𝜔𝜅3

𝜔) + 𝐵1𝐵2𝐵3𝐵4𝐵6𝛿
𝜔
, 

𝑅∗ =
𝜒𝜔𝛽𝜔𝜆𝜔(𝐵2𝐵5(𝐵4𝜅2

𝜔 + 𝜃2
𝜔𝜅3

𝜔) + 𝜂𝜔𝜒𝜔𝛽𝜔𝐵3(𝐵4𝜅1
𝜔 + 𝜃1

𝜔𝜅3
𝜔))

𝐵1𝐵3𝐵4𝐵6(𝛽
𝜔 + 𝛿𝜔) − 𝜒𝜔𝛾𝜔𝛽𝜔𝐵2𝐵5(𝐵4𝜅2

𝜔 + 𝜃2
𝜔𝜅3

𝜔) − 𝜂𝜔𝜒𝜔𝛾𝜔𝛽𝜔𝐵3(𝐵4𝜅1
𝜔 + 𝜃1

𝜔𝜅3
𝜔)

.         

 

Theorem 3.  The EE points of the fractional system (2.1) is globally asymptotically stable when 𝑅0 > 1 

and unstable for 𝑅0 < 1. 

After performing some basic mathematical calculations for the fractional MTB infection model above, 

numerical analysis is carried out and how the fractional-order affects the disease dynamics is clearly 

observed in the graphs as follows: 

 

4. Visual Results and Discussions 

In the current section, we carry out numerical analysis of the fractional MTB disease model with the 

help of the Caputo operator. For this objective, fractional predictor-corrector method (Diethelm et al., 

2002, Diethelm et al., 2004, Qureshi et al., 2019 ) is employed and we show the effect of non-integer 

order ω on the solutions with various graphs. The predictor-corrector method is given as follows. 

 

Firstly, we write the fractional MTB infection model in the following form: 

 

𝐷𝜔𝑆(𝑡) = 𝐺1(𝑡, 𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅),𝐶  

𝐷𝜔𝐸(𝑡) = 𝐺2(𝑡, 𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅),𝐶  

                                                              𝐷𝜔𝐴(𝑡) = 𝐺3(𝑡, 𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅),𝐶                                                        (4.1) 

𝐷𝜔𝐼(𝑡) = 𝐺4(𝑡, 𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅),𝐶  

𝐷𝜔𝐻(𝑡) = 𝐺5(𝑡, 𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅),𝐶  

𝐷𝜔𝑅(𝑡) = 𝐺6(𝑡, 𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅).𝐶  
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For the time step interval ∆𝑡 such that 𝑡𝑖 = 𝑖∆𝑡, 𝑖 = 0,1,… ,𝑁 and 𝑇 is the upper limit of the integration 

interval, let ∆𝑡 =
𝑇

𝑁
. Accordingly, the algorithm of the predictor part required for the numerical method 

to be used is 

𝑆𝑛+1
𝑟 = 𝑆(0) + ∑𝑎𝜔,𝑖,𝑛+1𝐺1(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖 , 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝐸𝑛+1
𝑟 = 𝐸(0) + ∑𝑎𝜔,𝑖,𝑛+1𝐺2(𝑡𝑖, 𝑆𝑖, 𝐸𝑖, 𝐴𝑖 , 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝐴𝑛+1
𝑟 = 𝐴(0) + ∑𝑎𝜔,𝑖,𝑛+1𝐺3(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖 , 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝐼𝑛+1
𝑟 = 𝐼(0) + ∑𝑎𝜔,𝑖,𝑛+1𝐺4(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖 , 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝐻𝑛+1
𝑟 = 𝐻(0) + ∑𝑎𝜔,𝑖,𝑛+1𝐺5(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖 , 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝑅𝑛+1
𝑟 = 𝑅(0) + ∑𝑎𝜔,𝑖,𝑛+1𝐺6(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖, 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

and in a similar way, the algorithm of the corrector part for the numerical technique is given by 

 

𝑆𝑛+1
𝑟 = 𝑆(0) + 𝑏𝜔,𝑛+1,𝑛+1𝐺1(𝑡𝑖, 𝑆𝑖

𝑟, 𝐸𝑖
𝑟, 𝐴𝑖

𝑟, 𝐼𝑖
𝑟, 𝐻𝑖

𝑟, 𝑅𝑖
𝑟) + ∑𝑏𝜔,𝑖,𝑛+1𝐺1(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖 , 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝐸𝑛+1
𝑟 = 𝐸(0) + 𝑏𝜔,𝑛+1,𝑛+1𝐺2(𝑡𝑖, 𝑆𝑖

𝑟, 𝐸𝑖
𝑟, 𝐴𝑖

𝑟, 𝐼𝑖
𝑟, 𝐻𝑖

𝑟, 𝑅𝑖
𝑟) + ∑𝑏𝜔,𝑖,𝑛+1𝐺2(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖 , 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝐴𝑛+1
𝑟 = 𝐴(0) + 𝑏𝜔,𝑛+1,𝑛+1𝐺3(𝑡𝑖, 𝑆𝑖

𝑟, 𝐸𝑖
𝑟, 𝐴𝑖

𝑟, 𝐼𝑖
𝑟, 𝐻𝑖

𝑟, 𝑅𝑖
𝑟) + ∑𝑏𝜔,𝑖,𝑛+1𝐺3(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖 , 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝐼𝑛+1
𝑟 = 𝐼(0) + 𝑏𝜔,𝑛+1,𝑛+1𝐺4(𝑡𝑖, 𝑆𝑖

𝑟, 𝐸𝑖
𝑟, 𝐴𝑖

𝑟, 𝐼𝑖
𝑟, 𝐻𝑖

𝑟, 𝑅𝑖
𝑟) + ∑𝑏𝜔,𝑖,𝑛+1𝐺4(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖, 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝐻𝑛+1
𝑟 = 𝐻(0) + 𝑏𝜔,𝑛+1,𝑛+1𝐺5(𝑡𝑖, 𝑆𝑖

𝑟, 𝐸𝑖
𝑟 , 𝐴𝑖

𝑟, 𝐼𝑖
𝑟, 𝐻𝑖

𝑟, 𝑅𝑖
𝑟) + ∑𝑏𝜔,𝑖,𝑛+1𝐺5(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖 , 𝐼𝑖, 𝐻𝑖, 𝑅𝑖),

𝑛

𝑖=1

 

𝑅𝑛+1
𝑟 = 𝑅(0) + 𝑏𝜔,𝑛+1,𝑛+1𝐺6(𝑡𝑖, 𝑆𝑖

𝑟, 𝐸𝑖
𝑟, 𝐴𝑖

𝑟 , 𝐼𝑖
𝑟, 𝐻𝑖

𝑟, 𝑅𝑖
𝑟) + ∑𝑏𝜔,𝑖,𝑛+1𝐺6(𝑡𝑖, 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖, 𝐼𝑖, 𝐻𝑖, 𝑅𝑖).

𝑛

𝑖=1

 

On the other hand, the following equations are valid: 

𝑎𝜔,𝑖,𝑛+1 =
1

𝛤(𝜔 + 1)
[(𝑛 − 𝑖 + 1)𝜔 − (𝑛 − 𝑖)𝜔], 

𝑏𝜔,𝑖,𝑛+1 =
(∆𝑡)𝜔

𝛤(𝜔 + 2)
, 
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and 

{
𝑛𝜔+1 − (𝑛 − 𝜔)(𝑛 + 1)𝜔 ,     𝑖 = 0                                                

(𝑛 − 𝑖 + 2)𝜔+1 − 2(𝑛 − 𝑖 + 1)𝜔+1 + (𝑛 − 𝑖)𝜔+1,    1 ≤ 𝑖 ≤ 𝑛
1,    𝑖 = 𝑛 + 1                                                                                      

 

 

Also, 𝑟 = min (1 + 𝜔, 2) is the accuracy order of the fractional predictor-corrector method. 

 

The graphs obtained for different values of 𝜔 and the biological parameter values in Table 1 are shown 

in Figure 2 and 3 by means of fractional-type predictor-corrector method. On these graphs, the MTB 

disease model containing the classical derivative and the model containing the Caputo derivative are 

compared. The time-dependent change of the state variables 𝑆(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼(𝑡), 𝐻(𝑡), 𝑅(𝑡) belonging 

to the system (2.1) is first plotted in the classical case in Figure 2. Then, the comparison of the classical 

model (when 𝜔 = 1) with the fractional model for 𝜔 = 0.9,0.8,0.7 is given in Figure 3.  The point to 

note here is how the fractional order 𝜔 changes the behavior of the solution curves. Moreover, the 

increase and decrease in number of susceptible individuals, exposed individuals, asymptomatic MTB 

infected individuals with no clinical symptoms of MTB, MTB infected individuals with clinical 

symptoms, hospitalized individuals, and recovered individuals can be easily observed on the graphs. For 

instance, in Figure 2, while the susceptible class increase more rapidly for the integer-order version 

(𝜔 = 1), in Figure 3, it increases more slowly for non-integer order values smaller than 1. Similarly, by 

looking at the increase and decrease rates of the other classes, we can see the effect of the non-integer 

order 𝜔 on the state variables. 
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Figure 2: Profiles of solution functions of the classical-type MTB disease model (for 𝜔 = 1 in the 

system (2.1)). 
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(A) 

 

(B) 
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(C) 

 

(D) 
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(E) 

 

(F) 

Figure 3: Comparison of solution functions between classical derivative (𝜔 = 1) and Caputo 

derivative (when 𝜔 = 0.9,0.8,0.7) for the MTB disease model in (A), (B), (C), (D), (E), (F). 

 

5. Concluding Remarks 

Some crucial points and future directions of this study can be listed as follows: 

1.  It is well-known that non-integer order models have outperformed by their integer-order 

versions in many research area including biology, engineering, physics, epidemiology. For this 

reason, we preferred to employ an effective fractional derivative operator called Caputo for 
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investigating the mycobacterium tuberculosis disease model with reinfection and 

hospitalization. In this way, it is possible to reach more precise results regarding the course of 

the transmision dynamics of tuberculosis. 

2.  We perform an effective mathematical analysis belonging to the MTB model. Both theoretical 

and numerical results obtained with the fractional Caputo operator aim to contribute to disease 

eradication studies by shedding light on understanding the disease process. 

3. In the numerical simulations, we considered fractional orders 𝜔=0.7,0.8,0.9 alongside the 

classical case (𝜔 = 1). The choice of these specific values is motivated by both mathematical 

feasibility and biological relevance. Fractional-order derivatives inherently capture memory 

effects in disease progression, meaning that past states influence the current infection dynamics. 

4. From an epidemiological perspective, the fractional-order parameter ω can be interpreted as a 

measure of disease persistence and immune memory. Lower ω values (ω < 1) represent 

scenarios where the disease exhibits stronger memory effects, potentially due to reinfection, 

prolonged latent periods, or variability in immune response. Higher ω values closer to 1 suggest 

that the disease follows dynamics similar to classical integer-order models, where recovery and 

transmission rates are more instantaneous. 

5. The selected values (ω=0.7,0.8,0.9) align with existing studies in fractional epidemiological 

modeling and allow us to observe the progressive impact of memory effects on tuberculosis 

dynamics. This approach provides a systematic way to compare the fractional and classical 

models and offers insights into how different memory effects influence disease transmission 

and control strategies. Future studies can further explore the impact of ω\omegaω by fitting 

fractional models to real epidemiological data, optimizing ω\omegaω based on empirical 

observations. 

6. The theoretical results of this study include positive invariant set of fractional MTB model, 

stability analysis, reproduction number, disease-free and endemic steady-states. In accordance 

with the results of our current study, the DFE of the fractional model addressed is locally 

asymptotically stable if 𝑅0 < 1 and stable if 𝑅0 > 1. Also, the EE point of the proposed system 

is globally asymptotically stable for 𝑅0 > 1 and unstable for 𝑅0 < 1. It is worth noting that the 

reproduction number can be controlled much better via non-integer order as done in many 

studies in the literature. 

7.  Numerical results have been introduced to provide a better understanding of the transmission 

dynamics of tuberculosis infection. We have shown the effect of the non-integer order 𝜔 on the 

system solutions of the fractional MTB model on graphs. We have mentioned that non-integer 

order systems can express the complex dynamics of tuberculosis disease more accurately rather 

than traditional models. 

8.  Future studies would contain real-data on the tuberculosis disease to determine the better 

derivative definition more precisely. On the other hand, optimal control can be carried out in 
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the MTB model via the Caputo derivative. Moreover, other types of fractional operator 

definitions can be tried for better results.  

9. In this study, the tuberculosis transmission model is analyzed for the first time using the Caputo 

fractional derivative, providing a novel perspective on the impact of memory effects in 

epidemiological modeling. Future studies can extend this work by validating the proposed 

model with real-world epidemiological data, further enhancing its applicability and reliability 

in predicting tuberculosis dynamics. 
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