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Abstract 
The ability to predict and prevent machine failures is a crucial 
task for businesses on a global scale at a time of increasing 
dependence on automation and technology. This paper 
primarily addressed a novel failure prediction model approach 
based on ensemble learning. Commonly used machine learning 
models including Decision Trees, K-Nearest Neighborhood, 
Support Vector Machines, and Logistic Regression and two 
different ensemble learning strategies were used: bagging and 
majority voting. The SZVAV real-life failure dataset provided by 
Lawrence Berkeley National Laboratory and the AI4I2020 
Predictive Maintenance synthetic dataset were utilized to 
evaluate the performance of the proposed ensemble models. 
The preprocessing stage included the application of 
oversampling since there is an imbalance problem in both 
datasets. In this context, a comparison of three oversampling 
techniques was also presented for the datasets considered in 
the study. As a result of the tests, it was seen that the proposed 
models are superior to individual machine learning methods and 
Random Forest, which is an ensemble model itself, for the 
considered datasets. In addition, the proposed ensemble 
models were compared with the original failure prediction 
models previously presented in the literature on the AI4I2020 
dataset, and it was reported that more successful results are 
obtained with the proposed approach. 
 
 
Keywords Failure prediction; Machine learning; Ensemble learning; 
Oversampling. 

Öz 
Makine arızalarını tahmin etme ve önleme yeteneği, otomasyon 
ve teknolojiye olan bağımlılığın arttığı bir zamanda küresel 
ölçekte işletmeler için kritik bir görevdir. Bu çalışma öncelikle 
topluluk öğrenmeye dayalı özgün bir arıza tahmin modeli 
yaklaşımını ele almaktadır. Karar Ağaçları, K-En Yakın Komşuluk, 
Destek Vektör Makineleri ve Lojistik Regresyon dahil olmak 
üzere yaygın olarak kullanılan makine öğrenmesi modelleri ve iki 
farklı topluluk öğrenme stratejisi kullanılmıştır: torbalama ve 
çoğunluk oylaması. Lawrence Berkeley Ulusal Laboratuvarı 
tarafından sağlanan SZVAV gerçek yaşam arıza veri seti ve 
AI4I2020 Tahmini Bakım sentetik veri seti, önerilen topluluk 
modellerinin performansını değerlendirmek için kullanılmıştır. 
Her iki veri setinde de bir dengesizlik sorunu olduğu için ön 
işleme aşaması aşırı örnekleme uygulamasını içermektedir. Bu 
bağlamda, çalışmada ele alınan veri setleri için üç aşırı 
örnekleme tekniğinin bir karşılaştırması da sunulmuştur. Testler 
sonucunda, ele alınan veri setleri için önerilen modellerin 
bireysel makine öğrenmesi yöntemlerinden ve kendisi bir 
topluluk modeli olan Rastgele Orman'dan üstün olduğu 
görülmüştür. Ayrıca önerilen topluluk modelleri, AI4I2020 veri 
seti üzerinden literatürde daha önce sunulan orijinal hasar 
tahmin modelleri ile karşılaştırılmış ve önerilen yaklaşımla daha 
başarılı sonuçlar elde edildiği raporlanmıştır. 
 
 
 
Anahtar Kelimeler Arıza tahmini; Makine öğrenmesi; Topluluk 
öğrenmesi; Aşırı örnekleme. 

  

 

1. Introduction 

Equipment performance and reliability are crucial for 

maintaining continuous production and profitability in 

the dynamic world of industrial operations. However, 

maintenance and operations teams continue to face 

difficulties due to the intrinsic complexity of 

contemporary industrial systems and the constant 

demands placed on them. Unexpected equipment failure 

can have devastating consequences, including unplanned 

downtime, compromised safety, and significant financial 

loss. Mainly, maintenance can be described as the 

prevention of equipment failure and making sure that the 

equipment performs effectively and failurelessly, at least 

for the duration of its useful life. Maintenance practices 

are an important part of the production systems. For this 

reason, it is of great importance to determine these 

maintenance times before failures occur and to eliminate 

the problem before it happens. Maintenance strategies 
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are essential for ensuring the reliability, efficiency, and 

longevity of equipment, machinery, and infrastructure in 

various industries. These strategies encompass a range of 

proactive and reactive approaches aimed at preventing 

equipment failures, minimizing downtime, and optimizing 

operational performance. Proactive maintenance 

includes preventive measures such as regular inspections, 

scheduled maintenance routines, and predictive 

maintenance techniques like condition monitoring and 

predictive analytics. On the other hand, reactive 

maintenance involves addressing issues as they arise, 

often through corrective actions and emergency repairs. 

A well-balanced maintenance strategy combines these 

elements to maximize asset availability while minimizing 

costs and disruptions. Additionally, advancements in 

technology, such as the Internet of Things (IoT) and data 

analytics, are playing an increasingly significant role in 

modern maintenance strategies, enabling organizations 

to harness real-time data for predictive maintenance, 

ultimately driving greater efficiency and cost-

effectiveness. The area of predictive maintenance has 

arisen as an innovative reaction to urgent concerns 

caused by unexpected equipment breakdowns, enabling 

industries to move past reactive tactics and adopt 

proactive strategies. 

Predictive maintenance (PdM) is the prediction of failures 

that may occur in the future by using the data obtained 

during the use of the machines or equipment in 

production. Bousdekis et al. (2019) emphasized that PdM 

benefits significantly from technological advances, using 

real-time detection to predict future failures. PdM, after 

receiving and processing some physical data (vibration, 

temperature, etc.) from the machinery or equipment, 

helps to perform just-in-time maintenance by detecting 

when the failure may occur, with high accuracy, 

sufficiently in advance. Thus, it helps to get rid of cost and 

time loss by performing maintenance at the estimated 

failure times. 

Various technologies are also used in PdM. Some of those; 

are thermal imaging tests with thermal cameras, oil and 

particle test, ultrasonic test, and vibration analysis. 

Sectors such as manufacturing, automotive, and aviation 

are among the sectors where predictive maintenance is 

frequently applied. PdM has become a popular research 

area since Industry 4.0 applications become widespread. 

Various topics are covered under PdM, such as the 

prediction of machine failures, and forecasting remaining 

useful life (RUL). For the machine failure prediction pillar 

of predictive maintenance, Zhu et al. (2019) emphasized 

that knowledge-based models, traditional machine 

learning models, and deep learning models are used. 

Zonta et al. (2020) also highlighted the use of data-driven 

solutions for PdM, due to the ample data collection 

opportunities and use of machine learning algorithms. 

Dundar et al. (2021) stated that individual machine 

learning models; various ensemble models and deep 

learning models are used for PdM. 

PdM applications for identifying machine failures also use 

individual machine learning models, which are typically 

used for failure prediction issues. Individual models for 

PdM include Logistic Regression (Philips et al. 2015), Raza 

et al. (2010), Support Vector Machines (Baptista et al. 

2018, Mei et al. 2022, Gohel et al.2020, Shamayleh and 

Awad 2020, Cakir et al. 2021, Lee et al. 2019, Arslan and 

Tiryaki 2020), Decision Trees (Kaparthi 2020, Mei et al. 

2022, Bukhsh 2019), K-Nearest Neighbors (Cakir et al. 

2021), Random Forests (Cakir et al. 2021, Janssens et al. 

2019, Mei et al. 2022), Artificial Neural Networks (Gencer 

et al. 2021, Mei et al. 2022, Arslan and Tiryaki, 2020). In 

addition to traditional machine learning models, deep 

learning models such as Convolutional Neural Networks 

(Lee et al. 2019, Kaya et al. 2022), Recurrent Neural 

Networks, And Long Short-Term Memory (Wu et al. 2020, 

Patra et al. 2022) were also utilized. 

In PdM applications, ensemble learning-based methods 

are used as well as individual machine learning models. 

Hung (2021) proposed an Adaptive Boosted Decision Tree 

approach using the output of a Decision Jungle model 

based on bagging and succeed to enhance the 

performance of the failure prediction model. In the 

prediction of wind turbines main bearing failures, Beretta 

et al. (2021) presented an anomaly detection model using 

an ensemble method, isolation forest. Mujib and Djatna 

(2020) developed an ensemble machine-learning model, 

using a voting strategy to predict the failures of a wafer 

stick machine. The model which increased the prediction 

accuracy includes Lazy-Locally-Weighted Learning (LWL), 

Zero-R, J48, and Random Forest classifiers. To diagnose 

the refrigerant charge failures, Zhang et al. (2023a) 

developed a stacking ensemble of 5 basic classifiers, 

namely SVM, Random Forests, Gradient Boosting 

Machines, Back Propagation Neural Network (BPNN), 

Multi-class Logistic Regression. Khan et al. presented an 

ensemble of XGBoost, Random Forest, and Extra Tree 

models to predict the failures of wind turbines.  Zhang et 

al. (2023b) proposed a blending ensemble model 

comprised of a large number of machine learning models 

to predict hard disk failures. In a recent study conducted 

by Khalil and Rostam (2024), an ensemble model consists 

of SVM and Adaboost proposed for failure prediction in a 

rotating machinery and it was demonstrated that the 

bagging ensemble of the mentioned individual models 
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enhanced the prediction performance. Similarly, 

ensemble learning-based models are being developed for 

the remaining useful life (RUL) (Gungor et al. 2022a, (Chen 

et al. 2021, Gungor et al. 2022b). Apart from the 

ensemble learning approach, various models have also 

been developed for PdM, which include a hybrid of 

different classifiers. (Andre et al. 2013, Fernandes et al., 

2020). To compare our study and the studies in the 

literature, the previous studies about failure prediction 

via ensemble learning are listed in Table 1.

Table 1. Comparison of this study with existing literature. 
Study Individual models Ensemble learning strategy  

Hung (2021) 
Decision Jungle &  
Adaptive Boosted Decision Tree 

Bagging & boosting  

Beretta et al. (2021) Artificial Neural Network & Isolation Forest Combination through a rolling windowed sum 

Mujib and Djatna (2020) 
Locally weighted learning &0-R classifier& Decision Stump& 
Random Forest algorithm 

Majority voting  

Zhang et al. (2023a) 
SVM, RF, Gradient Boosting Machine, Back Propagation Neural 
Network, Multi-class Logistic regression 

Stacking 

Khan et al. (2023) XGBoost, Random Forest, and Extra Tree models Stacking 

Zhang et al. (2023b) 

Logistic Regression, K-Nearest Neighbor, Support Vector 
Machine, Naïve Bayes, Random Forest, Gradient Boosting 
Decision Tree, Extreme Gradient Boosting, AdaBoost, Back-
Propagation Neural Network, Long Short-Term Memory 

Blending 

Khalil and Rostam (2024) Support Vector Machine & Adaboost Bagging 

This study  
Logistic Regression, Decision Trees, Support Vector Machines, 
K-Nearest Neighbor 

Majority voting & Bagging 

 

Table 1 shows the position of our paper in the failure 

prediction literature. In our study, we aimed to develop 

an ensemble model structure different from the 

ensemble failure prediction models in the literature. For 

this purpose, we developed two different ensemble 

models using classical machine learning models and 

bagging and majority voting strategies. In addition, we 

added an oversampling process to our proposed 

approach to eliminate the class imbalance problem, 

which is a frequently encountered problem in real-life 

data. This increases the accuracy and robustness of the 

proposed failure prediction approach. This study 

contributes to the literature by demonstrating the 

effectiveness of ensemble strategies in fault prediction 

and provides a more reliable solution for PdM 

applications. 

To sum up, in this study, to predict machine failures with 

high-performance, ensemble learning-based machine 

learning models are proposed. The main contributions of 

the study can be listed as follows: 

- The class imbalance problem in the datasets was 

tackled with the oversampling step applied in the pre-

processing step. 

- Two tailored ensemble machine learning models 

comprised of 4 traditional machine learning 

algorithms – Logistic Regression, Support Vector 

Machines, K-Nearest Neighbor, and Decision Trees, 

and 2 ensemble learning strategies - majority voting 

and bagging, are proposed for machine failure 

prediction to enhance the prediction performance. 

- The performance of the proposed models was 

compared with individual machine learning models 

and the Random Forest model, which is ensemble in 

nature. 

The remaining of the study is organized as follows: In 

Section 2, the methodology of the study is explained, and 

the proposed approach is described. In Section 3, the 

experimental results are reported. The applicability of the 

proposed method and its comparison with existing 

studies in the literature are discussed in Section 4. The 

evaluation of the results obtained in the study and future 

work are expressed in Section 5. 

2. Methodology 

Since this study presents models based on ensemble 

learning, an overview of ensemble learning, and the 

considered machine learning methods is provided in this 

section. 

2.1 Ensemble learning  

Ensemble learning can be defined as an umbrella term for 

methods that combine multiple inducers to make a 

decision, typically in supervised machine learning tasks. 

Ensemble learning is a powerful technique in machine 

learning that leverages the combination of multiple 

individual models to improve predictive accuracy and 

robustness. By aggregating the knowledge of diverse 

models, ensemble methods can often outperform single 

models and mitigate the variance and the risk of 

overfitting (Saihood and Sonuc 2023). The three main 

ensemble learning methods are bagging, boosting, and 

stacking (Mienye and Sun 2022). Bootstrap aggregation, 

commonly referred to as bagging, is a widely used 

ensemble method that leverages the parallel combination 

of multiple instances of the same model to enhance 
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model performance and stability (Saihood and Sonuc 

2023). In the Bagging (Bootstrap Aggregating) method, 

each of the core learners are trained with different 

randomly selected subsets of the training set. After the 

data is separated as training and test, it is ’put in the bag’ 

of each learner by making a random selection from the 

data set allocated for training. The selected ones remain 

in the training set so that they can be selected again. In 

the final stage, the decisions made are combined with 

weighted voting. The purpose of choosing different 

training sets is to increase success by obtaining decision 

differences. 

The selection of the technique used to merge the base 

learners is a crucial stage in the construction of ensemble 

classifiers. The combination mechanism is often 

determined by the type of ensemble learning approach 

being employed. Once the underlying models are trained, 

the combination rule can be used in bagging and boosting. 

Majority voting is the method most frequently used to 

aggregate ensemble base models. By aggregating the 

results from individual models’ predictions, a voting 

ensemble operates. When classifying data, each label’s 

predictions are summed together, and the label with the 

greatest number of votes is predicted. 

2.2 Logistic regression 

A statistical classification model for the estimate of a 

categorical variable in which the dependent variable is 

binary is known as logistic regression (LR). The 

fundamental idea behind LR is based on probability. As a 

cost function, LR uses the sigmoid function to constrain 

the output value to the range of 0 and 1. Regression 

assumptions are the same as classical regression in 

logistic regression except for the dependent variable is 

binary (Demir and Karaboga 2021). 

2.2 Decision trees  

A decision tree (DT), a non-parametric supervised 

learning method, builds classification or regression 

models using a tree-like topology. To generate a model 

that predicts the value of a target variable, the goal is to 

learn simple decision rules generated from the data 

attributes. Models of trees called classification trees allow 

the target variable to take a discrete value. The branches 

of these tree structures represent the features, and the 

leaves represent the class labels that are combined to 

make the class labels. 

2.3 Support vector machines   

One of the most popular machine learning methods for 

classification problems is Support Vector Machines (SVM) 

a supervised learning method developed by Vapnik (1995) 

based on statistical learning theory. The purpose of SVMs 

is to find a hyperplane that classifies data points 

separately in an N-dimensional feature space. Many 

hyperplanes can be chosen to classify data belonging to 

two classes. However, SVM finds the hyperplane with the 

maximum margin among these hyperplanes. In this 

optimization problem, the margin is defined as the 

shortest distance between the decision boundary, the 

hyperplane, and any sample in the data set. SVM may 

correctly classify data that cannot be separated linearly by 

employing kernel functions including linear, polynomial, 

and radial basis functions. 

2.4 K-nearest neighbor 

One of the simplest and most popular classification 

algorithms, K-Nearest Neighbor (KNN), works by 

calculating the minimal distance between a data point 

and each of its k-nearest neighbors. The number of 

nearest neighbors, or parameter k, can be hard to specify 

but is essential to classifier accuracy. The KNN method 

can be summed up in the following phases because it is 

relatively straightforward (Raschka 2015). First, the 

distance metric and the number k are determined. The 

sample that needs to be categorized then has k closest 

neighbors. The class label is finally chosen by a majority 

vote. 

2.5 Random forest 

Random Forest, first introduced by Breiman (2001), is an 

ensemble learning technique that builds a large number 

of decision trees during the training phase for 

classification and regression tasks. The class that the 

majority of the trees choose is the random forest’s output 

for classification tasks. Genuer et al. (2010) explain the 

principle of RF as to combine many binary decision trees 

built using several bootstrap samples coming from the 

learning sample L and choosing randomly at each node a 

subset of explanatory variables X (Erzurum Cicek and 

Kamisli Ozturk 2022). 

3. Experimental Study  

3.1 Dataset 

One of the simplest and most popular classification 

algorithms, K-Nearest Neighbor (KNN), works by in the 

study, two failure detection datasets are used to test the 

proposed approach. The first one is AI4I 2020 Predictive 

Maintenance Dataset (UCI Machine Learning Repository 

2020). The AI4I 2020 Predictive Maintenance Dataset is a 

synthetic dataset that mimics actual PdM data seen in the 

manufacturing sector. The dataset includes 10000 data 
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points and comprises 14 columns, including one column 

indicating the presence or absence of failure and five 

columns representing different failure types. The 

identification variables for the records and products are 

denoted as unique identifier (UID) and product ID, 

respectively. The remaining six columns—type, air 

temperature, process temperature, rotational speed, 

torque, and tool wear—represent the dataset's features. 

Table 2 presents the descriptive statistics of these 

features. 

Table 2. Descriptive statistics for AI4I2020 Predictive 
Maintenance dataset. 

Numerical features  
Feature Unit Min Max Mean  St. Dev. 

Air 
temperature  

K 295.3 304.5 300.005 2.000 

Process 
temperature  

K 305.7 313.8 310.006 1.484 

Rotational 
speed 

rpm 1168 2886 1538.776 179.284 

Torque Nm 3.8 76 39.987 9.969 
Tool wear min 0 253 107.951 63.654 

Categorical features 
Feature Value range Frequency Percent (%) 

Type L: Low 
M: Medium 
H: High 

6000 
2997 
1003 

60 
29.97 
10.03 

 
Table 3. Descriptive statistics for SZVAV dataset. 

Feature Unit Min Max Mean St.Dev. 

Supply Air 
Temperature 

𝐹 
𝑜  49.55 104.64 71.427 11.155 

Supply Air 
Temperature 
Heating Set 

𝐹 
𝑜  53.04 72.5 61.810 9.612 

Supply Air 
Temperature 
Cooling Set 

𝐹 
𝑜  55.04 72.5 65.479 8.263 

Outdoor Air 
Temperature 

𝐹 
𝑜      

Mixed Air 
Temperature 

𝐹 
𝑜  58.99 89.1 70.533 5.279 

Return Air 
Temperature 

𝐹 
𝑜  66.33 90.28 75.127 4.774 

Supply Air Fan 
Status 

- 1 1 1 0 

Supply Air Fan 
Speed Control 
Signa 

- 0.1 0.5 0.277 0.179 

Outdoor Air 
Damper Control 
Signal 

- 0 1 0.540 0.465 

Return Air 
Damper Control 
Signal 

- 0 1 0.480 0.485 

Exhaust Air 
Damper Control 
Signal 

- -0.04 0.9 0.471 0.434 

Cooling Coil 
Valve Control 
Signal 

- 0 1 0.297 0.411 

Heating Coil 
Valve Control 
Signal 

- 0 1 0.0699 0.109 

Occupancy 
Mode Indicator 

-   0.500 0.500 

 

The other dataset, which was generated by Lawrence 

Berkeley National Laboratory (LBNL) for an air handling 

unit (AHU) and a single zone variable air volume (SZVAV) 

AHU in LBNL’s FLEXLAB test facility (Granderson 2019). 

This dataset is one of the automated failure detection and 

diagnostics (AFDD) testing data sets created by LBNL, 

PNNL, NREL/ORNL, and Drexel University. There are 

15840 samples and 14 features in SZVAV dataset. The 

features in the dataset are supply air temperature, supply 

air temperature heating set point, supply air temperature 

cooling set point, outdoor air temperature, mixed air 

temperature, return air temperature, supply air fan 

status, supply air fan speed control signal, outdoor air 

damper control signal, return air damper control signal, 

exhaust air damper control signal, cooling coil valve 

control signal, heating coil valve control signal, and 

occupancy mode indicator. Table 3 presents the 

descriptive statistics of these features. 

Figure 1 displays a summary of samples from both 

datasets that are failure and non-failure in numbers. In 

the figures, 1 corresponds to states with a failure, 0 for 

cases without a failure. As can be seen in Figure 1, the 

distribution of samples with and without failures in both 

datasets is imbalanced. 

 
Figure 1. The counts of class labels (failure:1 and non-failure:0) 
in the considered datasets 

3.2 Data pre-processing 

A preprocessing step was applied to bot of the datasets 

before testing the proposed ensemble learning models. In 

the first stage, columns that were thought to be irrelevant 

in the datasets were deleted. Secondly, the missing data 
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in both datasets were checked, and it was concluded that 

there was no missing data problem in AI4I2020 Data, 

while missing data was detected in two features - supply 

air temperature heating set point and supply air 

temperature cooling set point in SZVAV dataset. The 

missing data were imputed with the mean values of the 

relevant feature columns. After these preprocessing 

steps, min-max normalization was applied to the datasets 

to enhance model performance. For each feature in both 

datasets, min-max-normalization formulated in Equation 

1 was applied to scale the data between 0 and 1: 

𝑥𝑖
′ =

𝑥𝑖 − min (𝑥)

max(𝑥) − min (𝑥)
                                                     (1) 

where 𝑥𝑖
′ is scaled value of 𝑥𝑖  from data x. Table 1 provides 

the minimum and maximum values for each feature that 

was taken into consideration.  

As mentioned in the previous section, the number of 

samples of class labels with and without failures is 

imbalanced in both datasets. In an imbalanced dataset, 

the data belonging to one class is significantly more in 

number than the data belonging to the other class, 

causing the class with less data to not be learned 

sufficiently by machine learning methods (Ay and 

Yolacan, 2022). The imbalance problem is an important 

problem that needs to be eliminated because it will not 

show the performance of the ensemble models to be 

proposed in the study and the individual models to be 

used for comparison. For this reason, this imbalance 

problem should be eliminated before the tests (Akgul et 

al., 2020). 

A way to deal with imbalanced data is to stabilize the data 

with resampling methods (Aydin, 2022). As resampling 

techniques, undersampling or oversampling can be 

applied to balance the number of class labels in the 

dataset. In this study, it was decided to apply the 

oversampling procedure to overcome the imbalance 

problem.  

Oversampling can be defined as increasing the amount of 

minority class instances or samples by producing new 

instances or repeating some instances (Mohammed et al., 

2020). Numerous oversampling techniques, including 

SMOTE, ADASYN, random oversampling, and SVMSMOTE, 

are described in the literature. Random oversampling, 

SMOTE and ADASYN, which are the most used 

oversampling methods, were used in this study. 

3.3 Proposed ensemble models  

Two ensemble models are proposed in this study. Both 

proposed models include SVM, KNN, LR and DT classifiers. 

The difference between the models is the ensemble type. 

The first ensemble is based on the majority voting, the 

other is based on the bagging technique. Random 

subsamples are generated for the bagging ensemble 

using the original training dataset, while the entire 

training set is used to train each classifier in the voting 

ensemble model. Ensemble1 is referred to as the majority 

voting ensemble, while Ensemble2 is referred to as the 

bagging ensemble. The structure of the proposed models 

is visualized in Figure 2.  

 
Figure 2. The structure of the proposed ensemble models
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3.3 Computational experiments and results   

Before testing the mentioned individual and proposed 

ensemble machine learning models, grid search method 

was used to determine algorithm parameters. For each 

classifier, training and tests were carried out by choosing 

the best combination of parameters among the 

parameter sets. Table 4 provides a summary of the 

parameter sets that were evaluated by grid search: 

Accuracy and F-score metrics were chosen to compare 

test performances. The formulations of the accuracy and 

F-score metrics are given in Equations 2-5, respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑃
                                                       (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑁
                                                              (4) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                           (5) 

The tests were first started with individual machine-

learning models. At this stage, first, the imbalance 

problem in the data was resolved, and then the training 

and testing processes were carried out by using the best 

parameter combinations obtained with the individual 

models.  

The average accuracy and F-score values obtained as a 

result of the training and testing processes applied with 

the 10-fold cross-validation method are reported on the 

basis of the oversampling method in Table 5 and F-scores 

are visualized in Figure 3.  

According to the F-score values obtained, it can be said 

that the RF model performs better than other models for 

AI4I 2020 dataset. For SZVAV dataset, SVM model mostly 

outperformed other individual classifiers. 

 
Figure 3. The test results for the individual models 

Table 5. The test results for individual models. 

 Dataset 
 Oversampling 
method 

 Performance 
metric 

SVM KNN LR DT RF 

AI4I 2020 

Before 
oversampling 

Accuracy   0.974 0.971 0.971 0.969 0.977 

F-score 0.541 0.272 0.310 0.545 0.569 

Random 
oversampling 

Accuracy  0.988 0.987 0.814 0.990 0.993 

F-score 0.988 0.988 0.819 0.990 0.993 

SMOTE 
Accuracy 0.973 0.956 0.876 0.965 0.975 

F-score 0.973 0.957 0.878 0.966 0.976 

ADASYN 
Accuracy 0.961 0.922 0.857 0.952 0.967 

F-score 0.961 0.920 0.856 0,951 0.967 

SZVAV 

Before 
oversampling 

Accuracy  0.748 0.673 0.651 0.684 0.660 

F-score 0.757 0.691 0.602 0.712 0.689 

Random 
oversampling 

Accuracy 0.848 0.837 0.722 0.844 0.850 

F-score 0.793 0.767 0.597 0.787 0.783 

SMOTE 
Accuracy 0.851 0.836 0.721 0.843 0.849 

F-score 0.8 0.766 0.597 0.79 0.781 

ADASYN 
Accuracy 0.814 0.771 0.677 0.721 0.767 

F-score 0.766 0.718 0.570 0.678 0.715 
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In addition, tests were performed without oversampling, 

so the effect of oversampling was demonstrated. As can 

be seen from the results, although the accuracy values are 

high before oversampling, the F-score values are quite 

low. Regardless of the method, when oversampling was 

applied, F-score values increased noticeably, and 

accuracy values improved. It has been demonstrated 

once again that the accuracy metric does not reflect the 

prediction performance fairly in imbalanced datasets and 

these results once again revealed the fact that working 

with imbalanced data can be misleading. 

In the Ensemble2 model, each subsample is randomly 

generated. Therefore, for a reliable and fair comparison, 

10 runs were made for both proposed ensemble models. 

It is ensured that the training and test sets in each run are 

generated randomly. The averages of accuracy and F-

score values obtained as a result of the tests are reported 

in Table 6. The results clearly show that the proposed 

ensemble models increase prediction success in accuracy 

and F-score metrics.  

The comparison of the performance of individual models 

with the proposed ensemble models is visualized in Figure 

4. In addition, the results of different oversampling 

methods on the prediction performance can be observed 

in Figure 4. It is clear that the proposed ensemble models 

that combine individual models with both majority 

voting-only and bagging has improved prediction 

performance. Again, it is seen that the proposed models 

increase the prediction performance compared to RF. 

It is concluded that ensemble models are clearly superior 

to individual models, especially in the SZVAV dataset 

containing real-life data. This indicates that the 

prediction success will be quite high in a PdM application 

where the proposed models will be included. Lastly, if we 

evaluate the prediction performance in terms of 

oversampling methods, it is seen that it does not 

significantly affect the performance of the ensemble 

models proposed in the study. However, applying 

oversampling increased the performance of all models in 

terms of F-score value for both datasets.

Table 6. The test results for the best individual and the proposed ensemble model. 

  SVM KNN LR DT RF Ensemble1 Ensemble2 

AI4I2020 
Accuracy 
F-score 

0.988 
0.988 

0.987 
0.988 

0.876 
0.878 

0.990 
0.990 

0.993 
0.993 

0.996 
0.996 

0.994 
0.994 

SZVAV 
Accuracy 
F-score 

0.848 
0.793 

0.837 
0.767 

0.602 
0.722 

0.843 
0.790 

0.850 
0.783 

0.976 
0.975 

0.976 
0.975 

 
Figure 4. The test results for individual and proposed ensemble 
models based on different oversampling methods 

To examine the usability of the proposed models in PdM 

applications, the tested models were evaluated in terms 

of training and testing times. The CPU times of the 

ensemble models and individual machine learning models 

proposed in the study are given in Table 7.  

Table 7. CPU times of or individual and proposed ensemble 
models (sec).  

 AI4I2020  SZVAV  

 Training Test Training Test 

SVM 2.028 0.065 16.499 0.163 

KNN 0.018 0.064 0.145 0.594 

LR 0.613 0.003 0.500 0.003 

DT 0.044 0.002 0.054 0.194 

RF 6.693 0.209 10.486 0.346 

Ensemble1 28.260 0.589 8.882 0.563 

Ensemble2 18.643 0.573 10.945 0.566 
 

Although the training times of ensemble models are 

higher than individual models, they average around 16 

seconds. This is due to the processes of generating 

random subsamples and combining or selecting the 

results of the individual models included in them. When 

the test times are examined, it is seen that the test times 
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increase in the ensemble models due to the reasons set 

forth for the training periods. However, test times are 

around 0.5 seconds for ensemble models, which is a very 

short time for early detection of the failure. 

4. Discussion  

In addition to the CPU time comparison, we analyzed the 

possible true and false failure alarms that would occur 

assuming that the proposed ensemble models are 

implemented in a PdM application. Moreover, with this 

analysis, the failure rates that the developed models 

could not detect the failures were also revealed. The 

calculated ratios are visualized in Figure 5. 

 

Figure 5. The test results for individual and proposed ensemble 

models based on different oversampling methods. 

In the AI4I 2020 dataset, while reaching the best alarm 

levels with the proposed ensemble models; the 

undetected failure rate is very low. The false failure alarm 

rate has been greatly reduced for the AI4I2020 dataset. 

While 100% correct alarm rate was achieved for the 

SZVAV dataset; The undetected failure rate is 0%. False 

failure rates for the SZVAV dataset are already quite low 

in models other than LR, and although ensemble models 

seem to increase the false failure alarm rate, this rate is 

only 4%.  

We reviewed previous studies using the same datasets in 

the literature to show the effectiveness of the proposed 

models performed. While there are more studies in the 

literature on the AI4I2020 dataset, studies on the SZVAV 

dataset are limited. In this regard, we compared the 

results obtained in the study with the results of the 

ensemble learning models we proposed through accuracy 

and F-score metrics. In a very recent study that we 

reached for this purpose, Liao et al. (2025) proposed a 

stacking model, Advanced Community Trees (AET), and 

compared the performance of this algorithm with the 

results of previous studies. In addition to this study, we 

reached one of the latest research conducted by Shaheen 

et al. (2023). In this paper, a novel machine failure 

prediction models, namely JRIP and JRIP-CSE, were 

proposed and tested with the AI4I 2020 predictive 

maintenance dataset. The comparison made based on the 

table in Liao et al. (2025) for the AI4I 2020 dataset is given 

in Table 8. 

Table 8. The results of the comparison with a previous studies 

utilizing AI4I 2020 dataset. 

Study Model Accuracy F-score 

This study Ensemble1 0.996 0.996 

 Ensemble2 0.994 0.994 

Shaheen et al. 

(2023) 

JRIP 0.984 0.983 

JRIP-CSE 0.985 0.984 

Chen et al. (2022) 

CatBoost 0.9867 - 

SmoteNC + 

CatBoost  
0.9670 - 

ctGAN + 

Catboost 
0.9082 - 

SmoteNC + 

ctGAN + 

Catboost 

0.8712 - 

Vuttipittayamongkol, 

et al. (2022) 

SVM  0.6522 

DT  0.7766 

KNN  0.4348 

RF  0.7045 

NN  0.3359 

Mota et al. (2022) 

Gradient 

Boosting  
0.9455 0.49 

SVM 0.9100 0.38 

Iantovics et al. 

(2022) 

Binary 

Logistic 

Regression 

0.9710 0.4407 

Torcianti et al. 

(2021) 

RusBoost 

Trees 
0.9274 0.4590 

Matzka (2020) 

Bagged 

Decision 

Trees 

0.9834 0.9234 

Ghasemkhani et al. 

(2023) 

Balanced 

K-Star 
0.9875 0.9875 

Liao et al. (2025) AET 0.9881 0.9881 

 

The comparison results demonstrate that the proposed 

ensemble learning approach outperforms existing 

methods in failure prediction literature on the AI4I2020 

Predictive Maintenance dataset.  
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As previously mentioned, studies utilizing the SZVAV 

dataset in the literature are limited. Since existing studies 

report only accuracy values, comparisons are based on 

this metric. In this context, Table 9 presents a comparison 

with two recent studies using this dataset. 

Table 9. The results of the comparison with a previous studies 

utilizing SZVAV dataset. 

Study Model  Accuracy 

This study Ensemble1 0.996 

 Ensemble2 0.994 

Fan et al. 
(2024) 

Parallel semi-supervised 
learning with active learning 

0.7581 

Fan et al. 
(2023) 

Fully Connected Neural 
Network 

0.75 

 Graph Neural Network 0.66 

 

Likewise, the proposed approach surpassed previous 

studies in the literature on the SZVAV dataset based on 

the accuracy metric. 

One of the main advantages of the proposed approach in 

this study is addressing the class imbalanced problem. 

Unlike some previous studies where accuracy and F-score 

showed inconsistency due to class imbalance, our 

approach showed a more balanced performance between 

accuracy and f-score metrics for the considered datasets. 

These findings emphasize the usability of the proposed 

approach in real-world applications where the possibility 

of missing data problems is high. False failure alarms can 

cause many negative consequences such as unnecessary 

production interruptions, increased maintenance costs, 

and decreased system efficiency. The proposed ensemble 

model approach produces low false failure predictions 

with high performance. This makes it more suitable for 

real-world PdM applications. 

Despite its strong performance, the tests show that the 

proposed ensemble models require higher computational 

power than individual machine learning models for 

training and testing.  

5. Conclusion  

In recent years, with increasing digitalization and Industry 

4.0 applications, predictive maintenance applications 

have become widespread. Predicting failures in advance 

using data collected from machines via sensors prevents 

production losses. 

In this study, individual and ensemble machine learning 

models were developed to predict machine failures in 

advance, considering various production characteristics. 

Performance evaluations revealed that the ensemble 

model, proposed using the bagging strategy, 

outperformed the individual models. Additionally, we 

assessed the proposed approach in terms of 

computational efficiency and compared it with existing 

studies in the literature, reporting the results. Our 

findings indicate that the proposed model demonstrates 

strong predictive performance. 

In addition, an evaluation of the oversampling methods 

applied to solve the imbalance problem experienced in 

datasets containing events such as failures and accidents 

has been made, and the importance of balancing the 

dataset has been demonstrated once again.   

The most significant limitation of the study is that the 

proposed approach is tested on one real-life and one 

synthetic dataset. To generalize the performance of our 

proposed ensemble models, we plan to test it on 

additional failure datasets. Additionally, we aim to 

enhance the accuracy and interpretability of the 

proposed ensemble models by applying a feature 

selection step as a preprocessing step. Future research 

can also include optimizing the running times of the 

proposed approach to be implemented in real-time PdM 

applications. 
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