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ABSTRACT  

Railway maintenance and efficient operation has been an important issue for a safe rail traffic. 

When an unexpected malfunction occurs on various components on the train or on the railway 

system, it may result in unscheduled maintenance which may cause the rail traffic to stop. In 

this paper, we study the random failure model of some frequently malfunctioning high-speed 

railway equipment based on the statistical analysis of the real data of failure records in 

Turkey. Popular distribution functions and parameter estimation methods have been used 

considering that the data has a small sample size, and it may contain outliers. In this study, we 

showed that for the case of a few numbers of failure data, the L-moments method gives 

effective results when there exists no outlier and the robust-M method gives effective results 

when there exists an outlier or outliers. 

Keywords: Lifetime estimation, Materials reliability, Small sample, Predictive maintenance, 

ETCS signaling components. 
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AZ ÖRNEKLEMLİ YÜKSEK HIZLI DEMİRYOLU ETCS 

BİLEŞEN VERİLERİYLE GÜRBÜZ ÖMÜR SÜRESİ 

TAHMİNİ 

 

ÖZ 

Demiryolu sistemlerinin bakımı ve işletme verimliliği, güvenli bir demiryolu trafiği için 

önemlidir. Tren veya demiryolu sistemindeki çeşitli bileşenlerde beklenmeyen bir arıza 

meydana geldiğinde, demiryolu trafiğinin tamamen durmasına yol açabilecek bir zorunlu 

bakım gerektirebilir. Bu makalede, Türkiye'deki arıza kayıtları verilerinin istatistiksel 

analizine dayalı olarak sık aralıklarla arızalanan bazı yüksek hızlı demiryolu ekipmanlarının 

rassal arıza modeli incelenmiştir. Verilerin küçük örneklem hacmine sahip olması ve aykırı 

değerler içerebilme durumları da dikkate alınarak yaygın olarak kullanılan dağılım 

fonksiyonları ve parametre tahmin teknikleri uygulanmıştır. Bu çalışmada, az sayıda arıza 

verisi durumunda, aykırı değer olmadığında L-momentler yönteminin ve aykırı değer veya 

aykırı değerler olduğunda ise gürbüz-M yönteminin etkili sonuçlar verdiği gösterilmiştir. 

Anahtar Kelimeler: Ömür süresi tahmini, Bileşen güvenilirliği, Küçük örneklem, Tahmini 

bakım, ETCS sinyalizasyon bileşenleri. 

 

1.   INTRODUCTION 

 

Railway transportation is important in the process of industrialization as it helps to 

transport the people and goods at a faster and cheaper rates (Jia et al., 2021; Zheng et al., 

2021). Therefore, it is necessary to operate the railway traffic safely. Railway maintenance 

includes tracking the entire railway equipment for both trains and the infrastructure to protect 

the accidents and malfunctions. Maintenance can basically be categorized as scheduled, 

corrective and predictive. The scheduled maintenance is a routine for periodically inspection 

to notice small problems and fix them before the major ones exist. The corrective 

maintenance includes repairing the equipment when a malfunction or breakdown occurs. The 

scheduled maintenance can be planned, but corrective maintenance is usually the result of a 
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sudden deterioration that is needed to be immediately fixed. On the other hand, the predictive 

maintenance is related to monitor a system and evaluate it against historical trends to predict 

failure before it occurs. 

Reliability is the ability of a product to perform its expected function for a specified 

period of time and in accordance with certain objectives. Reliability analysis is widely used in 

many engineering activities and has always been an important topic in engineering studies. 

Considering the hazardous nature of high-speed train operation, the assessment of vehicle 

reliability is essential to guarantee its safe operation. 

Many studies have been carried out with maintenance, repair and accident prevention 

related to the railways or railway components. Zhang et al. (2012) studied fault diagnosis 

methods of an absolute positioning sensor which is an important component for a high-speed 

maglev train. They used support vector machines to recognize the fault characters and the 

signal flow method to locate the faulty parts. Gomez et al. (2018) used artificial neural 

networks for vibration signal analysis to detect and diagnose cracks in real railway axles to 

avoid accidents. Bemment et al. (2017) used historical failure data to improve the reliability 

and availability of railway track switching. They state that rail switches are important 

components that provide flexibility to railway networks, but when they fail, they cause 

disproportionate delays, especially in heavy-traffic passenger rail systems. 

The pursuit of better regularity aims to improve operational equipment availability and 

safety. Marc Antoni (2009) emphasized the importance of ageing of signalling equipment and 

its impact on maintenance strategy in railways. He used Weibull and Bertholon reliability 

model to describe an ageing phenomenon and stated that in most cases a systematic 

replacement strategy offers the best solution. Mokhtarian et al. (2013) proposed a Bayesian 

nonparametric reliability analysis for a railway system at component level. Shangguan et al. 

(2020) proposed a board level lifetime prediction for power board of balise transmission 

module which is an electronic transponder placed between the rails of a railway as part of an 

automatic train protection system. However, in such methods, the number of fault 

observations has a direct effect on the analysis results. The low number of observations 

reduces the effectiveness of the method used and the validity of the predictions accordingly. 

The lifetimes of seriously important parts used in expensive applications such as high-speed 

trains are quite long. Therefore, few failures occur during even long terms, but these 

malfunctions can cause serious consequences or delays at an unexpected times. 
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The railway system is a large-scale complex system having many components and 

interconnected subsystems. System reliability has been maintained by appropriate 

maintenance measures. However, real-life reliability data at the component level of a railway 

system, far from being complete, are not always available in practice. Manufacturers’ 

component lifetime distributions are often uncertain and complicated by actual use and 

operating environments. Two important issues on the estimation of parameters in reliability 

assessment are the statistical model employed and the available data sample sizes (Yang et al., 

2018). An effective statistical model provides a better fit to the valid lifetime data and an 

efficient parameter estimation method can reduce the estimation error. In general, reliability 

assessments are utilized on large sample sized, i.e. a size of larger than 30, to attain statistical 

inferences (Yang et al., 2018). In order to determine the reliability models of railway 

components, long-term failure data records are needed. However, due to money, time and 

similar constraints, the railway system may need to be improved with the short-term data. Due 

to the complex structures of components in high-speed trains and long lifetimes owing to their 

high costs, the reliability assessment has to be performed by using proper methods for small 

sample sizes (Yang et al., 2018). 

In this study, we used real failure data records of high-speed train in Turkey to 

estimate the lifetimes of some electronic components used in railway signaling. The 

components were chosen to be the ones that have the failure records more than others and 

cause significant delays in passenger transport when they break down at unexpected times. 

Due to having long time life periods of the components, failure records generate small sample 

sizes. We used 14 different lifetime distributions to model the lifetimes of the selected 

components. Among them, we observed the following 3 distributions are suitable to use for 

the examined failure data. These are three parameter Weibull, the largest extreme value and 

the smallest extreme value distributions. After determining the distribution fit of the relevant 

component, we used 5 different estimation methods, namely, the maximum likelihood, the 

least squares, method of moments, method of L-moments and robust estimators for the 

parameter estimates of the distribution. These estimation methods are superior to other 

estimation methods in certain situations such as the small size nature of the data and also 

existence of some outliers. The validity and reliability of the result to be obtained from a 

method depends on the usage assumptions of that method. We also performed a Monte Carlo 

simulation to compare the estimator performances and finally determine the best estimations 

for lifetimes of the components. Simulation results demonstrated that since the failure data is 
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a small sized data and it contains outliers, the classical lifetime estimation models may not be 

suitable. Instead, the robust estimators can model the lifetimes of the components better. The 

lifetime estimation framework mentioned in this study can be applied to some other 

components in similar ways. 

The organization of the paper is as follows. In the second section, we give the 

mentioned lifetime distributions, their parameter estimation methodologies and a simulation 

study to determine the most effective estimation method for different situations. After that, we 

present the experimental work by first introducing the components used in the study and then 

giving the real data experimental results. At the end, we finish the paper with the conclusion. 

 

2.  METHODOLOGY 

 

The reliability analysis includes to characterize how failures are distributed over the 

equipment’s life. The scope of this study is to interpret failures over time for certain 

electronics equipment. Failures over time for certain components can be modeled by various 

probability distribution functions. In this study, we used the most widely used and the most 

commonly applicable distributions for lifetime analysis. The distributions used in this study 

are Weibull, Smallest Extreme Value (SEV), Largest Extreme Value (LEV), Rayleigh, 

Maxwell, Loglogistic, Birnbaum-Saunders, Exponential, Exponential Power, Gamma, Folded 

Normal, Half Normal and Inverse Gaussian distributions. One can refer to (Cox et al., 2018) 

for the details of these distributions. Distributions include parameters that are necessary to be 

determined for a proper fit to the data. The lifetime distributions used for reliability usually 

use at most three types of parameters which can be called as the shape, scale and location 

parameters. The scale parameter defines how spread out the distribution is or where the bulk 

of the distribution lies. The shape parameter defines the general shape of a distribution. The 

location parameter defines the location of the origin of a distribution. In terms of lifetime 

distributions, the location parameter represents a time shift. 

The probability distributions are denoted in terms of the probability density function 

(pdf), denoted as 𝑓(⋅), or cumulative distribution function (cdf), denoted as 𝐹(⋅) in general. In 

lifetime analysis, the hazard function, ℎ(⋅), or the survival function, 𝑆(⋅), can be used to 

model the chance of death or failure of an element as a function of their age or time. The 

survival function indicates the probability that the event of interest has not yet occurred by 
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time 𝑡 and the hazard function represents a conditional density given that the event has not yet 

occurred prior to time 𝑡. The lifetime analysis deals with calculating the expected duration of 

time until a component failure occurs in mechanical systems. This is usually referred as the 

survival analysis in statistics or reliability analysis in engineering fields. 

Presentation of mathematical formulations of all distributions examined in the article 

will unnecessarily lengthen the article. Therefore, we will describe the methodology followed 

in the article by using the three parameter Weibull distribution which is one of the most 

widely used distribution type in reliability analysis. The procedure operated on this 

distribution which is chosen as an example, can also be operated on other distributions with 

different characteristics and different numbers of parameters. 

The three parameter Weibull distribution is a flexible distribution for modeling many 

different data sets (McCool, 2012). Zhu and Liu (2013) used the Weibull distribution in high-

speed train bearing reliability estimation and confirmed that they obtained robust results. 

When the shape parameter of Weibull distribution is 1, it becomes the exponential 

distribution, if the shape parameter is 2, it becomes Rayleigh distribution and if it is 3.4, it 

becomes the normal distribution. The probability density function of the three-parameter 

Weibull distribution is defined as follows: 

𝑓(𝑡; 𝛼, 𝜎, 𝜇) =
𝛼(𝑡−𝜇)𝛼−1

𝜎𝛼
𝑒−(

𝑡−𝜇

𝜎
)𝛼 , 𝑡 ≤ 𝜇 ≤ 0                                     (1) 

where 𝜎 is the scale, 𝛼 is the shape and 𝜇 is the location parameter. These parameters are  

 

(a) the pdf 

 

(b) the hazard function 

Figure 1. The pdf and hazard functions of the Weibull distribution for different shape 

parameters 
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always positive (Bain and Engelhardt, 1991). The pdfs of Weibull distribution for the 

different values of the parameters are shown in Figure 1a. 

The reliability, 𝑅(⋅), and the hazard, ℎ(⋅), functions of the Weibull distribution are 

given in Equations 2 and 3. 

 𝑅(𝑡; 𝛼, 𝜎, 𝜇) = 𝑒−(
𝑡−𝜇

𝜎
)
𝛼

, 𝑡 > 𝜇 > 0, 𝛼 > 0, 𝜎 > 0                               (2)                                                                   

ℎ(𝑡; 𝛼, 𝜎, 𝜇) =
𝛼(𝑡−𝜇)𝛼−1

𝜎𝛼
, 𝑡 > 𝜇 > 0, 𝛼 > 0, 𝜎 > 0                              (3)                                                                

The hazard function is shown in Figure 1b for different values of the shape parameter. 

If the shape parameter is equal to 1 (exponential distribution), the hazard function is constant; 

if it is less than 1, the hazard function is exponentially decreasing; if it equals to 2 (Raiyleigh 

distribution), the hazard function is linearly increasing and if it is greater than 2, the hazard 

function is exponentially increasing. 

Many estimation methods have been proposed to estimate the parameters of the 

Weibull distribution. Some of the most popular ones are the maximum likelihood estimation 

(MLE) (Sirvanci and Yang, 1984), ordinary least square estimation (OLS) (Wang et al., 

2008), method of moments (MM) (Hall, 2005), Bayesian estimation method (Tsionas, 2003), 

logarithmic moment estimator (Wang et al., 2010), probability weighted moment estimation 

(LMOM) (Bartolucci et al., 1999), and robust estimation (Huber, 2009). However, there is no 

certain proof showing practically which of these methods is the most suitable for use in 

databases with few samples. 

 

2.1.  The Maximum Likelihood Estimation 

The maximum likelihood estimation method is a widely used method in statistical 

estimation theory. It is based on the maximization of the likelihood function (Casella and 

Berger, 2001). Maximum likelihood estimators of three parameter Weibull distribution are 

found by maximizing the log-likelihood function with respect to the parameters of interest. 

The likelihood function, 𝐿(⋅), of three parameter-Weibull distribution is given in Equation 4 

(Moeini et al., 2013). 

𝐿(𝑡1, . . . , 𝑡𝑛; 𝛼, 𝜎, 𝜇) =∏
𝛼

𝜎

𝑛

𝑖=1

(
𝑡𝑖 − 𝜇

𝜎
)
𝛼−1

𝑒−(
𝑡𝑖−𝜇
𝜎

)
𝛼

;

𝛼, 𝜎 > 0, 𝑡𝑖 ≥ 𝜇.

                                  (4) 
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The MLE estimators of the related parameters are obtained by taking partial 

derivatives with respect to the parameter and equalizing the resulting differential equation to 

zero. Equation 5, 6, 7 present the equations to be solved when taking the partial derivatives 

with respect to 𝜎, 𝛼 and 𝜇 respectively. Although there is no closed form solution to these 

equations, the solution can be found by using iterative methods. 

𝑛

𝛼
+∑log (

𝑡𝑖 − 𝜇

𝜎
)

𝑛

𝑖=1

−∑(
𝑡𝑖 − 𝜇

𝜎
)
𝛼

𝑛

𝑖=1

log (
𝑡𝑖 − 𝜇

𝜎
) = 0                              (5) 

−
𝑛𝛼

𝜎
+
𝛼

𝜎
∑log (

𝑡𝑖 − 𝜇

𝜎
)
𝛼

𝑛

𝑖=1

= 0                                                (6) 

−(𝛼 − 1)∑
1

𝑡𝑖 − 𝜇

𝑛

𝑖=1

+
𝛼

𝜎
∑(

𝑡𝑖 − 𝜇

𝜎
)
𝛼−1

𝑛

𝑖=1

= 0                                    (7) 

 

2.2.  The Method of Moments 

The method of moments is one of the oldest estimation methods that has been used for 

decades (Barbosa, 2018). Moment methodology solves by equalizing the theoretical moments 

related to the distribution and moments obtained from the sampling to estimate the unknown 

parameters. Moment estimators of the three parameter Weibull distribution are found by 

equating the sample moments to the corresponding theoretical moments which are 

summarized in Equation 8. 

2

1 4 2

1 4 2

1

1 2 2 4

,
2

,
1

1

ln(2)

ln( ) ln( )

  


  

 





   

  


   

 


 
  
 


     

                                             (8) 

Here, the 𝑘𝑡ℎ order moment obtained from the sample to show the observations in the 

random sample 𝑡(1) ≤ 𝑡(2) ≤ ⋯ ≤ 𝑡(𝑛) as follows: 

1

n
k

i

i
k

t

m
n

 


                                                            (9) 
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The moments estimation of the parameters is obtained by solving the system of 

equations given in Equation 8. 

 

2.3.  The Method of L-Moments 

 

Hosking introduced L-moments as an analogous to the conventional moments 

(Hosking, 1990). L-moments can be defined for any random variable whose mean exists and 

they can be estimated by a linear combination of order statistics (Hosking, 2007). They are 

more resistant to the influence of sample variation and robust to the outliers in the data 

(Abdul-Moniem and Selim, 2009). L-moments are often used for a more efficient parameter 

estimation of a parametric distribution than the maximum likelihood method, especially for 

small samples (Arslan et al., 2014). 

Let 𝑇 be a continuous random variable with the cumulative distribution function 𝐹(𝑡) 

and quantile function 𝑄(𝑡), then 𝐿-moments of 𝑟𝑡ℎ order random variable is obtained as 

follows: 

𝜆𝑟 =
1

𝑟
∑(−1)𝑗 (

𝑟 − 1

𝑗
)𝐸(𝑇𝑟−𝑗:𝑟)

𝑟−1

𝑗=1

; 𝑟 = 1,2,3, . . .                                 (10) 

where 𝐸 is the expected value, given in Equation 11, and 𝑇𝑘:𝑛 denotes the 𝑘𝑡ℎ order 

statistic in an independent sample of size 𝑛. 

𝐸(𝑇𝑟−𝑗𝑟) =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
∫ 𝑄(𝐹)𝐹𝑟−1(1 − 𝐹)𝑛−𝑟𝑑𝐹
1

0                              (11) 

Let 𝑡1, 𝑡2, … , 𝑡𝑛 be samples and 𝑡(1) ≤ 𝑡(2) ≤ ⋯ ≤ 𝑡(𝑛) be the ordered samples, then 

the 𝑟𝑡ℎ unbiased sample 𝐿-moments can be written as in Equation 12. 

ℓ𝑟 = (
𝑛

𝑟
)
−1

∑ ∑ ⋯

<𝑖2<...1≤𝑖1

∑
1

𝑟
<𝑖𝑟≤𝑛

∑(−1)𝑗
𝑟−1

𝑗=1

(
𝑟 − 1

𝑗
) 𝑡𝑖𝑟−𝑗𝑛;

𝑟 = 1,2, . . . , 𝑛.

          (12)  

L-moment estimators of the three parameter Weibull distribution are calculated by 

solving the three equations-unknowns set given in Equation 13. Each line in the equation is 

formed by equating the sample L-moments to the corresponding theoretical moments. 
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ℓ1 = 𝜎𝐿𝛤 (1 +
1

𝛼
) + 𝜇𝐿

ℓ2 = 𝜎𝐿𝛤 (1 +
1

𝛼
) [1 − (

1

2
)

1

𝛼
]

ℓ3 = 𝜎𝐿𝛤 (1 +
1

𝛼
) [1 − 3 (

1

2
)

1

𝛼
+ 2(

1

3
)

1

𝛼
]

                                (13) 

 

2.4.  The Method of Least Squares 

  

Let 𝑇1, 𝑇2, … , 𝑇𝑛 be a random sample of size 𝑛 from the cumulative distribution 

function 𝐹(⋅). Least squares (LS) estimators of the unknown parameters of 𝐹(⋅) are obtained 

by minimizing the Equation 14 with respect to the parameters of interest. In the equation, 

𝑇(1) ≤ 𝑇(2) ≤ ⋯ ≤ 𝑇(𝑛) are the ordered random variables. 

∑{𝐹(𝑇(𝑖)) −
𝑖

𝑛 + 1
}
2

                                                       

𝑛

𝑖=1

(14) 

Then, the LS estimators of three parameter Weibull distribution are obtained by 

minimizing the following function with respect to the parameters 𝛼, 𝜎 and 𝜇. 

𝑊(𝑡; 𝛼, 𝜎, 𝜇) =∑{1 − 𝑒
−(
𝑡(𝑖)−𝜇

𝜎
)
𝛼

−
𝑖

𝑛 + 1
}

2𝑛

𝑖=1

                                (15) 

Parameter estimation for this method is obtained by using iterative methods similar to 

maximum likelihood estimators. 

  

2.5.  Robust Estimation 

  

Some of the data may become quite different from the overall data in reliability 

analysis. This kind of data is usually referred to as outliers. The outliers have a negative effect 

on classical estimators. Especially, the existence of outliers causes estimators to converge to 

wrong parameter estimations and decreases estimator efficiency. On the other hand, robust 

estimators are less affected by model assumptions, deviations from assumptions and outliers. 

Robust estimators have a large family. In this study, M estimators were used because of the 

easiness of their computation and common use. These estimators are called M estimators as 

they are maximum likelihood type estimators. M estimators were proposed by Huber in 1964 

(Huber, 2009). Rather than minimizing the sum of squares of errors, M estimators minimize 

the errors according to a 𝜌 function which is differentiable and symmetrical with a single 
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minimum at zero. Robust M estimators of the unknown parameters of 𝐹(⋅) are obtained by 

minimizing the following equation. 

∑𝜌{
(𝐹(𝑇(𝑖)) −

𝑖
𝑛 + 1)

𝜎̂
}

𝑛

𝑖=1

                                                 (16) 

Robust estimators of three parameter Weibull distribution are obtained by minimizing 

the function given in Equation 17. 

𝑊(𝑡; 𝛼, 𝜌, 𝜇) =∑𝜌

{
 
 

 
 (1 − 𝑒

−(
𝑡(𝑖)−𝜇

𝜎
)
𝛼

−
𝑖

𝑛 + 1)

𝜎̂

}
 
 

 
 𝑛

𝑖=1

                              (17) 

Here, 𝜎̂ is taken as the mean absolute deviation (MAD) where 𝑀𝐴𝐷 =

𝑚𝑒𝑑𝑖𝑎𝑛|𝑒𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑒𝑖)|

0.6745
 and the constant 0.6745 is chosen so that it is asymptotically unbiased 

for the normal error case. The robust M estimators for the parameters are obtained by taking 

the derivative with respect to the related parameter and solving the final equation.  

 

3.  SIMULATION STUDY 

 

In this section, we present a comprehensive Monte Carlo simulation that we did to 

compare the performances of different estimators. In the simulation, the performances of the 

estimators were compared according to the mean squared error (MSE) criteria and bias value 

by using small size full samples with and without outliers. Due to the relationship between 

Weibull and SEV distributions, the simulation is formed based on Weibull and SEV 

distributions if the failure data follows a Weibull distribution and the logarithm of the failure 

data follows a SEV distribution (Lv et al., 2015). That’s why, no extra simulation was 

performed for SEV distribution as the results obtained in Weibull distribution would be valid 

for the SEV. As the reliability analysis was performed with small data sets, we used 𝑛 = 5, 

10, 20 and 50 sample sizes. In addition, the cases whether the data set contains an outlier or 

not is taken into account. For this purpose, the data set with a positive outlier in the 𝑥 

direction was studied. We conducted the simulation by selecting the following parameter 

values: 𝛽 =1, 2, 3.4 and 8; 𝜇 = 0; 𝜎 = 1 for Weibull distribution and 𝜇 = 0; 𝜎 = 1 values for 

LEV distribution. The estimators used were compared for both 𝑛 and all parameter 

combinations for data sets with and without outliers. 𝑅 package program has been used to 
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perform calculations. After  
100000

𝑛
  Monte Carlo experiments, the 𝑀𝑆𝐸 and (Bias) values 

were calculated as follows. The results obtained for LEV distribution are given in Table 1. 

𝑀𝑆𝐸(𝜃) =
1

(
100000

𝑛
)
∑(𝜃 − 𝜃)

2
                                           (18) 

𝐵𝑖𝑎𝑠(𝜃) = 𝐸(𝜃) − 𝜃                                                   (19) 

𝐸(𝜃) =
1

(
100000

𝑛
)
∑𝜃                                                     (20) 

Table 1 shows the bias and MSE values of the parameter estimators of the LEV 

distribution for different sample sizes. The predictor with the smallest MSE value is called the 

efficient predictor (Casella and Berger, 2001). Observations in Table 1 demonstrate that for 

the outlier data, if the sample size for the M location parameter is between 5 and 20, the 

predictor with the smallest MSE value is the LMOM estimator. But when 𝑛=50, the predictor 

with the smallest MSE value is the M estimator. Next comes the MLE estimator. This result 

also coincides with the theory. Similar observations are valid for the 𝜎 parameter of the LEV 

distribution. When the sample size increases, robust M estimator gives more effective results. 

Under the existence of outliers, we found that the efficiency of all estimators decreased and 

the MSE values increased. In this case, the robust M estimator is the predictor with the 

smallest MSE value for both parameter estimations in all sample sizes. 

In case of a small number of data sets, such as the failure data experimented in this 

study that contains outlier, LS estimators, which are often used for parameter estimation, are 

the least effective estimator. In other words, the estimates obtained by this method do not 

reflect the truth. Robust M estimator, on the other hand, is the most efficient estimator for the 

data sets that have outliers. 

Simulation results for Weibull distribution is presented in Tables 2 and 3. In Table 2, 

LMOM estimation gives the most effective results to estimate the parameters of Weibull 

distribution in the data set without outlier for the shape parameter that is equal to 1 (which 

corresponds to the exponential distribution). In Table 2, for cases of 𝛽=1, the data without 

outlier and the sample size is between 5 and 20, it is seen that the most effective estimator for 

all parameters is LMOM. When the sample size is 50, robust M and MLE estimators are 

effective. This is because the LMOM estimator is based on order statistics. Estimators based 

on order statistics give more effective results in small samples. As the sample size increases, 

the efficiency of the predictor decreases as the importance of the ranking decreases. The most 
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Table 1. Simulation results for LEV 

 

Results without Outlier 

Estimators 
n=5 n=10 

µ=0 σ=1 µ=0 σ=1 

Bias MSE Bias MSE Bias MSE Bias MSE 

ML 0.0962 0.2454 0.0811 0.1961 0.0436 0.1220 0.0625 0.099 

LS 0.0203 0.2686 0.3211 0.7564 0.0092 0.1313 0.1120 0.1317 

MOM 0.0658 0.2339 0.0717 0.1897 0.0261 0.1189 0.4790 0.0912 

LMOM 0.0038 0.2098 0.0445 0.1807 0.0035 0.1141 0.0121 0.0849 

M Estimator 0.0943 0.2439 0.0803 0.1975 0.0437 0.1207 0.0609 0.0951 

 n=20 n=50 

ML 0.0132 0.0543 0.0619 0.0743 0.0089 0.0204 0.0077 0.0132 

LS 0.0081 0.0603 0.0841 0.0830 0.0045 0.0234 0.0196 0.0205 

MOM 0.0103 0.0557 0.3810 0.0649 0.0078 0.0215 0.0024 0.0196 

LMOM 0.0025 0.0518 0.0108 0.0647 0.0015 0.0209 0.0085 0.0146 

M Estimator 0.0129 0.0537 0.0306 0.0735 0.0087 0.0197 0.0055 0.0123 

Results with Outlier 

 n=5 n=10 

 Bias MSE Bias MSE Bias MSE Bias MSE 

ML 0.1043 0.2960 0.1920 0.3611 0.0643 0.2164 0.0977 0.1088 

LS 0.0351 0.3085 0.6789 0.9250 0.0129 0.2313 0.3120 0.3024 

MOM 0.0736 0.3016 0.1827 0.3582 0.0612 0.2218 0.0880 0.1464 

LMOM 0.0125 0.2983 0.1820 0.3458 0.0113 0.2165 0.0989 0.1411 

M Estimator 0.1041 0.2825 0.1581 0.3393 0.0601 0.2124 0.0957 0.1041 

 n=20 n=50 

ML 0.0245 0.0727 0.0671 0.0892 0.0106 0.0402 0.0562 0.0271 

LS 0.0105 0.0842 0.1345 0.1053 0.0073 0.0542 0.0924 0.0472 

MOM 0.0216 0.0728 0.0679 0.1025 0.0128 0.0421 0.0582 0.0343 

LMOM 0.0108 0.0736 0.0741 0.1011 0.0057 0.0408 0.0681 0.0292 

M Estimator 0.0106 0.0703 0.0518 0.0780 0.0097 0.0399 0.0472 0.0203 

 

effective predictor is the robust M estimator in all parameters and in all sample sizes for 

results in the data with outlier case. 

If there is only one outlier in the data set, Robust M estimator is the most effective in 

all sample sizes and all parameter estimates. The results of the simulation obtained for 

Weibull distribution when the shape parameter is 2 (which corresponds to the Raiyleigh 

distribution) demonstrates that when the sample size is small (i.e., 𝑛 < 30), the most efficient 

estimator for all parameters is LMOM in the data set without outliers. When the sample size is 

increased (i.e., 𝑛 = 50), the most effective estimators are listed as LMOM, Robust M, ML, 

MOM and LS. Robust M estimator gives the most effective result in the data with outlier for 

all cases. 

In Table 3, the most effective estimator for all parameters is seen as LMOM in the 

data set without outlier (𝑛 < 20). However, when the sample size larger than 20, the 

efficiencies of all estimators approach to each other. This is because when the shape 
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Table 2. Simulation results for 3 parameter Weibull for β =1 and 2. 

 

 

Estimators 

Data without outlier Data with outlier 

n=5 

β=1 µ=0 σ=1 β=1 µ=0 σ=1 

BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE 

ML -0.1341 0.3919 0.1974 0.0784 -0.0529 0.7303 0.2348 0.4386 -0.2735 0.1718 -0.1295 0.8730 

LS 0.1695 0.3957 -0.2272 0.1093 -0.0623 0.7524 0.2695 0.4405 -0.3213 0.1923 -0.1632 0.8842 

MOM 0.1423 0.3942 0.2017 0.0851 0.0684 0.7459 0.2423 0.4371 0.2852 0.1524 0.1368 0.8746 

LMOM 0.1235 0.3891 0.1981 0.0716 0.068 0.7045 0.2385 0.4382 0.2451 0.1712 0.1268 0.8745 

M Estimator 0.1393 0.3916 0.2041 0.0791 -0.0531 0.7314 0.2315 0.4316 -0.2711 0.1342 -0.1283 0.8720 

 n=10 

ML 0.0853 0.2801 0.0891 0.0208 -0.0387 0.4116 -0.1835 0.3233 -0.1829 0.1218 -0.0874 0.5241 

LS 0.0873 0.3286 -0.1983 0.0773 -0.0388 0.4568 -0.1973 0.3313 -0.2798 0.1837 -0.0939 0.5426 

MOM 0.0816 0.2951 0.1016 0.0268 0.0465 0.4303 -0.1836 0.3237 0.1642 0.1257 0.0927 0.5346 

LMOM 0.0647 0.2769 0.0861 0.0199 0.0467 0.4018 -0.1837 0.3232 0.1639 0.1199 0.0865 0.5329 

M Estimator 0.0850 0.2818 0.0903 0.0209 -0.0391 0.4165 -0.0921 0.3149 -0.1109 0.0902 -0.0489 0.4718 

 n=20 

ML -0.0641 0.0376 0.0472 0.0109 -0.0321 0.1627 -0.1465 0.0936 -0.1342 0.0918 -0.0665 0.3934 

LS 0.0763 0.0463 0.2547 0.0701 -0.0365 0.1827 -0.1492 0.0946 -0.2098 0.1374 -0.0708 0.4066 

MOM 0.0751 0.0452 0.0504 0.0126 0.0418 0.1721 -0.1469 0.0945 0.1234 0.0946 0.0693 0.4018 

LMOM 0.0512 0.0365 0.0451 0.0105 0.0431 0.1618 -0.1472 0.0936 0.123 0.0898 0.0695 0.3995 

M Estimator 0.0638 0.0377 0.0469 0.0110 -0.0314 0.1626 -0.0691 0.0736 -0.0835 0.0679 -0.0362 0.3088 

 n=50 

ML 0.0374 0.0298 0.0191 0.0076 -0.0372 0.0336 -0.0738 0.0455 -0.0639 0.0438 -0.0324 0.1911 

LS 0.0483 0.0342 0.2634 0.0364 -0.0409 0.0381 -0.0786 0.0461 -0.1025 0.0662 -0.0348 0.1966 

MOM 0.0401 0.0347 0.0216 0.0084 0.0521 0.0377 -0.0743 0.0460 0.0669 0.046 0.0336 0.1945 

LMOM 0.0349 0.0327 0.0195 0.0082 0.0643 0.0366 -0.0745 0.0458 0.0682 0.0441 0.0337 0.1932 

M Estimator 0.0310 0.0281 0.0189 0.0076 -0.0298 0.0335 -0.0339 0.0335 -0.0413 0.0319 -0.0169 0.1451 

 n=5 

β=2 µ=0 σ=1 β=2 µ=0 σ=1 

BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE 

ML -0.8090 3.0161 0.3111 0.2515 -0.3968 0.4268 -1.2318 3.3825 -0.2388 0.2627 -0.1032 0.7686 

LS -0.8191 3.0435 -0.3890 0.2810 0.4661 0.5198 -1.2438 3.4259 -0.2481 0.2742 -0.1173 0.7898 

MOM 0.8201 3.0398 0.3754 0.2615 0.4208 0.4395 -1.2368 3.3938 0.2394 0.2646 0.1154 0.7787 

LMOM 0.8087 3.0115 0.3109 0.2498 0.3908 0.4226 -1.2335 3.3785 0.2391 0.2613 0.1023 0.7725 

M Estimator -0.8088 3.0159 0.3110 0.2518 -0.3971 0.4373 -1.2305 3.2324 -0.2282 0.2579 -0.1033 0.7630 

 n=10 

ML -0.7456 1.1377 0.2253 0.0914 -0.3019 0.2197 -0.9123 1.8608 -0.1813 0.1303 -0.0764 0.4231 

LS -0.8209 1.5176 -0.2855 0.1699 0.3258 0.2812 -0.9207 1.8797 -0.1891 0.1764 -0.0871 0.4356 

MOM 0.7890 1.4916 0.2641 0.1126 0.3168 0.2616 -0.9153 1.8672 0.1792 0.1343 0.0856 0.4295 

LMOM 0.7010 1.1218 0.2218 0.0903 0.3016 0.2130 -0.9127 1.8597 0.1772 0.1299 0.0761 0.4248 

M Estimator -0.7449 1.1372 0.2256 0.0921 -0.3020 0.2200 -0.5045 1.5192 -0.0943 0.1129 -0.0442 0.4067 

 n=20 

ML -0.4125 0.3906 0.1413 0.0387 -0.1915 0.0960 -0.5931 0.7451 -0.1151 0.0531 -0.0501 0.1684 

LS -0.4514 0.4078 -0.1803 0.0413 0.2195 0.1616 -0.5984 0.7545 -0.1197 0.0597 -0.0572 0.1739 

MOM 0.4418 0.3928 0.1642 0.0395 0.2019 0.1151 -0.5946 0.7468 0.1164 0.0568 0.0564 0.1712 

LMOM 0.4029 0.3876 0.1397 0.0381 0.1911 0.0912 -0.5934 0.7438 0.1153 0.0508 0.0498 0.1658 

M Estimator -0.4119 0.3901 -0.1419 0.0391 0.1914 0.0958 -0.2594 0.5321 -0.0862 0.0467 -0.0228 0.1209 

 n=50 

ML -0.2073 0.1121 0.0750 0.0175 0.0231 0.0093 -0.3852 0.3294 -0.0747 0.0213 -0.0323 0.0867 

LS -0.3241 0.1345 0.0821 0.0236 0.0372 0.0103 -0.3899 0.3845 -0.0775 0.0226 -0.0368 0.0887 

MOM 0.3029 0.1182 0.0783 0.0198 0.0329 0.0094 -0.3867 0.3816 0.0749 0.0215 0.0361 0.0874 

LMOM 0.1918 0.1135 0.0741 0.0183 0.0280 0.0093 -0.3859 0.3791 0.0748 0.0214 0.0389 0.0845 

M Estimator -0.1984 0.1009 0.0749 0.0175 0.0235 0.0093 -0.1386 0.2391 -0.0238 0.0196 -0.0113 0.0554 
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parameter is 3.4, Weibull distribution is converted to the Normal distribution. The most 

effective estimator for the data set with outliers is the robust M estimator. For the shape 

parameter of 8, LMOM is the most efficient estimator for the data set (𝑛 < 50) without 

outliers. When the sample size is 50, the efficiencies of all estimators approach to each other. 

In the data set with outliers, robust M estimator gives the most effective result with the 

distortion of the distribution. Since SEV distribution is derived from a transformation of 

Weibull distribution, the same results would be obtained. 

When all of the simulation results are evaluated together, we obtain the following 

interpretation. Even though LS or ML estimators are widely used in the literature, they are not 

appropriate to use with small sized data sets like the failure data used in this study. In our 

work, Monte Carlo simulation results verify that it is appropriate to choose LMOM estimator 

for the data set without outliers and Robust M estimator for the data set with outliers. 

Table 3. Simulation results for 3 parameter Weibull for β =3.4 and 8. 

 

 

Estimators 

Data without outlier Data with outlier 

n=5 

β=3.4 µ=0 σ=1 β=3.4 µ=0 σ=1 

BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE 

ML 0.3102 4.6103 0.0572 0.3666 -0.6521 0.4728 -2.3523 5.7978 0.0824 0.4322 -0.0910 0.6767 

LS 0.3982 4.6280 -0.0681 0.4219 0.7288 0.5124 -2.4244 5.9392 -0.0972 0.4460 0.1024 0.7108 

MOM 0.3827 4.8134 0.0601 0.4028 0.6785 0.4955 -2.3824 5.8996 0.0846 0.4333 0.0945 0.6773 

LMOM 0.3789 4.6013 0.0559 0.3514 0.5841 0.4547 -2.3459 5.7806 0.0819 0.4321 0.0921 0.6735 

M Estimator 0.3114 4.6059 0.0569 0.3670 -0.6601 0.4735 -2.3008 5.7003 0.0817 0.4221 -0.0907 0.6266 

 n=10 

ML 0.1452 1.2519 0.0352 0.1939 -0.4034 0.2519 -1.9802 4.0585 0.0671 0.2596 -0.0765 0.5282 

LS 0.2160 1.3640 -0.0436 0.2811 0.5312 0.3542 -2.0319 4.1573 -0.0819 0.3122 0.0860 0.5529 

MOM 0.2084 1.4103 0.0391 0.2261 0.4522 0.2814 -2.0012 4.1299 0.0724 0.2603 0.0794 0.5467 

LMOM 0.1981 1.2495 0.0349 0.1721 0.3865 0.2457 -1.9711 4.0468 0.0691 0.2595 0.0774 0.5271 

M Estimator 0.1461 1.2521 0.0360 0.1941 -0.4051 0.2529 -0.7831 3.0564 0.0284 0.1921 -0.0308 0.4175 

 n=20 

ML 0.0267 0.7942 0.0246 0.1015 -0.2774 0.1266 -1.3663 2.5413 0.0322 0.1256 -0.0643 0.2948 

LS 0.0493 0.8021 -0.0281 0.1103 0.3212 0.1316 -1.7069 2.9207 -0.0691 0.1326 0.0722 0.3874 

MOM 0.0341 0.8213 0.0264 0.1125 0.2915 0.1321 -1.6819 2.8909 0.0609 0.1294 0.0667 0.3867 

LMOM 0.0244 0.7912 0.0231 0.1010 0.2719 0.1254 -1.6559 2.8323 0.0591 0.1287 0.0651 0.3691 

M Estimator 0.0321 0.7977 0.0259 0.1018 -0.2769 0.1262 -0.2671 1.4232 0.0099 0.1035 -0.0125 0.2593 

 n=50 

ML 0.0070 0.5321 0.0148 0.0419 0.0501 0.0031 -0.1147 1.8968 0.0054 0.0524 -0.0054 0.0786 

LS 0.0165 0.5327 -0.0179 0.0421 0.0515 0.0032 -1.4349 2.0542 -0.0594 0.0794 0.0607 0.2712 

MOM 0.0185 0.5343 0.0152 0.0436 0.0506 0.0031 -1.4134 2.0263 0.0516 0.0698 0.0563 0.2707 

LMOM 0.0145 0.5338 0.0141 0.0440 0.0496 0.0031 -1.3908 2.0126 0.0497 0.0693 0.0547 0.2583 
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M Estimator 0.0052 0.5321 0.0148 0.0417 0.0499 0.0031 -0.1092 1.1452 0.0036 0.0502 -0.0042 0.0516 

 n=5 

β=8 µ=0 σ=1 β=8 µ=0 σ=1 

BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE 

ML -0.5780 24.598

9 

0.6636 0.5857 -0.7448 0.5640 -5.0224 55.7298 0.2842 0.9216 -0.1923 1.0341 

LS -0.6258 25.455

8 

0.6978 0.6987 0.8259 0.8650 -5.0226 55.9139 -0.2972 0.9595 0.2043 1.8754 

MOM 0.5941 24.684

7 

0.6821 0.5874 0.7745 0.6258 -5.0224 55.8800 0.2855 0.9326 0.1935 1.8426 

LMOM 0.5517 24.013

0 

0.6614 0.5086 0.7045 0.5610 -5.0223 55.7914 0.2839 0.9211 0.1920 1.6339 

M Estimator -0.5800 24.612

1 

0.6641 0.5861 -0.7467 0.5642 -5.0223 53.720

9 

0.2839 0.8214 -0.1927 0.9340 

 n=10 

ML -0.4424 7.7845 0.4541 0.3394 -0.5556 0.3776 -4.5116 23.1658 0.2562 0.4793 -0.1735 0.7512 

LS -0.5013 8.2159 0.5223 0.4595 0.6324 0.4108 -4.5208 23.3225 -0.2675 0.5139 0.1842 0.7881 

MOM 0.4842 7.9254 0.4859 0.3657 0.5843 0.3935 -4.5199 23.2926 0.2571 0.4894 0.1746 0.7586 

LMOM 0.4315 7.6914 0.4520 0.3132 0.5507 0.3718 -4.4826 23.2126 0.2561 0.4792 0.1732 0.7509 

M Estimator -0.4428 7.7862 0.4538 0.3389 0.5531 0.3781 -2.2648 18.631

2 

0.0149 0.3762 -0.0898 0.4506 

 n=20 

ML -0.3921 3.1893 0.3804 0.2027 -0.3987 0.2208 -3.7065 18.9148 0.0125 0.3263 -0.1159 0.2948 

LS -0.4003 3.4518 0.4247 0.3193 0.4286 0.3025 -4.1589 20.0574 -0.2461 0.3952 0.1689 0.3574 

MOM 0.3948 3.3211 0.3918 0.2549 0.4026 0.2515 -4.1586 20.0326 0.2365 0.3246 0.1601 0.3067 

LMOM 0.3887 3.1745 0.3704 0.2005 0.3883 0.2192 -4.1582 19.9514 0.2354 0.3159 0.1592 0.3011 

M Estimator -0.3918 3.1887 0.3805 0.2018 -0.3983 0.2206 -1.1583 8.7892 0.0095 0.2288 -0.0069 0.2759 

 n=50 

ML -0.2708 1.0332 0.2632 0.1109 -0.2728 0.0911 -1.9645 10.5549 0.1247 0.1326 -0.0856 0.3426 

LS -0.3102 1.2650 0.2921 0.1516 0.2296 0.0932 -3.0359 12.6368 -0.1797 0.2546 0.1235 0.4269 

MOM -0.2928 1.1759 0.2831 0.1312 0.2418 0.0940 -3.0358 12.6059 0.1725 0.2109 0.1169 0.4102 

LMOM -0.2725 1.1762 0.2763 0.1126 0.2321 0.0940 -3.0352 12.5763 0.1716 0.2053 0.1160 0.4036 

M Estimator -0.2702 1.0321 0.2710 0.1109 -0.2649 0.0911 -0.0998 4.0032 0.0863 0.1268 -0.0048 0.3319 

 

4.  LIFETIME ANALYSIS OF SOME ETCS COMPONENTS 

  

The first high speed train experience of Turkey has been started with Ankara-Eskisehir 

line in 2009. Following the first high speed line, two more lines were put into service in 2011 

(Ankara-Konya) and 2014 (Ankara-Istanbul). In this section, reliability analysis of some 

components in the high-speed train signaling system of Turkey has been made. Components 

were selected as signaling components that deteriorated more frequently than most of the 

others, according to failure records obtained in the mentioned 3 lines above up to the year 

2020.  

4.1. Used Equipments 
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Railway signaling equipments are a system of components used to direct railway 

traffic and keep trains away from possible accidents. This system contains a wide variety of 

electronic materials or blocks. In this study, we selected 5 components of the high-speed train 

signaling system that more frequent failures of them has been reported and when they fail, 

they cause significant delays. These are the signal lamps, electronic input-output cards, signal 

electronic control cards, balise transmission modules and SRG213/214 and RG400 

connectors. 

4.1.1.  Signal Lamp 

 

The wayside signals are the elements transmitting the information to perform the train 

headway regulation and are located in the stations and in the routes between stations. These 

wayside signals give the movement authority to the train. Thus, each wayside signal protects a 

track section and the aspect shown to the driver indicates the authorization given to move 

forward though the protected track. The wayside signals for high-speed railways can be 

classified as the main signals, dwarf signals and alpha-numeric signals as. The main signals 

may have three or four aspects, having the same kind of mast, base and ladder for each of 

them. The main signals with four aspects are located in the station areas and are used as entry 

and exit signals when protecting a turnout. The main wayside signals with three aspects 

(Figure 2a) will be located in station areas and in the routes between stations to protect blocks. 

The dwarf signals are located in the station areas for secondary tracks (Figure 2b). The alpha- 

   

(a) The main signal (b) The dwarf signal (c) The alpha-numeric signal 

 

Figure 2. Some illustrations of signal lamps 

 

numeric signals are used to indicate the speed and/or direction for the next turnout. This 

signal is always installed on the main signal pole with a special connection (Figure 2c). 

 

4.1.2.  Electronic Input/Output Card 
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Electronic input/output (E-I/O) card is located in the interlocking cabinet. E-I/O card 

is used to control the receiving and sending of commands of turnouts, track circuits, locks, 

blocks and each element has a separate input/output voltage. Each E-I/O card can send 16 

commands that are sent via two independent channels (Channel-A and B). The outputs have 

backup. At the same time, these cards can receive 16 notifications. 

 

4.1.3.  Signal Electronic Control Card 

 

Signal electronic control card (SEC) is located in the interlocking cabinet. SEC 

controls the lamps up to 8 pieces. It turns on and off the lamps. It provides a circuit for 

measuring current and voltage. It detects and controls the short circuit and burning situations 

that may occur in the lamps. Figure 3 shows E-I/O and SEC cards located on the electronic 

interlocking cabinet. 

 

Figure 3. Electronic input/output and signal electronic control cards 

4.1.4.  Balise Transmission Module 

 

Balise transmission module (BTM) is an important equipment that is responsible to 

carry safety-related information between track side equipment and the train. This equipment 

has been consisted of an antenna which is used for activation and the reading of the data and a 

tool for maintenance of eurobalises (Stanley et al., 2011). Balise is a punctual transmission  
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(a) Balise antenna (b) Fixed eurobalise (c) Programmable eurobalise 

Figure 4. Eurobalise components 

device that are installed on the track. It can be energized by balise antenna (Figure 4a), which 

produces radio frequency. When the train goes over it, it sends a telegram to the on-board 

equipment. Telegram has some information about the geographical position of train, gradient 

of track, radius of curvature and level transitions. Eurobalises are of either a fixed (Figure 4b) 

or programmable (Figure 4c) type. 

 

4.1.5.  SRG213/214 and RG400 Connector 
 

RG 400 and RG 213/214 are connectors of antenna connection. These are the 

connectors of the cables that provide communication between antenna and balise reader. 

Coded signaling data (telegrams) received from balise are sent to the balise reader by RG 400 

and RG 213/214 connectors. Balise reader converts this information to the digital data and 

shares with the high-speed train. Figure 5a and 5b shows RG213/214 N type male and Figure 

5c shows RG400 SMA type male connectors. 

   

(a) RG213/214 N type 

(male) 

(b) RG213/214 N type 

(male) 

(c) RG400 SMA type (male) 

Figure 5. SRG213/214 and RG400 connectors 

 

5.  EXPERIMENTS 

  

In this section, we present the reliability analysis of the signaling components 

mentioned in the previous subsections. The data of E-I/O and SEC cards has been obtained 

from the malfunctions recorded within the period between 2009-2019. These failures occurred 

in the technical buildings at the 456th and 498th kilometers in Ankara-Istanbul Line Project 

Phase-1, respectively. The data of the electrans green signal lamp consists of malfunctions 

within the 10-years period between 2011-2020. The malfunctions of the relevant component 
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belong to the S03 numbered signal in Siding-2, one of the regions within the scope of Ankara-

Konya Line Project. Balise antenna, failure data of RG213/214 and RG400 connectors were 

obtained from 65008 TCF, which operates between various provinces and districts within the 

scope of Ankara-Istanbul YHT Project Phase-1 and Ankara-Konya YHT Project. The data of 

these components consist of failures recorded over a 8-years period between 2012-2019. The 

suitability of distribution fit for each equipments’ failure data were performed by using 

Kolmogorov-Smirnov test (Huber-Carol et al., 2012). The obtained results are summarized in 

Table 4. 

The values presented in the table are the probability (𝑝) values. These values show 

how the relevant equipment is compatible with each of the tested distributions. The highest 

probability value for each equipment is written in bold. The distribution that has the highest 

probability value implies that it is the most suitable distribution for modeling of failure data. 

The most suitable probability distribution for the E-I/O card is determined as a three 

parameter Weibull distribution. The Largest Extreme Value is the most suitable distribution 

method for the failure data of SEC card and Electrans green signal lamps. The Smallest 

Extreme Value is the most suitable distribution method for the failure data of Balise antenna, 

RG213/214 and RG400 connectors. 

Once the distribution of the failure data has been determined, it should be investigated 

whether the data set contains an outlier. The outliers are observations that have a very 

different structure than the rest of the data and have negative effects on parameter estimation. 

Figure 6 shows the box-plots of the components considered in the study. Box-plot  

Table 4. Distribution fitting of failure data 

Distributions 
E I/O 

(n=16) 

Balise 

(n=13) 

SEC 

(n=14) 

RG213 

(n=14) 

GSL 

(n=18) 

RG400 

(n=14) 

Birnbaum-Saunders 0.959 0.411 0.545 0.581 0.282 0.576 

Exponential 0.019 0.512 0.046 0.621 0.040 0.613 

Exponential Power 0.949 0.382 0.569 0.46 0.870 0.491 

Folded Normal 0.927 0.670 0.261 0.601 0.859 0.604 

Gamma 0.944 0.541 0.452 0.627 0.797 0.616 

Half Normal 0.941 0.538 0.421 0.507 0.137 0.508 

Inverse Gaussian 0.959 0.128 0.550 0.527 0.277 0.529 

Largest Extreme Value 0.968 0.592 0.725 0.656 0.894 0.638 

Loglogistic 0.939 0.613 0.680 0.691 0.742 0.682 

Maxwell 0.921 0.581 0.293 0.665 0.858 0.643 

Rayleigh 0.926 0.526 0.289 0.659 0.620 0.638 

Smallest Extreme Value 0.963 0.742 0.151 0.742 0.815 0.789 

Weibull 0.935 0.535 0.300 0.623 0.843 0.613 

Weibull (3-Parameter) 0.980 0.664 0.113 0.605 0.806 0.628 
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representation is a widely used tool in data analysis which shows the basic structures of the 

data set such as minimum, maximum, percentage and mean value. It is useful for giving 

information about the variability and distribution of the data. In the box-plot, samples that are 

out the range of the minimum and maximum values are called outliers. There is no outlier in 

the failure data in box-plot drawings for EIO. It is also seen that the distribution is close to the 

symmetry. It is also noticed that the failure data for part RG213-214 had an asymmetrical 

distribution and did not contain outliers. On the other hand, there exists outliers in the failure 

data of SEC, Green lamp, Balise and RG400 components. 

 

Figure 6. Box-plots of the components 

Table 5. The parameter estimations of lifetime distributions of the components. 

 MLE Likelihood Moments LMOM LS M 

E I/O (Weibull distribution with three parameter) 

µ 123.129 70.836 39.676 98.254 129.142 

α 1.534 2.564 2.856 3.141 1.612 

σ 115.150 176.358 210.677 211.462 123.241 

SEC (LEV) 

µ 257.328 250.241 193.722 268.415 190.316 

σ 64.981 85.435 58.375 56.438 54.247 

Electrans Green Signal Lamp (LEV) 

µ 135.469 139.990 136.540 173.275 138.214 

σ 68.653 50.692 56.670 62.916 42.163 

Balise Antenna (SEV) 

µ 312.200 162.928 157.288 356.102 175.204 

σ 117.984 127.028 136.798 131.162 98.246 

RG213/214 Connector (SEV) 
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µ 289.771 135.639 130.450 324.675 188.138 

σ 129.729 128.827 137.818 142.253 112.605 

RG400 Connector (SEV) 

µ 286.317 135.262 129.833 312.421 229.035 

σ 127.559 126.208 135.613 128.136 116.127 

After the suitable distribution method of failure data is determined for each equipment, 

the parameters of these probability distributions have to be estimated. In this study, we used 

five different methods to estimate the parameters of each distribution. The estimated values of 

the corresponding components with different parameter estimation methods are given in Table 

5. 

In Table 5, E-I/O card shows quite different results. Since there are only 16 failure 

entry for this component, the parameter estimation is realized by using a very small sampling 

size. In addition, the shape parameter has a great importance for Weibull distribution. The 

estimation values obtained for the shape parameter vary between 1.5 and 3.14. This parameter 

will affect hazard and survival functions, so it has an influence on the characteristics of the 

failure model. Since, there is no outliers contained in the box-plot of E-I/O card and the 

simulation results for Weibull distribution without outliers, we used LMOM estimator which 

is the most effective method for parameter estimation of Weibull distribution for data sets 

without outliers. Therefore, in calculation of the hazard and survival functions, the use of 

LMOM estimates will give more reliable results. According to the survival function 

calculated by using LMOM estimates, the survival probability after 180th day is 0.73. At the 

210th day of the component, the probability of lifetime decreases to 0.578. Therefore, it 

should be recommended to check E-I/O card between 180th and 210th days and replace it if 

necessary. 

SEC card parameter estimation results for LEV distribution are given in Table 5. 

There are only 14 failure data records for this component and there are two outliers as 

presented in the corresponding box-plot. In the case of both small sample sized and the 

existence of outliers, the robust M estimator provides effective results for the parameter 

estimation of LEV distribution. The survival probability after 180th day is 0.7 according to 

the survival function calculated using robust M estimator. The survival probability decreases 

to 0.5 on the 210th day. Therefore, it should be recommended that the SEC card needs to be 

checked and replaced if necessary between 180th and 210th days. If LS estimates are used for 

the SEC card, the probability of SEC card to run smoothly after the 270th day is 0.62. In other 

words, it should not be controlled for a longer period but it may fail during this period. 
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Therefore, robust M estimates reflect more accurate results to plan the maintenance and 

repair. 

Electrans green signal lamp failure records best fit to the LEV probability distribution. 

However, in the box-plot, there exists two outliers in the failure data set of this component. 

That’s why, robust M estimation method were used to estimate the distribution parameters. If 

the robust M estimation parameters presented in Table 5 is used to calculate the probability of 

survival for the lamp, the probability of the component to survive after the 150th day is 

calculated as 0.53. The probability drops to 0.31 on the 180th day. Therefore, it should be 

recommended to maintain Electrans green signal lamp after the 150th day. 

SEV distribution is obtained as the probability distribution of balise antenna failure 

data. The estimation results based on 13 observations which are quite different due to the 

existence of two outliers that are verified by the box-plot. For this reason, the robust M 

estimations must be preferred in Table 5. Then, the survival probability of balise antenna after 

150th day is calculated as 0.5. Therefore, it can be recommended to maintain it on the 150th 

day. If the same results are evaluated by using LS estimations, the survival probability of 

balise antenna is dropped to 0.5 after 300th days. This period is quite different and shows the 

effect of the parameter estimation method on estimates. 

There are 14 failure records for RG 213/214 connector and the data does not contain 

outliers. Since the probability distribution method is determined as SEV, as presented in Table 

4, the estimation method that gives the most effective parameter value is the LMOM. The 

survival probability that is calculated by corresponding estimations indicates that after the 

90th day, the connector will survive with a probability of 0.658 and on the 120th day with a 

probability of 0.579. When the survival probability is close to 0.50, it would be appropriate to 

make the maintenance of this equipment. 

There are 14 failure records for RG 400 connector which also include only one outlier 

as demonstrated in the corresponding box-plot. In Table 4, the probability distribution for this 

component has been found to be SEV. Because of being a small sample sized data and having 

an outlier, robust M estimation must be preferred in determinations of the parameter 

estimations. Survival probabilities for RG 400 connector has been calculated as 0.60 on the 

150th day and 0.52 on the 180th day. Therefore, it is necessary to perform maintenance and 

repair activities on the 180th day. 
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6.  CONCLUSION 

 

In this study, we emphasized the parameter estimation of the random distortion model 

based on the failure data of some electronic components used in high speed train signaling 

system. High speed train signaling systems and similar large scale systems consist of 

hundreds of expensive components having a small number of failures in long time intervals. 

This results in small sized failure data which needs to be analyzed by using proper methods. 

We used the most popular distributions to model the lifetimes of the experimented 

components and observed that Weibull, LEV and SEV distributions has been determined to 

be the most appropriate distributions in modeling the failure data obtained from the high 

speed train lines in Turkey. 

Parameter estimation is very important in failure models. In practice, some 

components may fail in very short periods of time or some parts may last much longer than 

their average lifetimes. These situations highly affect the estimation of model parameters. For 

this reason, we discussed 5 different methods in the study for parameter estimation of the 

random distortion model. The effectiveness of the parameter estimators of the Weibull, LEV 

and SEV distributions was compared by performing a Monte Carlo simulation for the small 

sample case with and without outliers. According to the simulation results, if there is no 

outlier in the data set for parameter estimation of the 3 distributions, LMOM estimator was 

determined as the most effective parameter estimator. When the sample size increases (𝑛 =

50), it is recommended to use ML and robust M estimators. In case of outliers in the data set, 

the most effective estimator is the robust M method for all samples considered. 

The 5 components discussed in the study are Electrans Green Signal Lamp, Electronic 

Input/Output Card, Signal Electronic Control Card, Balise Transmission Module, 

SRG213/214 and RG400 connectors. They are chosen because they cause sudden breakdowns 

more frequently than other components and can cause train trips to be delayed due to 

immediate repair needs when broken. The distribution that the failure data of each individual 

component was determined by the Kolmogorov-Simirnov test. Since there are no outliers in 

two of these components (E-I/O and RG 213/214), the LMOM estimator is used in parameter 

estimation. With the help of these estimates, the probability of the recommended time for 

maintenance and repair was determined. There are outliers in the data sets of other 

components. The predictive results of robust M estimator were used for the parameter 

estimation of the random deterioration model for these components. 
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As a result, for the cases that the data set has outliers, we found the robust M estimator 

performs the best, for the cases that the data set has no outliers, LMOM estimator performs 

the best in lifetime probability estimations of the components. Large systems such as high 

speed railways contain hundreds of signaling system components. The results of this study 

would be inspiring to other large scale systems having small sample sized failure data as well. 
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