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ABSTRACT 
With advancements in technology, three-dimensional (3D) medical imaging has become vital in modern 
medicine, contributing to more accurate diagnosis, treatment planning, and personalized medicine. 
However, segmenting abdominal organs remains a challenging task due to anatomical variations, limited 
labeled data, and image noise. This study investigates the impact of deep learning-based architectures 
and preprocessing techniques on 3D organ segmentation using the publicly available Multi-Atlas 
Labeling Beyond the Cranial Vault (BTCV) dataset. To achieve this, 3D U-Net, UNETR, and 
SwinUNETR models were employed, and the effects of various preprocessing techniques and loss 
functions, including Dice Loss, Focal Loss, and Cross-Entropy Loss, were systematically analyzed. The 
findings reveal that combining Dice Loss with Cross-Entropy Loss significantly enhances segmentation 
performance. Additionally, preprocessing techniques improved segmentation accuracy by 1.19%, 
further optimizing model performance. Among the evaluated models, 3D U-Net achieved the highest 
overall segmentation performance, with an average Dice score of 0.8397, outperforming SwinUNETR 
and UNETR. These findings underscore the importance of selecting appropriate preprocessing methods 
and loss functions in 3D medical image segmentation. The results contribute to more precise and 
efficient medical image analysis, with potential applications in clinical decision support systems. Future 
research should focus on optimizing hybrid architectures, integrating advanced augmentation strategies, 
and expanding evaluation across multiple datasets to improve the robustness and real-world applicability 
of automated segmentation methods. 
 
Keywords: Deep Learning, Image Processing, 3D Image Segmentation, Medical Image Analysis, 3D 
U-Net, UNETR, SwinUNETR. 

 
 

1. INTRODUCTION 
Medical imaging systems and medical images 
have long been a fundamental part of medicine. 
Developments in medical imaging systems have 
enabled the development of new approaches in 
early diagnosis of diseases, treatment planning, 
and monitoring of the treatment process[1]. 
However, medical image analysis, 
interpretation, and reporting are usually time-
consuming and require expertise. In particular, 
manual segmentation applications in medical 
images are labor-intensive, prone to inter-
observer variability, and subject to 
inconsistencies[2]. For this reason, studies on 
automatic analysis of medical images have 
continued to be popular for years. 
 

Advancements in artificial intelligence, 
particularly in deep learning, have led to 
significant progress in automatic image 
analysis[3]. Unlike traditional image processing 
and machine learning methods, deep learning 
techniques automatically extract distinctive 
features from images, making them highly 
effective in segmentation, classification, 
detection, and registration tasks[4]. Thanks to 
this advanced feature, deep learning models 
exhibit superior performance in challenging 
tasks such as segmentation, classification, 
detection, and registration of images. The 
success of deep learning in medical image 
analysis has led to an increasing number of 
studies applying these methods for automatic 
segmentation[3,5-6]. According to the 
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literature, segmentation studies have a small 
proportion compared to other tasks in the field 
of medical image analysis. Compared to tasks 
like classification and detection, medical image 
segmentation remains a less explored area due 
to challenges such as limited annotated 
datasets[7], high computational costs[6], the 
complexity of medical image features[3], 
evaluation difficulties[8], and the integration of 
automated methods into clinical workflows[9]. 
 
Segmentation is a process used to separate 
targeted anatomical structures (organs, lesions, 
etc.) from other structures in medical 
images[10]. This process is the most critical 
step in many clinical applications, such as 
disease diagnosis, treatment planning, surgical 
interventions, and monitoring of the disease 
process, providing quantitative and objective 
information[11]. Accurate segmentation 
facilitates better treatment decisions and 
enables more efficient monitoring of disease 
progression. While manual segmentation can be 
time-consuming and subjective, automatic 
segmentation methods reduce the workload and 
provide more consistent results[12]. Deep 
learning models, particularly Convolutional 
Neural Networks (CNNs) and their derivatives, 
have demonstrated superior performance over 
conventional segmentation 
approaches[13].Accurate and reliable organ 
segmentation in medical images is important in 
clinical applications in disease diagnosis, 
treatment planning, treatment process 
monitoring, surgical planning, and navigation 
systems [14]. Despite their success, medical 
image segmentation models still face 
challenges, such as variations in organ shapes, 
poor image contrast, and noise-related artifacts. 
In organ segmentation, it is possible to analyze 
medical images in 2D and 3D. Literature studies 
show that 2D image analysis is more widely 
preferred than 3D. Possible reasons for this 
situation can be listed as follows [3,7,10,11,15]; 
 
 2D images can be easily obtained, and 

therefore, data sets can be easily 
created, 

 2D image analysis has lower 
computational costs than 3D images, 

 3D images need more preprocessing, 
 Ease of comparison due to testing old 

methods on 2D images, 
 Ease of visualization and interpretation 

of 2D images 

 
In addition, there are some advantages of 
segmenting medical images in 3D instead of 2D 
segmentation that provide more successful 
segmentation. For example[14,16,17]; 
 
 3D segmentation methods provide 

more consistent and accurate 
segmentation by preserving volumetric 
information and spatial relationships 
between neighboring slices and using 
contextual information. 

 Preserving contextual information 
between neighboring pixels increases 
segmentation performance in noisy or 
low-contrast regions . 

 When 3D medical images are analyzed 
in 2D, errors caused by shifts between 
slices are not considered. More accurate 
results can be obtained by reducing 
projection effects with 3D 
segmentation methods. This is 
especially important in surgical 
planning or navigation systems . 
 

Since 2D segmentation methods work 
independently for each slice, they need to be 
repeated on the 3D volume. This increases 
computational cost and is an inefficient process. 
3D segmentation methods work directly on the 
3D volume using efficient architectures such as 
3D convolutional neural networks and 
significantly reduce computational time [18]. 
 
However, these advantages of 3D images bring 
some difficulties. Handling 3D data in parallel 
necessitates the use of high computation 
hardware. Moreover, 3D organ segmentation is 
challenging due to the large data size, variations 
in the shape and appearance of organs, and 
image noise and artifacts[10]. From another 
perspective, deep learning-based approaches 
have the potential to automatically learn 
meaningful features from 3D medical images 
and increase segmentation accuracy[9]. 
 
The primary purpose of this study is to perform 
high-performance 3D abdominal organ 
segmentation using deep learning methods. As 
mentioned, abdominal organ segmentation is an 
essential problem in medical image analysis. 
Still, it is a challenging task due to the complex 
anatomy of organs, image quality issues, and 
high variability between organs [14]. Existing 
2D segmentation methods show limited 
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performance in 2D organ segmentation since 
they cannot fully capture 3D volumetric 
information. Therefore, 3D segmentation 
methods that take into account 3D contextual 
information and volumetric morphology of 
organs contribute to the development of 
existing automatic segmentation systems. In the 
scope of the study, the performances of 3D U-
Net [16], UNETR [19], and SwinUNETR [20] 
models, which are deep learning-based 3D 
segmentation architectures that have been 
widely used in recent years, were comparatively 
evaluated. These models aim to perform organ 
segmentation by extracting meaningful 
volumetric features from 3D medical images 
using 3D convolutional neural networks (CNN) 
and transformer-based approaches. In addition 
to deep learning-based 3D segmentation 
architectures, the effects of morphological 
image preprocessing and different loss 
functions on segmentation performance were 
also investigated in the study. In addition, the 
impact of data augmentation techniques on 3D 
organ segmentation was also analyzed in the 
scope of the study. Data augmentation methods 
can increase the generalization ability of deep 
learning models, especially in cases with 
limited training examples. Therefore, the aim is 
to make the models robust against different 
variations by applying different data 
augmentation methods.  
 
The rest of this paper is structured as follows: 
Section 2 presents the related work, 
summarizing previous research on 3D medical 
image segmentation and highlighting key 
advancements in deep learning-based 
approaches. Section 3 describes the materials 
and methods used in this study, detailing the 
dataset, preprocessing techniques, and model 
configurations. Section 4 presents the 
experimental results, comparing different 
segmentation approaches and analyzing their 
effectiveness. Finally, Section 5 concludes the 
paper by summarizing key findings and 
discussing potential future research directions. 
 
2. RELATED WORKS  
In recent years, deep learning-based 
approaches, especially convolutional neural 
networks (CNN) and transformer architectures, 
have shown impressive results in medical image 
segmentation[3, 5]. 
U-Net[13] and V-Net[21] are considered the 
leading CNN architectures in medical image 

segmentation. Çiçek et al. [16] introduced 3D 
U-Net, an extension of the U-Net model, 
designed for volumetric medical image 
segmentation. The study aimed to improve 
segmentation performance in 3D medical 
imaging, particularly in cases with sparse 
annotations where manual labeling is limited. 
The proposed model replaces 2D convolutions 
with 3D convolutional layers, enabling better 
feature extraction for volumetric data. The 
model was evaluated on electron microscopy 
(EM) data for neuron segmentation and 
magnetic resonance imaging (MRI) data for 
brain tumor segmentation. Experimental results 
demonstrated that 3D U-Net significantly 
outperformed traditional 2D approaches, 
particularly in segmenting small and complex 
structures. The model achieved a Jaccard score 
(IoU) of 0.853 in neuron segmentation and a 
Dice Similarity Coefficient (DSC) of 0.897 in 
brain tumor segmentation. These results 
highlight the effectiveness of 3D U-Net in 
handling volumetric medical images, even 
when trained on limited labeled data, making it 
a valuable tool for automated medical image 
analysis. 
 
Milletari et al. [21] introduced V-Net, a fully 
convolutional neural network (FCN) designed 
for volumetric medical image segmentation, 
particularly prostate segmentation in MRI 
scans. The study aimed to overcome the 
limitations of 2D CNNs by utilizing 3D 
convolutional layers, allowing the model to 
learn spatial context across entire volumetric 
images. A key innovation of V-Net is the 
introduction of a Dice loss function, which is 
optimized directly during training. This loss 
function effectively addresses the class 
imbalance issue, which is common in medical 
image segmentation, by prioritizing foreground 
voxels without requiring manual weighting. The 
model was trained and evaluated on the 
PROMISE12[22] prostate MRI dataset, 
consisting of 50 training and 30 test volumes. 
The experimental results demonstrated that V-
Net achieved a Dice similarity coefficient 
(DSC) of 0.869, outperforming standard CNN-
based approaches. The study also highlighted 
that V-Net significantly reduced segmentation 
time, achieving inference in just 1 second per 
MRI volume, making it suitable for real-time 
clinical applications.  
Recently, Transformer architectures have 
shown remarkable performance in medical 
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image segmentation. Hatamizadeh et al. [19] 
proposed UNETR, a transformer-based model 
for 3D medical image segmentation, addressing 
the limitations of CNNs in capturing long-range 
dependencies. Unlike traditional methods, 
UNETR employs a Vision Transformer (ViT) 
encoder, processing 3D volumes as sequential 
patches, which enhances global context 
understanding. The model connects the 
transformer encoder to a CNN-based decoder 
via skip connections for precise segmentation. 
Evaluated on BTCV and MSD datasets, 
UNETR achieved 0.856 Dice in BTCV multi-
organ segmentation, 0.964 in spleen 
segmentation, and 0.711 in brain tumor 
segmentation, outperforming state-of-the-art 
CNN and hybrid models. These results 
highlight UNETR’s superior performance in 
volumetric medical image segmentation, 
establishing it as a strong candidate for future 
transformer-based segmentation models. 
 
Chen et al. [23] introduced TransUNet, a hybrid 
model combining CNNs and Transformers for 
medical image segmentation. The study aimed 
to overcome CNNs’ limitations in capturing 
long-range dependencies while maintaining 
precise localization through U-Net-like skip 
connections. Evaluated on the Synapse multi-
organ CT dataset, TransUNet achieved 77.48% 
Dice score, outperforming CNN-based and 
transformer-only methods. Similarly, on the 
ACDC cardiac segmentation dataset, it 
achieved 89.71% Dice score, surpassing 
competing models. These results highlight 
TransUNet’s effectiveness in balancing global 
context understanding with fine-grained spatial 
details, making it a strong alternative to 
traditional FCN-based segmentation models. 
 
Cao et al. [20] introduced SwinUNETR, a U-
Net-like architecture incorporating Swin 
Transformer blocks to enhance medical image 
segmentation. The study aimed to overcome the 
locality limitations of CNNs while reducing the 
high computational cost of standard 
Transformers. Unlike conventional U-Net 
models, SwinUNETR leverages hierarchical 
shifted window attention to capture both local 
and global dependencies efficiently. The model 
was evaluated on Synapse multi-organ 
segmentation (CT) and ACDC cardiac 
segmentation (MRI) datasets. SwinUNETR 
achieved a Dice similarity coefficient (DSC) of 
79.13% on Synapse and 90% on ACDC, 

outperforming CNN-based U-Net variants and 
Transformer-based architectures. These results 
highlight SwinUNETR’s effectiveness in 
balancing spatial precision and computational 
efficiency, making it a promising alternative for 
high-accuracy medical image segmentation. 
 
Isensee et al. [18] introduced nnU-Net, a self-
configuring deep learning framework for 
biomedical image segmentation, addressing the 
challenge of manually optimizing deep learning 
models for diverse datasets. Unlike 
conventional approaches, nnU-Net 
automatically adapts its preprocessing, network 
architecture, training strategies, and post-
processing to any given segmentation task. It 
systematically categorizes parameters into 
fixed, rule-based, and empirical decisions, 
reducing the need for expert intervention. nnU-
Net was extensively tested on 23 public datasets 
across 53 segmentation tasks, achieving state-
of-the-art performance in most cases. Notably, 
it outperformed highly specialized models in 
numerous international biomedical 
segmentation challenges. This study 
demonstrates nnU-Net’s effectiveness as an out-
of-the-box solution, making high-quality 
segmentation accessible without requiring 
expert knowledge or extensive computational 
resources. 
 
Recently, models such as U-Mamba [24] and 
SegMamba [25], called the Mamba family, have 
also attracted considerable attention in 
segmentation studies. Ma et al. [24] introduced 
U-Mamba, a hybrid CNN-State Space Model 
(SSM) architecture for biomedical image 
segmentation, aiming to enhance long-range 
dependency modeling while maintaining 
computational efficiency. Unlike CNNs, which 
struggle with global context, and Transformers, 
which are computationally expensive, U-
Mamba integrates Mamba blocks (a variant of 
SSMs) to efficiently capture both local and 
global features. The model employs a self-
configuring mechanism, similar to nnU-Net, 
allowing it to automatically adapt to various 
datasets without manual tuning. Evaluated on 
four diverse segmentation tasks—3D 
abdominal CT and MRI segmentation, 
endoscopy instrument segmentation, and 
microscopy cell segmentation—U-Mamba 
consistently outperformed state-of-the-art 
CNN-based (nnU-Net, SegResNet) and 
Transformer-based (UNETR, SwinUNETR) 
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models. Notably, in 3D abdominal CT 
segmentation, U-Mamba achieved a Dice score 
of 0.8683, surpassing nnU-Net (0.8615), and in 
3D MRI segmentation, it achieved 0.8501, 
outperforming SwinUNETR and UNETR. 
These results demonstrate U-Mamba’s ability to 
balance computational efficiency with high 
segmentation accuracy, positioning it as a 
promising alternative to existing deep learning 
architectures in biomedical imaging. 
 
Xing et al. [25] introduced SegMamba, a novel 
3D medical image segmentation model that 
integrates Mamba-based State Space Models 
(SSMs) to enhance long-range dependency 
modeling while maintaining computational 
efficiency. Unlike CNN-based methods, which 
struggle with global context, and Transformer-
based models, which suffer from high 
computational costs, SegMamba employs Tri-
orientated Spatial Mamba (ToM) blocks to 
effectively capture global information in 
volumetric medical images. The model also 
incorporates a Gated Spatial Convolution 
(GSC) module for improved spatial feature 
representation and a Feature-level Uncertainty 
Estimation (FUE) module to refine multi-scale 
feature integration. Evaluated on BraTS 2023 
(brain tumor segmentation), AIIB 2023 (airway 
segmentation), and CRC-500 (colorectal cancer 
segmentation) datasets, SegMamba achieved 
Dice scores of 91.32% on BraTS 2023, 88.59% 
on AIIB 2023, and 48.02% on CRC-500, 
outperforming state-of-the-art CNN and 
Transformer models. These results demonstrate 
SegMamba’s ability to efficiently model long-
range dependencies while maintaining high 
segmentation accuracy, positioning it as a 
strong alternative to existing deep learning 
architectures in medical imaging. 
 
Automatic preprocessing and data 
augmentation techniques also play an important 
role in 3D medical image segmentation. Zhao et 
al. [26] proposed a learning-based data 
augmentation method to address the challenge 
of one-shot medical image segmentation, where 
only a single labeled scan is available. Unlike 
traditional augmentation techniques that rely on 
random transformations, this method learns 
spatial and intensity transformations from 
unlabeled medical images and applies them to 
generate realistic synthetic training examples. 
The model captures anatomical and imaging 
variations by learning spatial deformation fields 

and intensity mappings, enabling robust 
augmentation beyond simple rotations or flips. 
Evaluated on MRI brain segmentation, the 
proposed method significantly outperformed 
state-of-the-art one-shot segmentation 
approaches, including single-atlas segmentation 
and traditional augmentation-based supervised 
segmentation. The study demonstrated that 
using learned transformations improved Dice 
scores by up to 0.056, bringing performance 
closer to fully supervised models while 
requiring only minimal labeled data. These 
results highlight the potential of learning-based 
augmentation to enhance segmentation 
accuracy in low-data medical imaging 
scenarios. 
 
Despite significant advancements, 3D medical 
image segmentation continues to face 
challenges, particularly in achieving high 
accuracy for small and complex anatomical 
structures. CNN-based models excel at 
capturing local spatial details but struggle with 
modeling long-range dependencies. On the 
other hand, Transformer-based architectures 
address this limitation effectively; however, 
they often demand substantial computational 
resources and large amounts of labeled data. 
Hybrid approaches, such as U-Mamba and 
SegMamba, propose alternative mechanisms to 
balance these limitations, yet their 
generalizability across diverse datasets remains 
uncertain. 
 
In light of these challenges, this study aims to 
bridge existing gaps by developing a 
segmentation framework that balances local and 
global feature extraction while optimizing 
computational efficiency. Specifically, this 
research focuses on improving 3D abdominal 
organ segmentation performance by leveraging 
advanced deep learning models and tailored 
preprocessing techniques. Considering the 
inherent difficulties of medical image 
segmentation, such as anatomical variability, 
image noise, and limited training datasets, this 
study contributes to the field by systematically 
evaluating the effectiveness of different 
segmentation methodologies. By addressing 
key limitations in current approaches, this work 
provides valuable insights for optimizing deep 
learning architectures for medical imaging 
applications. 
3. MATERIAL AND METHOD 
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This study comparatively evaluates the 
performances of three widely used deep 
learning architectures for 3D medical image 
segmentation: 3D U-Net [16], UNETR [19], 
and SwinUNETR [20]. The impact of image 
preprocessing, post-processing, and loss 

functions on the performance of these models is 
systematically examined. The objective is to 
identify the optimal configuration that 
maximizes segmentation accuracy. The overall 
study workflow is illustrated in Figure 1.

 
Figure 1. Flowchart of the Study 

 
3.1. Dataset Used  
The study utilizes the BTCV (Beyond the 
Cranial Vault) dataset [27], which was 
specifically designed for abdominal organ 
segmentation. The dataset was created for the 
"Multi-Atlas Labeling Beyond the Cranial 
Vault" competition held at the MICCAI 2015 
conference. The images consist of 30 contrast-
enhanced abdominal and pelvic CT scans. Each 
scan consists of 85 to 198 slices. The slice 
thickness is 2.5 mm, and the slice interval is 2.5 
mm. The image size is 512 x 512 pixels. All 
scans were taken in the portal venous contrast 
phase. HU (Hounsfield Unit) values are in the 

range of [-1024, 3071]. It is in NIFTI (.nii.gz) 
file format. Each CT scan in the dataset contains 
reference images manually segmented by expert 
radiologists. There are 13 segmented organs: 
spleen, right kidney, left kidney, gallbladder, 
esophagus, liver, stomach, aorta, inferior vena 
cava, portal vein and splenic vein, pancreas, 
retinitis adrenal gland, left adrenal gland. In the 
study, 24 of these 30 CT images were used for 
training, while six were used for validation and 
testing. Figure 2 shows a sample image from the 
dataset and the corresponding labeled image. 
 

 

 
Figure 2. Dataset Sample Image and Ground Truth Image. 

 
3.2. Applied Deep Learning Models  
The study trained and compared three different 
deep-learning architectures with the dataset. 
First, the 3D U-Net architecture proposed by 
Çiçek et al. [16] was used. 3D U-Net was 
explicitly designed for volumetric medical 
image segmentation by extending the traditional 
U-Net architecture with three-dimensional 
convolutions. This architecture comprises an 
encoder with consecutive 3D convolutional 
layers, ReLU activations, and max pooling 

operations, and a decoder with upsampling 
layers followed by 3D convolutions and ReLU 
activations. At each downsampling step, the 
number of feature channels is doubled. Skip 
connections from encoder to decoder enable 
low-level and high-level features to be 
effectively combined. This structure can 
produce detailed segmentation maps even in 
cases where there is limited training data. A 
standard 3D U-Net architecture is given in 
Figure 3.  [16]. 



Barın et al., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY  9:1 (2025) 73-91 

79 
 

 
Figure 3. Standard 3D U-Net architecture 

 
Secondly, the UNETR (UNet-Transformers) 
architecture developed by Hata-mizadeh et al. 
[19] is implemented. UNETR is a hybrid 
architecture that uses a transformer-based 
encoder and a CNN-based decoder. The encoder 
section first divides the 3D image into small 
volumetric patches with regular intervals and 
passes these patches through a linear projection 
layer. Then, position codings are added to these 
projections, and the resulting sequences are 
passed through a series of transformer blocks. 
Each transformer block has a multi-head self-
attention mechanism and a feed-forward neural 

network layer. This structure can effectively 
capture long-range spatial dependencies. The 
decoder section uses a CNN structure that 
combines features from different encoder layers 
and gradually amplifies them. This hybrid 
structure of UNETR combines the global 
context capturing ability of transformers with 
the local feature extraction power of CNNs, 
achieving successful results, especially for the 
segmentation of complex anatomical structures. 
Figure 4 shows a model showing the working 
flow of UNETR.

 

 
Figure 4. UNETR sample workflow [28] 
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Finally, the SwinUNETR architecture proposed 
by Cao et al.[20] is implemented. SwinUNETR 
is a model that uses Swin Transformer blocks in 
a U-Net-like architecture. The distinctive 
feature of the Swin Transformer is the shifted 
window approach. In this approach, self-
attention calculations are first performed in 
small, non-overlapping windows, which are 
then shifted to establish connections between 
windows. This method effectively capture sure 
features at different scally while reducing 
computational complexity. The encoder section 

of SwinUNETR consists of successive Swin 
Transformer blocks, and the number of channels 
increases while the feature resolution decreases 
in each block. The decoder section is a structure 
that gradually amplifies and combines the 
features coming from the encoder. This 
architecture is expected to perform highly, 
especially in abdominal organ segmentation, 
where extensive contextual information is 
important. Figure 5 shows the workflow of 
SwinUNETR. 

 

 
Figure 5. SwinUNETR sample study flow 

 
3.3. Evaluated Loss Functions 
The study further examined the effect of 
different loss functions on the model 
performance. The loss functions used include 
Dice Loss, Cross-Entropy Loss, Focal Loss, 
Dice+Cross-Entropy Loss, and Dice+Focal 
Loss. 
 
Dice Loss was proposed by Milletari et al.[21]. 
Dice Loss is a loss function used primarily in 
medical image segmentation. It tries to 
maximize the overlap ratio between the 
estimated segmentation mask and the ground 
truth. Thus, it aims to increase the segmentation 
accuracy [29]. It is a popular choice, especially 
for imbalanced datasets, because it prevents the 
model from ignoring minority classes and can 
focus on the overlapping regions between the 
estimated and ground truth masks. The formula 
of Dice loss (Equation (1)) is; 
 
𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 1

𝐶𝐶
∑ 2∑ 𝑡𝑡𝑛𝑛𝑐𝑐𝑦𝑦𝑛𝑛𝑐𝑐𝑁𝑁

𝑛𝑛=1
∑ (𝑡𝑡𝑛𝑛𝑐𝑐+𝑦𝑦𝑛𝑛𝑐𝑐)𝑁𝑁
𝑛𝑛=1

𝐶𝐶−1
𝑑𝑑=0           (1) 

 
Cross-entropy loss[30] is a common loss 
function that optimizes the correct classification 

of each pixel. It measures the difference 
between two probability distributions for a 
random variable. It is used in segmentation 
tasks to measure how well the model's 
predictions match the target labels[29]. Cross-
entropy loss is particularly effective in 
improving pixel-wise accuracy. The formula for 
Cross-Entropy loss (Equation (2)) is as follows; 
 
𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦,𝑡𝑡) = −∑ log(𝑡𝑡𝑛𝑛.𝑦𝑦𝑛𝑛)𝑁𝑁

𝑛𝑛=1           (2) 
 
Focal loss, proposed by Lin et al. [31], is an 
improved version of the cross-entropy loss 
function that assigns different weights to easy 
and complex examples. Complex examples are 
those that are misclassified with a high 
probability, while easy examples are those that 
are correctly classified with a high probability. 
This helps balance the effect of easy and 
complex examples on the overall loss [29]. The 
formula for Focal loss (Equation (3)) is: 
 
𝐿𝐿𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓(𝑦𝑦,𝑡𝑡,𝛾𝛾) = −∑ (1 − 𝑡𝑡𝑛𝑛.𝑦𝑦𝑛𝑛)𝛾𝛾 log(𝑡𝑡𝑛𝑛.𝑦𝑦𝑛𝑛)𝑁𝑁

𝑛𝑛=1     (3) 
 
Here, 𝛾𝛾 is a non-adjustable positive 
hyperparameter. A flat cross-entropy loss is 
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obtained when 𝛾𝛾 is set to 0 for all samples. Focal 
loss is especially effective in cases where the 
imbalance between the background and the 
organ of interest is high. Dice + Focal loss, 
Focal+Cross-Entropy loss, and Dice + Cross-
Entropy loss combinations were also used in the 
study. These hybrid loss functions aim to 
optimize both the overall shape similarity and 
pixel-based accuracy by combining the 
advantages of different loss functions. The 
formulas of these loss functions (Equations (4)-
(5)) are as follows; 
 
𝐿𝐿𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶  =  𝑤𝑤_𝑐𝑐𝑐𝑐 ∗  𝐿𝐿𝐶𝐶𝐶𝐶(𝑝𝑝,𝑦𝑦)  +  𝑤𝑤_𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐 ∗  (1 −
 𝐿𝐿𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝑦𝑦))                  (4) 
 
𝐿𝐿𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓  =  𝐿𝐿𝐷𝐷𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓(𝑝𝑝,𝑦𝑦)  +  𝜆𝜆 ∗  (1 −
 𝐿𝐿𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝑦𝑦))            (5) 
 
The choice of loss functions directly impacts 
segmentation performance, particularly for 
imbalanced datasets. Dice Loss is preferred for 
its ability to mitigate class imbalance by 
maximizing region overlap, while Cross-
Entropy Loss focuses on pixel-wise 
classification accuracy. Focal Loss enhances 
this by assigning higher weights to hard-to-
classify samples, making it particularly 
effective for datasets where small anatomical 
structures are underrepresented. The study also 
evaluates hybrid loss functions (Dice+CE, 
Focal+CE, Dice+Focal) to balance spatial 
consistency and pixel-level accuracy 
 
3.4. Applied Image Preprocessing Methods 
The study investigated the effect of 
preprocessing applied to images in the dataset 
on the performance of trained models. 
 
The intensity rescaling process linearly scales 
image intensities to a specific range. This 
process facilitates model training by 
normalizing the intensity differences between 
images from different scanners. Images 
obtained from a CT scanner have intensity 
values in Hounsfield Units (HU). Scale 
Intensity Ranged scales image intensity values 
to a specific range and thus reduces the intensity 
differences between different images. 
 
The crop foreground process automatically 
determines the region containing the organ of 
interest by detecting non-zero voxels in the 
image and discards unnecessary background 
information. This increases computational 

efficiency and allows the model to focus on the 
regions of interest. 
 
The reorientation process is a preprocessing 
step used to align the orientation of the image 
and label data according to a standard 
coordinate system. Image orientations may 
differ in medical imaging due to different 
imaging devices or protocols. These differences 
can cause image processing errors and 
negatively impact the performance of deep 
learning models. This process standardizes the 
orientation of image and label data according to 
the "RAS" (Right-Anterior-Superior) 
coordinate system. 
 
Spatial Resampling is a preprocessing step used 
to standardize an image's pixel dimensions 
(spacing) and label data to a certain value. In 
medical imaging, pixel dimensions may vary 
due to different imaging devices or protocols. 
This method reduces pixel size differences 
between different images by standardizing the 
spatial resolution of images. 
 
Random Cropping Based on Positive and 
Negative Label Sampling is a data 
augmentation step that randomly cuts 3D 
patches from image and label data. The method 
helps alleviate the class imbalance problem by 
cutting equal numbers of patches from both 
positive (containing the target anatomical 
structure) and negative (not containing the 
target anatomical structure) regions. It was also 
used in the study to adjust the input dimensions. 
 
Based on the conducted experiments, these 
methods have demonstrated successful 
outcomes and were deemed necessary at all 
stages of training, leading to their 
implementation throughout the entire 
process.The methods whose effects on 
performance are evaluated are as follows; 
 
 Random Axis Flip is a data augmentation 

step that randomly flips images and labels 
data along specified axes. The primary 
purpose of this step is to expand the dataset 
and make the model more robust against 
rotational changes. Random 90-degree 
Rotation is a data augmentation step that 
randomly rotates the image and labels data 
by 90, 180, or 270 degrees.  

 Random Intensity Shift is a data 
augmentation technique in which the 
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intensity of the image is randomly 
increased or decreased. It helps the model 
to be robust to different lighting 
conditions. 

 Local Brightness Adjustment is a method 
that adjusts the brightness in some regions 
of an image. It is usually used to increase 
local details or to eliminate unbalanced 
lighting. 

 Gaussian Noise Addition is a technique 
that adds random pixel changes to the 
image according to a Gaussian distribution. 
It increases the model's robustness to noisy 
data. 

 Random Contrast Adjustment is a 
technique in which the difference between 
the bright and dark areas of the image is 
randomly adjusted. It increases the model's 
robustness to different lighting conditions. 

 Gaussian Smoothing is a filter that blurs 
the image by averaging pixel values with 
their neighbors. It is used to reduce high-
frequency noise. 

 Gaussian Sharpening is a technique that 
highlights the edges and fine details in the 
image. It highlights essential features by 
increasing the pixel contrast at the edges. 

 Random Cropping by Label Classes 
focuses on the areas of the image labeled 
with certain classes and performs random 
cropping in these parts. It has been tried as 
an alternative to the Random Cropping by 
Positive and Negative Labels method. 
 

4. RESULTS AND DISCUSSION 
The loss functions and preprocessing  methods 
used in the study were tested on 3D U-Net due 
to the low computational cost, and the 
successful results obtained were applied to 
SwinUNETR and UNETR models. 
 
First, the loss functions were evaluated. In 
determining the loss functions, eight pieces of 
48x48x48 images were created from each image 
for training the model. The Random Cropping 
Based on Positive and Negative Label Sampling 
algorithm was used for this. Table 1 shows the 
performance values obtained from 3D U-Net in 
different loss functions. When the table is 
examined, it is seen that the use of loss functions 
together has a positive effect on the model 
performance. When the performance values are 
examined, it is seen that the Cross-Entropy and 
Dice loss functions generally give the most 
successful results. The Cross-Entropy + 

Dice(Dice+CE) loss function was used in the 
following steps of the study. 
 
In the continuation of the study, the effect of 
input size on performance was investigated 
using the DiceCE loss function. For this 
purpose, the model was trained with different-
sized image patches from each image, including 
eight images of 48×48×48, eight images of 
96x96x96, and four images of 96×96×96. The 
performance values obtained from the 3D-UNet 
model for different input sizes are presented in 
Table 2. When analyzing the obtained values, it 
is observed that the results are quite close to 
each other. However, overall, the model trained 
with four images of 96×96×96 achieved the best 
performance. Experiments conducted with 
larger input sizes (e.g., 128×128×128) resulted 
in excessive memory consumption, particularly 
with SwinUNETR. To address this issue, 
alternative input sizes were explored, and it was 
determined that 96×96×96 provides the optimal 
balance between contextual information and 
computational efficiency. Similar strategies 
have been employed in previous studies. For 
instance, LoGoNet[32] adopts a patch-based 
segmentation approach, avoiding large input 
sizes to reduce computational overhead. These 
findings are consistent with the observations in 
this study, demonstrating that smaller patches 
improve memory efficiency while maintaining 
segmentation accuracy.Since achieving 
maximum performance is the priority in this 
study, all subsequent image preprocessing 
methods were applied using the most optimal 
input size of 96×96×96. 
 
In the continuation of the study, the effects of 
image preprocessing methods on model 
performance were examined. First, data 
augmentation methods were applied. For this, 
random and 90-degree rotation operations were 
applied to the images on the axes. As a result of 
the positive effect of this operation on 
performance, this operation was added to all 
subsequent preprocesses. The following 
operations differed in each training, and their 
effects on performance were examined. Table 3 
shows the applied methods and their effects on 
segmentation studies. The numbers given to the 
applied preprocesses are as follows; 
 

1. Data Augmentation(to increase 
training diversity and prevent 
overfitting) 
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• Random Flip (to introduce 
rotational invariance and improve 
robustness to anatomical 
variations) 

• 90-degree Rotation (to simulate 
different scanning orientations and 
improve generalization) 

2. Local Brightness Adjustment (to 
compensate for scanner-specific 
intensity variations) 
3. Gaussian Noise Addition(to make the 
model more robust to imaging noise 
and artifacts) 
4. Random Contrast Adjustment (to 
enhance organ boundaries and improve 
segmentation clarity) 
5. Gaussian Smoothing(to reduce high-
frequency noise and improve stability 
in predictions) 
6. Gaussian Sharpening(to enhance 
edge clarity and refine organ contours) 
7. Random Cropping by Label 
Classes(to focus learning on 
underrepresented structures and 
balance class distributions) 

 
Table 3 confirms that data augmentation 
techniques significantly enhance segmentation 
accuracy by improving generalization. 
Additionally, Gaussian Sharpening and 
Random Contrast Adjustment contributed to 
performance gains by enhancing edge clarity 
and improving organ boundary delineation. 
However, Random Cropping by Label Classes 
produced inconsistent results, suggesting that 
targeted cropping does not always benefit 
segmentation performance. According to these 
findings, the most effective preprocessing 
methods were selected and applied to 
SwinUNETR and UNETR. The final 
preprocessing pipeline consisted of: 
 

• Random Flip (to introduce rotational 
invariance) 

• Random Intensity Shift (to improve 
robustness against intensity variations) 

• Gaussian Sharpening (to enhance 
boundary clarity) 

 
While preprocessing techniques generally 
improved segmentation performance, some 
models showed a slight decline in Dice scores 
of some classes after applying certain 
transformations. This effect was more 
prominent in Transformer-based architectures 

such as SwinUNETR and UNETR, which are 
highly sensitive to intensity and contrast 
variations. Unlike CNN-based models, which 
primarily rely on local spatial details, 
Transformers incorporate long-range 
dependencies, making them more vulnerable to 
alterations in intensity distribution caused by 
preprocessing steps. Additionally, some 
augmentations, such as Gaussian Sharpening 
and Contrast Adjustment, may have 
unintentionally altered the natural organ 
boundaries, leading to minor segmentation 
inconsistencies in certain cases. These findings 
indicate that preprocessing strategies should be 
carefully tailored for different model 
architectures to ensure optimal performance. 
 
The results indicate that 3D U-Net achieved the 
best trade-off between segmentation accuracy 
and computational efficiency. Although 
SwinUNETR produced comparable results to 
3D U-Net, its training time was significantly 
longer (7298 sec vs. 3555 sec). Similarly, 
UNETR required 5564 sec for training but 
yielded slightly lower Dice scores. These 
findings suggest that CNN-based models like 
3D U-Net are more computationally efficient 
than Transformer-based architectures 
(SwinUNETR and UNETR) for this 
segmentation task. 
 
The comparative training times for each model 
were as follows: 
 

• SwinUNETR: 7298.58 sec 
• UNETR: 5564.40 sec 
• 3D U-Net: 3555.69 sec 

These results reinforce that while transformer-
based models can capture long-range 
dependencies, they require significantly higher 
computational resources compared to CNN-
based models. 
 
Table 5 compares the segmentation 
performance of several methods, including 3D 
U-Net, Swin-UNETR, and UNETR tested in 
this study, against reference methods reported in 
the literature for 13 abdominal organs. The 
metrics are Dice scores, which indicate 
segmentation accuracy, and the last column 
presents the average performance across all 
organs. 
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The performance variability across organ types 
suggests that no single architecture universally 
outperforms others. Instead, combining 
specialized architectures, loss functions, and 
preprocessing techniques tailored to specific 
organs may yield optimal results.The findings 
reinforce the need to develop more robust 
methods for handling small organ segmentation, 
which is critical for applications requiring 
detailed anatomical analysis. This detailed 
comparison highlights the strengths and 
limitations of various deep learning models for 
3D abdominal organ segmentation. The results 
show that CNN-based models such as 3D U-Net 
are computationally efficient and achieve 
competitive accuracy, while Transformer-based 
models such as UNETR are superior in 
capturing complex anatomical structures.  
However, the critical difference between the 
dice values of the UNETR model trained and 
tested on the same dataset by different 
researchers shows that the model has some 
problems with stabilization.  
 
Also, the proposed 3D U-Net model 
demonstrates superior performance in pancreas 
segmentation, achieving a Dice score of 0.823, 
the highest reported value among all compared 
methods. This result highlights the effectiveness 
of the applied preprocessing techniques and 
model architecture in handling small and low-
contrast structures. Given that pancreas 
segmentation remains a challenging task due to 
its anatomical variability and low contrast with 
surrounding tissues, this improvement is 
particularly significant. 
 

In conclusion, the presented comparison table 
shows that all methods exhibit difficulties in 
segmentation of small organs and underlines the 
need for future research focusing on region-
specific improvements and advanced 
magnification techniques. 
 
Figure 6 presents sample segmentation results 
from the trained models. A detailed qualitative 
analysis was performed to evaluate 
segmentation accuracy, organ boundary 
preservation, and common misclassification 
patterns. 
 
3D U-Net and SwinUNETR produced visually 
similar segmentation results, while UNETR 
showed slightly lower segmentation accuracy, 
particularly for small anatomical structures. All 
models generated false-positive organ 
segmentations in regions where no ground truth 
annotations exist. This issue was more 
pronounced in UNETR, suggesting that 
transformer-based architectures may introduce 
excessive spatial dependencies, leading to 
misclassifications in low-contrast areas. 
 
3D U-Net exhibited the most stable 
segmentation boundaries across different 
organs, whereas SwinUNETR tended to capture 
more detailed structures at the cost of minor 
over-segmentation artifacts. Small organs such 
as the adrenal glands and gallbladder remained 
the most difficult to segment accurately across 
all models. The reduced contrast in these 
structures, along with their small size, likely 
contributed to the under-segmentation observed 
in multiple cases. 
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Table 1. The Effect of Loss Functions on Model Performance (a:IoU, b: Recall, c:Precision, d: Dice) 
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Cross 
Entropy 

Loss 

d 0.9964 0.9018 0.918 0.9029 0.5597 0.6582 0.9588 0.8267 0.8779 0.7961 0.6769 0.7789 0.4731 0.5093 0.7739 
c 0.995 0.8771 0.9625 0.9222 0.7424 0.8081 0.9685 0.9157 0.9107 0.8827 0.7693 0.8277 0.7472 0.6825 0.858 

b 0.9978 0.9345 0.8785 0.8873 0.4677 0.5981 0.9495 0.7653 0.8501 0.7284 0.6133 0.7387 0.3736 0.4247 0.7291 

a 0.9928 0.8244 0.849 0.8259 0.358 0.497 0.9209 0.7099 0.7827 0.6625 0.5145 0.6382 0.3151 0.348 0.6599 

Focal Loss 

d 0.9963 0.9225 0.9272 0.9276 0.5991 0.5814 0.9467 0.8304 0.863 0.7898 0.6187 0.6935 0.4422 0.4208 0.7542 

c 0.9957 0.9041 0.9572 0.9581 0.595 0.8531 0.9281 0.8726 0.9307 0.8371 0.833 0.9215 0.702 0.7663 0.861 

b 0.9969 0.9455 0.8993 0.8992 0.5402 0.4602 0.9666 0.8009 0.8101 0.7565 0.5076 0.5596 0.3665 0.3117 0.7015 

a 0.9926 0.8579 0.8643 0.8653 0.4001 0.4161 0.8991 0.7165 0.7599 0.6545 0.4548 0.5339 0.2984 0.2718 0.6418 

Dice Loss 

d 0.9964 0.937 0.927 0.9183 0.5378 0.6603 0.9566 0.8234 0.8686 0.7959 0.6041 0.7453 0.4716 0.505 0.7677 

c 0.9952 0.9287 0.942 0.959 0.5723 0.7832 0.955 0.9099 0.9359 0.8609 0.8075 0.7945 0.6954 0.5807 0.8371 

b 0.9977 0.9476 0.9135 0.8812 0.5245 0.6085 0.9584 0.7689 0.8138 0.7457 0.4896 0.7079 0.3897 0.4838 0.7308 

a 0.9929 0.8824 0.8642 0.8492 0.3295 0.4945 0.9169 0.7086 0.7683 0.6618 0.4366 0.5965 0.3142 0.3439 0.6542 

Focal+Cross 
Entropy 

Loss 

d 0.9929 0.6477 0.7494 0.7673 0.4939 0.5735 0.8859 0.781 0.7926 0.5868 0.3156 0.6624 0.5145 0.4933 0.6612 

c 0.9901 0.5431 0.9908 0.9875 0.4435 0.7809 0.9678 0.8732 0.9389 0.9131 0.8389 0.8124 0.6252 0.5405 0.8033 

b 0.9957 0.8583 0.6095 0.6324 0.5022 0.4843 0.8253 0.7208 0.6983 0.4431 0.2066 0.5932 0.4763 0.4898 0.6097 

a 0.9859 0.4951 0.6058 0.6265 0.3067 0.4107 0.8026 0.646 0.6599 0.4225 0.1977 0.4991 0.3503 0.3395 0.5249 

Dice + 
Cross 

Entropy 
Loss 

d 0.997 0.9386 0.9357 0.9331 0.6518 0.6768 0.9617 0.8592 0.8855 0.8042 0.6342 0.7931 0.6406 0.5347 0.8033 

c 0.9965 0.9481 0.9386 0.939 0.5291 0.8206 0.9608 0.8687 0.9345 0.8958 0.8079 0.8302 0.657 0.7319 0.847 

b 0.9975 0.9307 0.9333 0.9273 0.7343 0.6042 0.9628 0.8536 0.8462 0.7336 0.5352 0.7643 0.6352 0.4348 0.7781 

a 0.994 0.8851 0.8793 0.875 0.4265 0.5133 0.9263 0.759 0.7956 0.6737 0.4721 0.658 0.4727 0.3714 0.693 

Dice +Focal 
Loss 

d 0.9966 0.903 0.8746 0.8921 0.5182 0.6599 0.9539 0.8022 0.8973 0.8488 0.7221 0.7824 0.6642 0.6143 0.795 

c 0.9951 0.9068 0.9379 0.8561 0.7717 0.8963 0.9709 0.9112 0.933 0.8682 0.7468 0.817 0.7331 0.7099 0.861 

b 0.9981 0.9037 0.833 0.9401 0.4236 0.5275 0.9382 0.7494 0.8661 0.834 0.7032 0.7568 0.6169 0.5493 0.76 

a 0.9933 0.8256 0.7886 0.8098 0.3389 0.4978 0.9122 0.6919 0.8149 0.7381 0.5662 0.6443 0.4979 0.4552 0.6839 
 



Barın et al., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY  9:1 (2025) 73-91 

86 
 

Table 2. The Effect of Input Size on Model Performance (a:IoU, b: Recall, c:Precision, d: Dice) 
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48x48x48x8 

d 0.997 0.9386 0.9357 0.9331 0.6518 0.6767 0.9617 0.8592 0.8855 0.8042 0.6342 0.7931 0.6406 0.5347 0.8033 
c 0.9965 0.9481 0.9386 0.939 0.5291 0.8205 0.9608 0.8687 0.9345 0.8958 0.8079 0.8302 0.657 0.7319 0.847 

b 0.9975 0.9307 0.9333 0.9273 0.7344 0.6042 0.9628 0.8536 0.8462 0.7336 0.5352 0.7643 0.6352 0.4348 0.7781 

a 0.994 0.8851 0.8793 0.875 0.4266 0.5133 0.9263 0.759 0.7956 0.6737 0.4721 0.658 0.4727 0.3714 0.693 

96x96x96x8 

d 0.9964 0.9195 0.9301 0.929 0.6866 0.672 0.9586 0.8003 0.8864 0.8113 0.6901 0.7644 0.5824 0.5664 0.7995 

c 0.9951 0.9212 0.9402 0.9305 0.5609 0.8133 0.9691 0.8883 0.9148 0.8337 0.7266 0.825 0.7683 0.6444 0.838 

b 0.9977 0.9221 0.9212 0.9279 0.7131 0.5797 0.9486 0.7604 0.8616 0.7999 0.6649 0.7204 0.4731 0.5277 0.7727 

a 0.9928 0.8527 0.8695 0.8677 0.4635 0.5069 0.9206 0.6828 0.7967 0.6844 0.5276 0.6204 0.4125 0.4028 0.6858 

96x96x96x4 

d 0.9968 0.9483 0.9389 0.9367 0.7448 0.7035 0.9648 0.8189 0.9048 0.8406 0.7201 0.7963 0.664 0.6392 0.8298 

c 0.9956 0.9635 0.9337 0.9329 0.7352 0.8765 0.9662 0.9297 0.9189 0.8733 0.771 0.8561 0.7304 0.7755 0.8756 

b 0.9981 0.934 0.9452 0.9408 0.6695 0.5969 0.9636 0.7588 0.8927 0.8149 0.6795 0.7512 0.6115 0.5517 0.7934 

a 0.9936 0.9018 0.8851 0.8813 0.5078 0.5449 0.9321 0.711 0.8264 0.726 0.5645 0.6632 0.4976 0.4749 0.7222 
 

Table 3. The Effect of Image Preprocessing on Model Performance 
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Unprocessed  0.9968 0.9483 0.9389 0.9367 0.7448 0.7035 0.9648 0.8189 0.9048 0.8406 0.7201 0.7963 0.664 0.6392 0.8298 
1 0.9969 0.9538 0.9355 0.937 0.7731 0.7528 0.964 0.8423 0.9036 0.8584 0.719 0.7769 0.6674 0.6304 0.8365 

1_7 0.9966 0.954 0.9328 0.936 0.7478 0.7539 0.9613 0.8193 0.8945 0.8153 0.6988 0.7443 0.6495 0.6124 0.8226 
1_3 0.9967 0.9312 0.9222 0.9289 0.7228 0.7435 0.957 0.8298 0.9008 0.8397 0.6678 0.7709 0.6773 0.6741 0.8259 
1_2 0.9967 0.947 0.9361 0.9347 0.7118 0.74 0.9602 0.8138 0.8876 0.8529 0.7183 0.7928 0.6655 0.6155 0.8266 
1_4 0.9969 0.9521 0.9384 0.9349 0.7402 0.7436 0.9622 0.8372 0.8904 0.8542 0.7119 0.8056 0.6491 0.6276 0.8317 
1_5 0.9966 0.903 0.8746 0.8921 0.5182 0.6599 0.9539 0.8022 0.8973 0.8488 0.7221 0.7824 0.6642 0.6143 0.795 

1_4_5 0.9967 0.9492 0.9343 0.9374 0.6315 0.7318 0.9581 0.8024 0.9006 0.8434 0.7254 0.816 0.6451 0.5896 0.8187 
1_6 0.9968 0.9483 0.9389 0.9367 0.7448 0.7035 0.9648 0.8189 0.9048 0.8406 0.7201 0.7963 0.664 0.6392 0.8298 

1_4_6 0.9969 0.9538 0.9355 0.937 0.7731 0.7528 0.964 0.8423 0.9036 0.8584 0.719 0.7769 0.6674 0.6304 0.8365 
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Table 4. Comparison of Model Dice Performance 
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3D U-Net 
Unprocessed  0.9968 0.9483 0.9389 0.9367 0.7448 0.7035 0.9648 0.8189 0.9048 0.8406 0.7201 0.7963 0.664 0.6392 0.8298 

Pre-Processed 0.997 0.9595 0.9434 0.9422 0.7225 0.7419 0.9664 0.7942 0.894 0.8456 0.7604 0.8232 0.7126 0.6522 0.8397 

SwinUNETR  
Unprocessed  0.9968 0.9447 0.9396 0.9373 0.6359 0.7043 0.9632 0.8009 0.8919 0.8462 0.7325 0.7958 0.6401 0.591 0.8157 

Pre-Processed 0.9969 0.9508 0.9379 0.9356 0.6812 0.7154 0.9657 0.8247 0.8872 0.8493 0.7306 0.8182 0.6891 0.6305 0.8295 

UNETR 
Unprocessed  0.9966 0.903 0.8746 0.8921 0.5182 0.6599 0.9539 0.8022 0.8973 0.8488 0.7221 0.7824 0.6642 0.6143 0.791 

Pre-Processed 0.9961 0.8326 0.9279 0.9161 0.6653 0.7332 0.9487 0.7942 0.8655 0.8147 0.6932 0.7489 0.6668 0.6057 0.8006 
 

Table 5. Quantitative comparisons of the performance of segmentation studies with basic models on the BTCV dataset in the literature 
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SETR+PUP [33] 0,929 0,893 0,892 0,649 0,764 0,954 0,822 0,869 0,742 0,715 0,714 0,618 0,797 
nnUNet [18] 0,942 0,894 0,910 0,704 0,723 0,948 0,824 0,877 0,782 0,720 0,680 0,616 0,802 
ASPP [34] 0,935 0,892 0,914 0,689 0,760 0,953 0,812 0,918 0,807 0,695 0,720 0,629 0,811 
TransUNet [23] 0,952 0,927 0,929 0,662 0,757 0,969 0,889 0,920 0,833 0,791 0,775 0,637 0,838 
UNETR [19] 0,968 0,924 0,941 0,750 0,766 0,971 0,913 0,890 0,847 0,788 0,767 0,741 0,856 
UNETR [32] 0,912 0,940 0,938 0,693 0,690 0,954 0,754 0,891 0,830 0,703 0,734 0,660 0,577 0,790 
SwinUNETR [32] 0,952 0,947 0,945 0,790 0,770 0,963 0,755 0,901 0,850 0,771 0,760 0,702 0,659 0,828 
nnUNet [32] 0,859 0,944 0,924 0,796 0,755 0,960 0,781 0,894 0,849 0,756 0,776 0,675 0,663 0,818 
3D-Unet Ours 0,960 0,943 0,942 0,723 0,742 0,966 0,794 0,894 0,846 0,760 0,823 0,713 0,652 0,840 
SwinUNETR Ours 0,951 0,938 0,936 0,681 0,715 0,966 0,825 0,887 0,849 0,731 0,818 0,689 0,631 0,830 
UNETR Ours 0,833 0,928 0,916 0,665 0,733 0,949 0,794 0,866 0,815 0,693 0,749 0,667 0,606 0,801 
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Figure 6. Segmentation results of the model 
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5. CONCLUSION AND FUTURE WORKS 
Advancements in 3D medical imaging 
technology have significantly improved 
diagnosis, treatment planning, and patient 
monitoring. However, these advancements also 
introduce challenges in processing and 
analyzing large-scale medical data. Artificial 
intelligence, particularly deep learning-based 
approaches, has emerged as a transformative 
tool in medical imaging, demonstrating the 
ability to automate and enhance segmentation 
tasks, thereby reducing manual effort and 
improving diagnostic precision. 
 
This study evaluated three deep learning 
architectures—CNN-based 3D U-Net, hybrid 
SwinUNETR, and Transformer-based 
UNETR—using the BTCV dataset for the 
segmentation of 13 different abdominal organs. 
Additionally, the impact of various 
preprocessing techniques and loss functions on 
model performance was analyzed. The findings 
highlight the importance of model architecture 
selection, preprocessing strategies, and loss 
function optimization in achieving high 
segmentation accuracy. 
 
Among the models tested, 3D U-Net 
outperformed SwinUNETR and UNETR in 
both segmentation accuracy and efficiency. The 
highest Dice score was achieved with the 
96×96×96 input size, balancing spatial context 
and memory constraints effectively. This result 
aligns with previous literature, reinforcing that 
moderate patch sizes maintain both 
computational feasibility and sufficient 
anatomical context. Preprocessing techniques 
such as Random Flip, Intensity Shift, and 
Gaussian Sharpening improved segmentation 
performance, enhancing robustness to 
variations in image acquisition. Despite these 
optimizations, the segmentation of small, 
mobile organs such as the adrenal glands and 
gallbladder remained a challenge, primarily due 
to their low contrast, anatomical variability, and 
limited training samples. 
 
This study makes a significant contribution to 
the field of 3D medical image segmentation by 
systematically evaluating different architectures 
and preprocessing techniques, offering insights 
into their comparative advantages. This 
research provides a thorough evaluation of 
multiple architectures, preprocessing 
techniques, and input size optimization, 

offering a detailed analysis of their combined 
effects on segmentation performance. By 
systematically assessing these factors, this 
study highlights key elements that contribute to 
improved segmentation accuracy and 
computational efficiency. Additionally, it 
bridges the gap between CNN-based and 
Transformer-based models, highlighting their 
respective strengths and limitations. 
 
Although this study achieved promising results, 
several areas require further investigation. 
Small organ segmentation continues to be 
difficult due to factors such as low contrast, 
shape variability, and data imbalance. Future 
research should explore specialized refinement 
techniques tailored to small organs, such as 
region-aware loss functions or attention 
mechanisms, to improve segmentation 
accuracy. Additionally, incorporating multi-
scale feature extraction approaches could 
provide finer detail representation, enhancing 
performance across different organ sizes. 
 
Further research could explore several 
enhancements to mitigate false positives and 
improve the segmentation of small organs. 
Developing specialized segmentation 
refinements for challenging organs, such as the 
adrenal glands and gallbladder, may enhance 
model precision in these regions. Implementing 
anatomical and structural constraints in the 
segmentation process could improve the 
delineation of organ boundaries and reduce 
false positives. Additionally, region-aware data 
augmentation techniques could enhance model 
robustness for small anatomical structures by 
simulating realistic variations in medical 
imaging. Exploring more effective training 
paradigms, such as curriculum learning or self-
supervised learning, could improve 
segmentation performance, particularly in 
underrepresented organ classes. 
 
Expanding the dataset with more diverse 
imaging modalities, including MRI and PET 
scans, could improve model generalizability 
across different clinical applications. 
Integrating domain adaptation techniques or 
contrastive learning methods may further 
improve segmentation performance in cross-
domain applications. The development of self-
supervised learning frameworks could reduce 
reliance on extensive annotated datasets while 
maintaining model robustness. 
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By addressing these challenges, future 
advancements in deep learning-based 3D 
segmentation will help bridge the gap between 
automated medical image analysis and real-
world clinical implementation. This study 
contributes to the growing body of literature by 
demonstrating the effectiveness of deep 
learning models in multi-organ segmentation 
while outlining key areas for further 
development, ultimately supporting improved 
patient outcomes and assisting medical 
professionals in their decision-making 
processes. 
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