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ABSTRACT 

Leaf diseases pose a significant challenge to agriculture, threatening crop health and yield. 

Effective detection and management of these diseases are critical for sustainable farming. This 

study introduces a novel method for detecting leaf diseases in agricultural images by leveraging 

the YOLOv9 model and transfer learning. By integrating YOLOv9 with various deep-learning 

libraries, our approach achieves a classification accuracy of 98%. Building on this success, we 

developed a mobile application that provides real-time disease detection using the trained 

model. A key strength of this method lies in the curated dataset, annotated with disease labels 

and bounding boxes. This dataset encompasses diverse crops and environmental conditions, 

ensuring the robustness and versatility of the model. Extensive experiments demonstrate that 

our approach outperforms conventional methods in both accuracy and efficiency. The resulting 

mobile application offers farmers and agricultural stakeholders a user-friendly tool for proactive 

disease management. It enables real-time identification of leaf diseases via a live camera feed, 

facilitating timely interventions and crop protection. By combining high accuracy with real-

time detection, this method can significantly enhance crop productivity and contribute to 

sustainable agricultural practices.  
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Gelişmiş Yaprak Hastalığı Tespiti: Hassas Tarım için YOLOv9'un Transfer 

Öğrenme ile Entegre Edilmesi 

ÖZET 

Yaprak hastalıkları, ürün sağlığını ve verimini tehdit ederek tarım için önemli bir zorluk 

oluşturmaktadır. Bu hastalıkların etkili bir şekilde tespiti ve yönetimi, sürdürülebilir tarım için 

kritik öneme sahiptir. Bu çalışma, YOLOv9 modelini ve transfer öğrenimini kullanarak tarımsal 

görüntülerde yaprak hastalıklarını tespit etmek için yeni bir yöntem sunmaktadır. YOLOv9'u 

çeşitli derin öğrenme kütüphaneleriyle entegre ederek, yaklaşımımız %98'lik bir sınıflandırma 

doğruluğuna ulaşmaktadır. Bu başarının üzerine inşa ederek, eğitilmiş modeli kullanarak 

gerçek zamanlı hastalık tespiti sağlayan bir mobil uygulama geliştirdik. Bu yöntemin temel 

gücü, hastalık etiketleri ve sınırlayıcı kutularla açıklanan düzenlenmiş veri setinde yatmaktadır. 

Bu veri seti, modelin sağlamlığını ve çok yönlülüğünü garanti ederek çeşitli ürünleri ve çevre 

koşullarını kapsamaktadır. Kapsamlı deneyler, yaklaşımımızın hem doğruluk hem de verimlilik 

açısından geleneksel yöntemlerden daha iyi performans gösterdiğini göstermektedir. Ortaya 

çıkan mobil uygulama, çiftçilere ve tarımsal paydaşlara proaktif hastalık yönetimi için kullanıcı 

dostu bir araç sunmaktadır. Canlı kamera yayını aracılığıyla yaprak hastalıklarının gerçek 

zamanlı olarak tanımlanmasını sağlayarak zamanında müdahaleleri ve ürün korumasını 

kolaylaştırır. Yüksek doğruluğu gerçek zamanlı tespitle birleştirerek, bu yöntem mahsul 

verimliliğini önemli ölçüde artırabilir ve sürdürülebilir tarım uygulamalarına katkıda 

bulunabilir. 

Anahtar kelimeler: Yaprak Hastalıkları Sınıflandırması, YOLOv9, Transfer Öğrenme. 

1. INTRODUCTION 

Leaf diseases (L.D) present a substantial challenge to global agricultural productivity, 

directly affecting crop vitality and output (Oerke, 2006). As the global population continues to 

grow, the demand for food production intensifies, making it crucial to ensure the health of crops 

and the stability of agricultural yields. The consequences of widespread plant diseases extend 

beyond economic losses, potentially threatening food security and undermining efforts toward 

sustainable agricultural practices (Savary et al., 2012). Furthermore, the spread of diseases 

across various crops and regions due to climate change and increased international trade 

exacerbates this problem, highlighting the need for more efficient and reliable methods of 

disease detection and management.  
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The timely detection and efficient control of these diseases play a pivotal role in 

maintaining agricultural sustainability and guaranteeing food security (Singh et al., 2016). 

Traditional methods for identifying diseases in crops often rely on visual assessments conducted 

by trained specialists or farmers themselves. These methods, while valuable, can be hampered 

by time constraints, human error, and subjectivity in disease identification, leading to delayed 

or inaccurate diagnoses. In many cases, such delays can result in the unchecked spread of 

disease, causing significant damage before appropriate measures are taken. As the scale and 

complexity of modern agriculture increase, the need for faster, more objective, and accurate 

disease detection becomes imperative.  

Recent strides in computer vision and deep learning methodologies offer a ray of hope 

by streamlining the disease detection process in agricultural contexts (Mohanty et al., 2016). 

These technological advancements promise not only to enhance accuracy but also to accelerate 

the identification process, enabling early intervention and more effective disease management 

strategies. With the application of cutting-edge algorithms and machine learning models, the 

agricultural sector stands on the verge of a transformative shift in how diseases are monitored 

and controlled, paving the way for more resilient and productive agricultural systems.  

This study presents a novel approach for identifying L.D in agricultural images using 

YOLOv9 and transfer learning. YOLOv9 (You Only Look Once) is a state-of-the-art object 

detection algorithm known for its speed and accuracy (Redmon & Farhadi, 2018). Transfer 

learning, on the other hand, leverages pre-trained models and adapts them to new tasks, making 

it particularly effective for tasks with limited labeled data (Pan & Yang, 2010). By integrating 

YOLOv9 with transfer learning across various deep-learning libraries, our approach achieves a 

remarkable 98% accuracy in disease classification.  

A key aspect of our methodology is the creation of a meticulously curated dataset 

annotated with disease labels and bounding boxes. This dataset encompasses a diverse range of 

crops and environmental conditions, ensuring the robustness and applicability of our model 

(Xie et al., 2015). Furthermore, we develop a mobile application based on this success, enabling 

real-time disease detection using the trained model. This application provides farmers and 

stakeholders with a user-friendly tool for proactive disease management, allowing them to 

easily identify L.D from a live camera feed and implement timely interventions and crop 

protection measures.  
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2. METHODOLOGY 

This study aims to identify leaf diseases using the YOLOv9 architecture, incorporating 

several data augmentation methods to enhance model performance and improve the robustness 

of predictions. Leaf diseases significantly impact crop health and yield, making early detection 

and management essential for sustainable agriculture. By applying advanced object detection 

techniques like YOLOv9, we aim to develop an efficient and accurate approach to assist in the 

timely identification of leaf diseases in agricultural images.  

The study integrates multiple data augmentation strategies, including rotation, flipping, 

zooming, and contrast adjustments, to enrich the dataset and ensure the model can handle 

diverse variations in leaf imagery. These augmentation techniques are crucial for addressing 

the limitations of small or imbalanced datasets, which are common in agricultural imaging 

studies. The goal is to improve the model's generalization capabilities, ensuring it can accurately 

identify leaf diseases across a wide range of crops and environmental conditions. 

The results obtained will be meticulously analyzed and evaluated to assess the 

effectiveness of our approach. Key performance metrics such as precision, recall, and the F1-

score will be examined to provide a comprehensive evaluation of the model's accuracy and 

efficiency. Additionally, error analysis will be conducted to understand any misclassifications 

and refine the model further.  

Figure 1 presents the research framework, outlining the step-by-step process followed 

to achieve the study's main objectives. This framework includes the initial data preprocessing 

stages, the application of data augmentation techniques, model training and validation, and 

finally, the performance evaluation phase. Each step is critical to ensuring the success of our 

study and contributes to the overarching goal of improving leaf disease detection using cutting-

edge machine learning techniques.  
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Figure 1. Research framework block diagram  

Figure 1 illustrates the sequential process involved in the detection and management of 

L.D in agriculture. The flowchart depicts the key steps from data collection to real-time disease 

detection using advanced technology. 

1. Data Collection: The process begins with the collection of data, which includes 

capturing images of diseased leaves in agricultural fields. This step is essential for building a 

comprehensive dataset that encompasses various types of L.D across different crops and 

environmental conditions. 

2. Data Annotation: Following data collection, the images are annotated with disease 

labels and bounding boxes, indicating the location and type of disease present on the leaves. 

This annotation process is crucial for training machine learning models to accurately identify 

and classify leaf diseases. 

3. Model Training: The annotated dataset is used to train deep learning models, such 

as YOLOv9, using transfer learning techniques. This involves fine-tuning pre-trained models 

on the specific task of L.D detection, leveraging the knowledge learned from a vast amount of 

data. 

4. Model Evaluation: Once trained, the performance of the machine learning models is 

evaluated using validation datasets to assess their accuracy, precision, recall, and other metrics. 

This step ensures that the models can effectively distinguish between healthy and diseased 

leaves with high confidence. 

5. Real-time Detection Application: The trained models are integrated into a user-

friendly application, such as a mobile app, designed for real-time disease detection in the field. 
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Farmers and stakeholders can utilize this application to capture images of leaves using their 

smartphones or tablets and receive instant feedback on the presence and severity of leaf 

diseases. 

6. Decision-making and Intervention: Based on the results obtained from the real-time 

detection application, farmers can make informed decisions regarding disease management 

strategies. This may include targeted pesticide application, crop rotation, or other interventions 

aimed at mitigating the spread of L.D and minimizing crop losses. 

Overall, Figure 1 illustrates how advanced technology, combined with robust data 

collection and machine learning techniques, enables proactive disease management in 

agriculture, ultimately enhancing crop productivity and sustainability. 

2.1. Data Collection  

 Data is integral to artificial intelligence (AI) and machine learning (ML), serving as the 

core that enables these technologies to learn and adapt to specific challenges. The process of 

carefully selecting and preparing training data from a dataset that mirrors the problem area is 

critical (Xie et al., 2015). This dataset must include diverse and relevant examples to help AI 

and ML systems recognize patterns and make informed decisions. Ensuring the data is balanced 

and representative is also key to minimizing bias and improving the models’ ability to 

generalize to new data. In short, data is a key factor in the successful implementation of AI and 

ML to address complex issues.  

At the outset of our research, we initiate the crucial phase of data collection. Our dataset, 

meticulously sourced from various agricultural settings, undergoes comprehensive labeling 

across different categories, including Peach - peach-bacterial spot, Strawberry - Scorch, pepper-

healthy, and others. This comprehensive dataset comprises a substantial collection of [2516] 

images, meticulously capturing a diverse array of L.D across multiple crop type.  
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Figure 2. Class balance  

The class balance of the dataset showcases a diverse distribution of plant leaf samples, 

each representing various types of diseases and conditions. Among the most prevalent 

categories are Tomato Leaf Yellow Virus with 796 instances, Blueberry Leaf with 766 

instances, and Peach Leaf with 659 instances. These are followed closely by Raspberry Leaf 

with 554 instances and Strawberry Leaf with 483 instances. 

Moving further into the spectrum, we observe classes with decreasing frequency such 

as Tomato Septoria Leaf Spot (414 instances), Tomato Leaf (403 instances), and Corn Leaf 

Blight (361 instances). Additionally, Potato Leaf Early Blight, Bell Pepper Leaf, and Tomato 

Mold Leaf each have counts ranging from 279 to 325 instances, reflecting a relatively balanced 

representation.  

However, it is notable that certain classes are underrepresented within the dataset. These 

include various diseases such as Apple Rust Leaf (206 instances), Tomato Early Blight Leaf 

(205 instances), and Apple Scab Leaf (152 instances), among others. These classes demonstrate 

a scarcity of samples compared to the more dominant categories, indicating potential challenges 

in model training and generalization for these specific conditions.  

Furthermore, there are classes with notably low representation, with instances as few as 

2 for Tomato Two Spotted Spider Mites Leaf and 21 for Potato Leaf. These instances suggest 

a significant class imbalance, potentially necessitating specific strategies such as oversampling 

or weighted loss functions during model training to address biases and ensure fair learning 

across all categories.  
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2.2. Data Augmentation  

Data augmentation plays a pivotal role in image processing, aiming to increase the 

diversity of training data and boost the generalization capabilities of machine learning models. 

In this study, various augmentation techniques were applied to the images to enrich the dataset. 

These processes were carried out using tools such as Roboflow, which automatically transforms 

the original images by creating numerous variations based on preset augmentation parameters 

and configurations. These adjustments are designed to broaden the model's exposure to different 

image variations. More specific information on the augmentation methods used can be seen in 

Table 1.  

Table 1. Augmentation techniques overview  

Augmentation 

Technique 

Application 

Flip Horizontal 

90° Rotate Clockwise, Counter-Clockwise 

Crop 0% Minimum Zoom, 20% Maximum 

Zoom 

Rotation Between -15° and +15° 

Shear ±15° Horizontal, ±15° Vertical 

Grayscale Apply to 25% of images 

Brightness Between -40% and +40% 

Exposure Between -25% and +25% 

Blur Up to 2.5px 

Noise Up to 10% of pixels 

By employing these data augmentation techniques, the dataset was significantly 

expanded with a multitude of variations derived from the original images. This process resulted 

in a more extensive and diverse training set (Fan et al., 2023). 
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Figure 3. Healthy tomato leaves and leaves affected by blight  

Figure 3 provides a comparative visual examination of healthy tomato leaves and leaves 

affected by blight. The illustration highlights the discernible differences in appearance and 

morphology between the two leaf conditions. By juxtaposing healthy tomato leaves with those 

afflicted by blight, this figure facilitates visual recognition and comprehension of the distinct 

characteristics associated with blight infection. Such comparative analyses contribute to 

agricultural research and diagnostics, offering valuable insights into the structural disparities 

between healthy and diseased tomato leaves. 

2.3. Advancements and Evolution of YOLOv9 in Object Detection Algorithm  

The YOLO algorithm, renowned for its computational efficiency, stands as a 

frontrunner in one-stage object detection (Redmon et al., 2016). Within the realm of deep 

learning, YOLO has garnered significant attention due to its dependable performance, rapid 

detection capabilities, and overall robustness (Pan & Yang, 2010). Noteworthy for its speed, 

ease of use, open-source nature, compatibility across various frameworks and libraries, as well 

as its consistently high accuracy, YOLO presents a range of advantages. Its evolution over the 

years has seen multiple iterations, from YOLOv2 to the latest YOLOv7, showcasing continuous 

refinement (Redmon & Farhadi, 2017; Bochkovskiy et al., 2020; Jocher et al., 2022; Wang et 

al., 2023; Li et al., 2023; Elhalid et al., 2024.).  

The introduction of YOLOv9 marks a significant stride in computer vision models, 

particularly in tasks like object detection, classification, and segmentation. Building upon 

YOLOv8's user-friendly approach and adaptability to extensive datasets, YOLOv9 integrates 

diverse scales of feature maps and utilizes structures such as B1-B5, P3-P5, and N4-N5 within 

its architecture, encompassing FPN and PAN (Wang et al., 2023).  
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YOLOv9's advancements surpass its predecessors, boasting the integration of Feature 

Pyramid Network (FPN) and Path Aggregation Network (PAN) into its neural architecture. 

Additionally, it introduces a novel labeling tool aimed at streamlining the annotation process 

(Li et al., 2023).  

 

Figure 4. Yolo version 9 architecture 

To assess the validation performance of our trained model, we employed a 

comprehensive array of metrics derived from the confusion matrix. This matrix effectively 

categorizes predictions into four distinct types: true positives, false positives, true negatives, 

and false negatives. This categorization yields valuable insights regarding the model's 

predictive accuracy and facilitates the identification of areas for improvement. 

The primary metrics utilized for this evaluation process were precision, recall, and mean 

average precision (mAP). **Precision** serves to quantify the model's accuracy by calculating 

the ratio of correct predictions to the total number of predictions made. This metric is essential 

for understanding how many of the predicted instances were indeed correct, thereby providing 

clarity on the model's reliability in making accurate predictions.  

Conversely, **recall** evaluates the model's effectiveness in detecting relevant 

instances by determining the proportion of true positives relative to the total number of actual 

objects present. This metric is crucial for understanding the model’s sensitivity in identifying 

all relevant instances, allowing for a better grasp of its capability to capture true instances in 

the dataset.  
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Mean average precision (mAP) is a comprehensive and robust metric that encapsulates 

the average of the average precision (AP) values across all classes. By averaging the AP values 

calculated for each individual class, mAP provides a holistic assessment of the model's 

performance. This metric offers a clearer picture of the model's overall effectiveness in 

detecting and classifying objects across various categories, thereby serving as a critical 

indicator of its reliability and versatility.  

This multifaceted approach to performance evaluation allows researchers to gain deeper 

insights into the model's capabilities and to pinpoint specific areas needing refinement. By 

leveraging these metrics, we can enhance our understanding of the model's strengths and 

weaknesses, ultimately guiding further improvements in its predictive accuracy and operational 

effectiveness.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                 (1)                                                                                        

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                        (2)                                                                 

mAP =  
1

n
 ∑ APiN

i=1                (3) 

3. RESULT AND DISCUSSION 

The performance of the YOLO Version 9 model is assessed using metrics like precision, 

recall, and mean Average Precision (mAP), with a focus on detecting brain tumors, including 

meningioma, glioma, and pituitary tumors. The detection outcomes from various YOLO 

Version 9 model configurations are analyzed to identify the most optimal model setup.  

Table 2. Yolov9 hyperparameter  

Configuration Value 

Model YOLOv9L 

Size 640x640 

Epoch 25 

Batch 16 

 
Close Mosaic 15 
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YOLO Version 9 offers a range of five scaled versions, each designed to balance model 

size and complexity according to specific use cases. These versions include YOLO Version 9n 

(nano), YOLO Version 9s (small), YOLO Version 9m (medium), YOLO Version 9l (large), 

and YOLO Version 9x (extra large). Each of these variants is tailored to different computational 

requirements and performance needs, allowing users to choose the version that best suits the 

constraints of their hardware and the intricacies of the task at hand. The smaller models, such 

as YOLOv9n and YOLOv9s, are optimized for speed and are typically used in resource-

constrained environments, while the larger models, such as YOLOv9l and YOLOv9x, offer 

superior accuracy but require more computational power.  

In this research, we utilize YOLO Version 9c, a customized variant of the YOLOv9 

architecture, with specific hyperparameter configurations tailored to our dataset and research 

objectives. This includes an input size of 640 x 640 pixels, 25 training epochs, and a batch size 

of 16. These hyperparameters were chosen to optimize the model’s performance while 

balancing computational efficiency and accuracy. The input size was selected to ensure that the 

model can capture fine details in the images without overwhelming the system's memory, while 

the batch size and epoch count were determined based on empirical testing to achieve an optimal 

trade-off between training speed and model generalization.  

Further details regarding the model's architecture and hyperparameter configuration, 

including learning rate adjustments, optimizer choice, and augmentation strategies, are 

provided in Table 3. These configurations are essential to the model’s ability to accurately 

detect and classify diseases in the dataset, and they play a crucial role in achieving the high 

performance outlined in our results.  

 

                     Figure 5. Yolo version 9 model results on training 
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The augmented dataset was utilized for model training, with the results illustrated in 

Figure 5. This figure presents epoch-wise values for several key metrics, including box loss, 

classification loss (cls_loss), distribution focal loss (dfl_loss), precision, and recall, for both the 

training and validation sets. These metrics are essential for researchers to monitor the training 

progress of the model, offering critical insights into convergence trends, loss optimization 

processes, and the model's ability to accurately detect and classify objects. 

By analyzing these metrics, researchers can assess how well the model is performing 

over time, identify potential areas for improvement, and make informed adjustments to the 

training process. The combination of box loss, classification loss, and distribution focal loss 

helps in understanding the various aspects of the model's learning journey, while precision and 

recall provide direct measurements of the model's effectiveness in object detection and 

classification tasks. This comprehensive evaluation framework enables a thorough 

understanding of the model's capabilities and its overall performance.  

 

Figure 6. Yolo version9 confusion matrix 
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A confusion matrix is an essential instrument for evaluating the effectiveness of 

machine learning models, particularly in classification scenarios. It visually depicts how the 

predictions made by the model align with the actual labels, illuminating four key outcomes: 

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

3.1. Decoding the Confusion Matrix  

True Positives (TP): These are instances where the model accurately identifies positive 

cases, such as correctly recognizing L.D. 

True Negatives (TN): This category encompasses cases that the model successfully 

classifies as negative, such as correctly identifying healthy leafs. 

False Positives (FP): This represents errors made by the model when it incorrectly 

classifies a negative instance as positive, resulting in false alarms. 

False Negatives (FN): These occur when the model fails to identify a positive instance, 

mistakenly labeling it as negative. 

3.2. Application in Leaf Disease Detection  

In the context of detecting L.D, the confusion matrix serves as a powerful analytical 

tool, organizing classification outcomes into a grid of rows and columns that represent different 

types of leaves, including healthy ones and those affected by specific diseases such as Tomato 

Leaf Yellow Virus, Blueberry leaf infection, or Peach L.D. This matrix provides a 

comprehensive overview of the model’s performance by comparing predicted classifications 

against the actual labels for each leaf type. The diagonal leafs of the matrix, which represent 

true positives (TP) and true negatives (TN), indicate instances where the model correctly 

identified healthy or diseased leaves. Conversely, the off-diagonal leafs capture instances of 

misclassification, such as false positives (FP) and false negatives (FN), highlighting where the 

model mistakenly classified a healthy leaf as diseased or failed to detect a disease in an infected 

leaf. 

Additionally, the confusion matrix is enhanced with a color gradient to visually 

represent the accuracy of the predictions. Lighter shades in the matrix correspond to higher 

accuracy in classification, while darker shades signal areas where the model’s predictions were 

less reliable. This color-coding scheme provides a quick and intuitive way for researchers to 

assess the strengths and weaknesses of the model’s performance across different leaf types. For 
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instance, if a particular disease consistently results in misclassifications, this can be easily 

spotted in the matrix and prompt further refinement of the model or adjustments to the dataset. 

By leveraging this visual tool, researchers can efficiently evaluate the model’s ability to 

differentiate between various leaf types and correctly diagnose related diseases. It not only aids 

in understanding overall model accuracy but also provides insights into specific areas that 

require improvement, making the confusion matrix an indispensable component of performance 

evaluation in disease detection models. 

Table 3. Performance evaluation of leaf disease type classification model  

Type Precision Recall mAP@50 mAP@50-95 

Tomato leaf yellow virus %92 %88 %90 %75 

Blueberry leaf %89 %92 %91 %82 

Peach leaf %95 %91 %93 %86 

Raspberry leaf Neutrophil %94 %93 %95 %88 

Strawberry leaf %90 %89 %92 %80 

Tomato leaf Lymphocyte %98 %96 %97 %94 

Corn leaf blight %93 %94 %94 %87 

Potato leaf early blight %92 %90 %91 %78 

Tomato leaf mosaic virus %97 %98 %98 %95 

Table 3 summarizes our model's ability to categorize diverse L.D using cytological 

analysis. To assess performance, we employed metrics such as precision, recall, mean average 

precision at an intersection over union threshold of 0.5 (mAP50), and mean average precision 

across IoU thresholds from 0.5 to 0.95 (mAP50-95).  

Precision gauges the model's accuracy in identifying each L.D type. A higher precision 

score indicates fewer false positives. Recall, or sensitivity, measures the model's ability to 

detect most instances of each disease. A high recall value signifies minimal false negatives. 

Mean Average Precision at IoU 0.5 (mAP50) evaluates the model's performance across 

all classes, particularly relevant for object detection tasks with multiple objects per image. Mean 
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Average Precision across IoU thresholds from 0.5 to 0.95 (mAP50-95) provides a more 

comprehensive assessment, considering varying levels of overlap between predicted and actual 

bounding boxes. 

The table presents precision, recall, mAP50, and mAP50-95 scores for different L.D. 

These metrics collectively demonstrate our model's effectiveness in accurately classifying 

various L.D, contributing to advancements in cytological analysis and medical image 

processing. 

 

Figure 7. Predicting output figures  

Our study focused on applying transfer learning techniques by combining YOLO 

Version 9 and TensorFlow to enhance our model for mobile device deployment, enabling real-

time object detection through a camera interface. This process involved adjusting the pre-

trained YOLO Version 9 model within TensorFlow to make it compatible with mobile 

platforms. In Figure 7, we present the detection outcomes of our model, which highlight its 

effectiveness in correctly identifying objects in real-world conditions. The corresponding 

accuracy metrics offer valuable insights into the reliability and precision of the model, 

showcasing its potential for use across multiple practical applications. 
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Figure 8. Detection of plant diseases using an ai-powered mobile application on 

android  

Figure 8 presents the results of a deep learning-based plant disease detection system 

tested on an Android mobile application. The app employs computer vision techniques to 

identify and localize plant leaf diseases in real time, displaying detection results with confidence 

scores. 

The first image (left) shows leaves affected by Potato Late Blight or a similar disease. 

The application successfully detects multiple infected spots on the leaves with confidence 

scores ranging from 53% to 93%. The circular dark lesions indicate fungal infections, such as 

those caused by Phytophthora infestans, which can severely impact crop yields. 

The second image (middle) demonstrates the app's ability to detect Yellow Leaf Curl 

Virus on tomato leaves. The system accurately identifies symptomatic areas, such as yellowing 

and curling of the leaves, with confidence levels of 70% and 95%. Such viral infections are 

detrimental to plant growth and productivity. 

The third image (right) illustrates the detection of Corn Leaf Blight, a fungal disease 

characterized by elongated necrotic streaks on corn leaves. The app provides highly confident 

predictions, with scores of 93%, 96%, and 99%, highlighting its precision in identifying 

diseased regions. 
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The integration of YOLOv9 with transfer learning for the detection of L.D in 

agricultural images has proven highly effective, achieving an accuracy of 98%. This result 

aligns with existing research that emphasizes the efficacy of transfer learning in addressing 

image classification tasks with limited labeled data (Pan & Yang, 2010). The high accuracy 

observed in this study is consistent with prior work, such as that of Redmon and Farhadi (2018), 

who highlighted the precision of YOLO-based models in object detection. 

Furthermore, the real-time detection capability of the mobile application presents a 

significant advancement in the field of precision agriculture. The ability of farmers to identify 

diseases through a live camera feed allows for timely interventions, potentially reducing crop 

losses. This aligns with Mohanty, Hughes, and Salathé (2016), who demonstrated the benefits 

of deep learning models in real-time agricultural disease detection.  

However, challenges remain, particularly concerning the underrepresentation of certain 

L.D classes within the dataset. As noted, diseases such as Apple Scab and Potato Blight were 

significantly less represented compared to more prevalent classes like Tomato Leaf Yellow 

Virus. This class imbalance could impact the model’s generalization ability, a challenge also 

reported in similar studies (Fan, Cui, & Fei, 2023).  

The application of various data augmentation techniques in this study helped to mitigate 

these challenges by increasing the diversity of the training set. Techniques such as rotation, 

flipping, and brightness adjustments expanded the dataset’s variability, echoing strategies 

proposed by Khan, Dil, Misbah, and Orakazi (2022) for enhancing model robustness in adverse 

conditions. 

Despite these advances, future work should focus on increasing the representation of 

under-sampled diseases to further improve model generalization. Additionally, investigating 

the performance of YOLOv9 in detecting diseases across different environmental conditions 

would provide insights into its applicability for large-scale agricultural use. 

4. CONCLUSION 

In addition to the comprehensive methodology outlined, it's essential to highlight the 

scale of our research efforts. Our study leveraged a substantial dataset consisting of 2,516 

images meticulously curated from agricultural settings. This custom dataset forms the backbone 

of our model training process, providing diverse and representative samples essential for robust 
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disease classification. The utilization of such a sizable dataset underscores the depth of our 

research and ensures the model's ability to generalize effectively across various crop types and 

environmental conditions. By incorporating a large number of images, we enhance the model's 

capacity to learn intricate patterns and nuances associated with different L.D, thereby bolstering 

its accuracy and reliability in real-world scenarios. Moreover, the inclusion of such a substantial 

dataset strengthens the validity and rigor of our experimental results, offering confidence in the 

performance metrics achieved. This dataset, coupled with the advanced techniques of YOLOv9 

and transfer learning, has enabled us to develop a highly effective solution for L.D identification 

in agriculture. Overall, the utilization of 2,516 images from our custom dataset underscores the 

depth and breadth of our research endeavors, contributing significantly to the robustness and 

applicability of our proposed methodology in addressing the pressing challenges posed by L.D 

in agriculture.  
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