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Abstract 

The interplay between applied mathematics and artificial intelligence is pivotal for 

advancing both fields. AI fundamentally relies on statistical and mathematical techniques to 

derive models from data, thus enabling computers to improve their performance over time. 

Classification of brain MRI images for tumor detection has improved significantly with the advent 

of machine learning and deep learning techniques. Classical classifiers such as Support Vector 

Machines (SVM), Tree, and k-Nearest Neighbors (k-NN) have been widely used in conjunction 

with feature extraction methods to improve the accuracy of tumor detection in MRI scans. Recent 

studies have shown that classical classifiers can effectively analyze features extracted from MRI 

images, which can lead to improved diagnostic capabilities. Feature extraction is a critical step in 

the classification process. Classification of brain MRI images using Vision Transformers (ViTs) 

represents a significant advancement in medical imaging and tumor detection. ViTs leverage the 

transformer architecture, which is highly successful in natural language processing, to effectively 

process visual data. This approach allows for capturing long-range dependencies within images 

and enhances the ability of the model to distinguish complex patterns associated with brain 
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tumors. Recent studies have demonstrated the effectiveness of ViTs in various classification tasks, 

including medical imaging. In our study, the classification accuracy of the dataset from the ViTs 

network was 78.26%. In order to increase tumor detection performance, features of the ViTs 

network were extracted and given to classical classifiers, and 81.9% accuracy was achieved in 

Tree classifier. As a result, classification of brain MRI images using ViTs represents a new 

approach with the strengths of deep learning and traditional machine learning methods, namely 

feature extraction and classification in classical classifiers. 

Keywords: Brain MRI; Tumor detection; Classification; Vision transformers; Applied 

mathematics. 

Vision Transformers Kullanılarak Beyin MRI Görüntülerinin Sınıflandırılmasıyla Tümör 

Tespiti 

Öz 

Uygulamalı matematik ve yapay zeka arasındaki etkileşim, her iki alanın da ilerlemesi için 

çok önemlidir. Yapay zeka, verilerden modeller türetmek için temelde istatistiksel ve 

matematiksel tekniklere güvenir ve böylece bilgisayarların zamanla performanslarını 

iyileştirmelerini sağlar. Beyin MRI görüntülerinin tümör tespiti için sınıflandırılması, makine 

öğrenimi ve derin öğrenme tekniklerinin ortaya çıkmasıyla önemli ölçüde iyileşmiştir. Destek 

Vektör Makineleri (SVM), Ağaç ve k-En Yakın Komşular (k-NN) gibi klasik sınıflandırıcılar, 

MRI taramalarında tümör tespitinin doğruluğunu artırmak için özellik çıkarma yöntemleriyle 

birlikte yaygın olarak kullanılmıştır. Son çalışmalar, klasik sınıflandırıcıların MRI 

görüntülerinden çıkarılan özellikleri etkili bir şekilde analiz edebileceğini ve bunun da gelişmiş 

tanı yeteneklerine yol açabileceğini göstermiştir. Özellik çıkarma, sınıflandırma sürecinde kritik 

bir adımdır. Görme Dönüştürücüleri (ViT) kullanılarak beyin MRI görüntülerinin 

sınıflandırılması, tıbbi görüntüleme ve tümör tespitinde önemli bir ilerlemeyi temsil etmektedir. 

ViT, görsel verileri etkili bir şekilde işlemek için doğal dil işlemede oldukça başarılı olan 

dönüştürücü mimarisinden yararlanır. Bu yaklaşım, görüntüler içindeki uzun menzilli 

bağımlılıkları yakalamaya olanak tanır ve modelin beyin tümörleriyle ilişkili karmaşık örüntüleri 

ayırt etme yeteneğini artırır. Son çalışmalar, tıbbi görüntüleme dahil olmak üzere çeşitli 

sınıflandırma görevlerinde ViT'in etkinliğini göstermiştir. Çalışmamızda, ViT ağından gelen veri 

setinin sınıflandırma doğruluğu %78,26 idi. Tümör tespit performansını artırmak için ViT ağının 

özellikleri çıkarılıp klasik sınıflandırıcılara verildi ve Ağaç sınıflandırıcısında %81,9 doğruluk 
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elde edildi. Sonuç olarak, Görme Dönüştürücüleri kullanılarak beyin MRI görüntülerinin 

sınıflandırılması, klasik sınıflandırıcılarda özellik çıkarma ve sınıflandırma olmak üzere derin 

öğrenme ve geleneksel makine öğrenme yöntemlerinin güçlü yönlerine sahip yeni bir yaklaşımı 

temsil etmektedir. 

Anahtar Kelimeler: Beyin MRI; Tümör tespiti; Sınıflandırma; Görüntü transformatörleri, 

Uygulamalı matematik. 

1. Introduction 

Brain tumors are abnormal growths that develop inside the brain or its surrounding tissues. 

These tumors can be benign (non-cancerous) or malignant (cancerous), with symptoms varying 

greatly depending on their location, size, and form [1]. Common symptoms include migraines, 

seizures, vision problems, balance challenges, personality or behavioral changes, and trouble 

speaking or swallowing. Imaging examinations, such as magnetic resonance imaging (MRI) or 

computed tomography (CT) scans, are commonly used to diagnose tumors. A biopsy, which 

includes removing a sample of tumor tissue for examination under a microscope, is frequently 

required to diagnose the type of tumor. Treatment choices for brain tumors are determined by the 

tumor's features, such as type, size, location, and the patient's overall health. Surgery is commonly 

used to remove benign and certain malignant tumors, whereas radiation treatment and 

chemotherapy are used to kill cancer cells. Targeted therapy, which utilizes medications to 

specifically target cancer cells, is also becoming more essential in the treatment of brain tumors. 

Some brain tumors are curable, but others are more difficult to treat. The prognosis of brain 

tumors varies greatly depending on these characteristics. Ongoing research aims to produce more 

effective and targeted medicines for brain tumors, with the ultimate goal of improving patient 

outcomes. Even if the tumor is treatable, early diagnosis of the disease is life-saving. Thus, 

developments on this issue are significantly important. 

As mentioned in the previous paragraph, MRI and CT have been frequently used to 

diagnose tumors. MRI is a non-invasive diagnostic technique that uses a powerful magnet and 

radio waves to create detailed images of the body's internal structures. Unlike X-rays or CT scans, 

MRI does not use ionizing radiation. Instead, it aligns the hydrogen atoms in the body with the 

magnetic field and then disturbs them using radio waves. As the atoms realign, they emit signals 

that are detected by the MRI machine. These signals are processed by a computer to create images 

that can show organs, bones, muscles, and blood vessels in great detail. MRI is particularly useful 

for examining soft tissues and is often used to diagnose conditions such as brain tumors, spinal 

cord injuries, and joint problems. Specifically, the study in this paper focuses on MRI to detect 
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brain tumors. Brain MRI is a technique to obtain detailed images of the brain and surrounding 

structures [2]. The patient lies inside a cylindrical magnet, and radiofrequency pulses are applied 

to the brain, causing the hydrogen atoms in the body to temporarily shift their alignment. As these 

atoms realign, they emit signals that are detected by the MRI machine. These signals are processed 

by a computer to create images that can show the brain's anatomy, blood flow, and metabolism. 

The advantage of Brain MRI lies in its ability to provide high-resolution images without the use 

of ionizing radiation, making it a safer option compared to CT scans or X-rays. MRI can also be 

used to detect subtle changes in brain tissue, making it valuable for diagnosing conditions such 

as tumors, strokes, and multiple sclerosis. Additionally, MRI can be used to assess brain function 

and monitor treatment response. Although it has a higher cost compared to other imaging 

techniques, the longer scan time, and the potential for discomfort or claustrophobia in some 

patients, MRI remains one of the most reliable imaging techniques. 

Classification techniques for medical images play a crucial role in the field of healthcare 

by enabling accurate and efficient diagnosis and treatment. These techniques involve the use of 

algorithms to categorize medical images into different classes based on their visual characteristics. 

For instance, they can be used to differentiate between benign and malignant tumors, identify 

various types of diseases, or analyze the progression of a disease over time. By automating the 

classification process, medical professionals can save time and enhance diagnostic accuracy, 

leading to improved patient outcomes. Furthermore, classification techniques can be used to assist 

in treatment planning and monitoring, ensuring that patients receive appropriate care. This paper 

implements the ViTs method for classification [3]. ViTs have significantly impacted the field of 

computer vision, particularly in image classification. Unlike traditional convolutional neural 

networks (CNNs), ViTs utilize transformers, a sequence-to-sequence modeling architecture 

originally developed for natural language processing. ViTs divide images into patches, flatten 

them into vectors, and then feed them into a transformer encoder. This approach allows ViTs to 

handle images of various sizes and resolutions efficiently. Additionally, ViTs have demonstrated 

competitive performance with CNNs, especially on large-scale datasets. Their scalability, 

flexibility, and strong theoretical foundation make them a promising choice for various computer 

vision tasks, including medical image analysis and remote sensing. More information about the 

method can be found in the further sections.  

Based on the above information, computerized techniques have significant importance in 

early diagnosis of tumors. This idea has attracted the attention of researchers and has led to 

valuable studies on the subject. For instance, Elbedoui et al. studied deep learning approaches for 

dermoscopic image-based skin cancer diagnosis in [4]. They concentrated on utilizing deep 
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learning methodologies for the detection of skin cancer through dermoscopic images, 

demonstrating the efficacy of neural networks in identifying malignant patterns. Mejri et al. 

implemented the Visual Geometry Group and ResNet-50 in their study in [5]. In the study, they 

employed Visual Geometry Group (VGG) networks and ResNet-50, two powerful convolutional 

neural network (CNN) architectures, to proficiently categorize skin cancer photos. The ViT 

formed the basis of the study by Hameed et al. [6]. In this study, Hameed et al. investigated the 

Vision Transformer (ViT) for skin cancer classification, highlighting its capacity to grasp intricate 

connections among picture components. Similarly, the ViT is combined with MobileNetV2 for 

skin cancer classification in [7]. The integration of ViT with MobileNetV2 exemplifies a hybrid 

strategy that optimizes performance while ensuring computational economy, rendering it 

appropriate for use in resource-limited settings. Specialized in brain tumor detection, Karthik et 

al. used a fusion of advanced methodologies for this purpose in [8]. The study utilized a 

combination of modern technologies in brain tumor detection to improve diagnosis accuracy. 

Subba and Sunaniya implemented an attention based GoogLeNet-style CNN to optimize brain 

tumor classification in [9]. They developed an attention-based GoogLeNet-style CNN that 

enhances categorization by concentrating on the most pertinent areas of the picture. A study of 

Sathya et al. employed Xception CNN through high-precision MRI analysis for brain tumor 

diagnosis in [10]. The Xception model was selected for its depthwise separable convolutions, 

which improve computing efficiency and precision. The methodology prioritizes the mitigation 

of demographic biases through the integration of various data and the establishment of bias 

detection systems. The ConvNext architecture is used to classify brain tumor grade in [11]. The 

study, utilized the ConvNext architecture to identify brain tumor grades, hence satisfying the 

essential requirement for accurate tumor grading in treatment planning. A ViT named as ViT-BT 

has been designed for classifying brain tumors in [12] and a mobile ViT model is presented in 

[13]. Similar to these studies, more studies can be found related to classification of medical images 

and also ViT based classification problems. In these studies, the Vision Transformer was 

specifically modified for brain tumor categorization, resulting in the creation of a dedicated ViT-

BT model to enhance its efficacy for this purpose. A mobile-compatible ViT model was 

developed, integrating the sophisticated feature extraction abilities of transformers with 

lightweight, efficient processing for use in portable or resource-constrained environments. These 

publications together highlight the progression of deep learning in medical imaging, namely the 

transition from conventional CNNs to sophisticated architectures such as ViTs and their hybrid 

forms. They emphasize the use of attention processes and streamlined models, which improve 

accuracy while maintaining application in various clinical and real-world settings. 
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This paper introduces an innovative method for brain tumor diagnosis by combining ViTs 

with conventional machine learning classifiers. This research utilizes ViTs for feature extraction, 

distinguishing it from traditional approaches that depend exclusively on classical classifiers or 

CNNs, as ViT adeptly captures long-range correlations in pictures. It subsequently improves 

classification accuracy by integrating ViT-derived features with conventional classifiers like 

Decision Trees. The research demonstrated a significant increase in accuracy, increasing from 

78.26% with ViT alone to 81.9% with a Tree classifier, illustrating the collaboration between 

sophisticated deep learning and traditional techniques. This hybrid method represents a 

substantial improvement in medical imaging, delivering a more reliable and precise diagnostic 

instrument for brain tumor identification. This study's originality stems from its revolutionary 

integration of ViTs with traditional machine learning classifiers to enhance the precision of brain 

tumor identification in MRI images. ViTs, originally developed for natural language processing, 

have lately been repurposed for computer vision applications, including medical imaging. 

Nonetheless, its independent use in tumor diagnosis frequently encounters difficulties in attaining 

maximum accuracy due to the restricted quantity and intricacy of medical datasets. This study 

mitigates these limitations by employing ViT for its robust capacity to capture long-range 

dependencies and complex visual patterns, while also extracting features from the ViT model to 

input into traditional classifiers such as Decision Trees, Naïve Bayes, and k-Nearest Neighbors. 

This dual-stage technique is innovative since it combines the representational capabilities of deep 

learning with the interpretability and simplicity of conventional machine learning models. The 

study indicates that ViT attains a baseline accuracy of 78.26%, while the incorporation of ViT-

derived features with a Tree classifier enhances performance to 81.9%, resulting in a 3.64% 

improvement. This technique leverages the advantages of both paradigms—ViT for sophisticated 

feature extraction and traditional classifiers for effective and precise decision-making. By 

integrating these techniques, the study establishes a comprehensive and scalable framework for 

enhancing diagnostic precision, establishing a new standard for hybrid models in medical 

imaging. This concept improves tumor detection efficacy and demonstrates the possibility of 

combining contemporary and classic methods to address intricate challenges in healthcare. 

This paper is organized in the following way. The materials and methods used in the study 

are presented in Section 2. Section 3 gives the case study with illustrations and the last section 

has the concluding remarks. 
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2. Materials and Methods 

2.1. The Dataset 

A malignant brain tumor is a potentially fatal disorder. Glioblastoma is the most common 

type of brain cancer in adults and has the worst prognosis, with a median survival of less than a 

year. The presence of a specific genetic sequence in the tumor known as MGMT promoter 

methylation is a good prognostic indicator and a strong predictor of treatment response. Currently, 

genetic analysis of cancer needs surgery to get a tissue sample. It may take many weeks to 

discover the genetic characterization of the tumor. Depending on the findings and the type of 

initial therapy chosen, more surgery may be required. If an accurate approach for predicting 

cancer genetics only by imaging (i.e., radiogenomics) could be developed, it could reduce the 

number of surgeries and modify the type of therapy required. 

The dataset used is “Brain MRI Scan Images” and was downloaded from the Kaggle website 

[14]. The scanned images are divided into 2 subclasses to be used in tumor detection. These 

images are images exported from the RSNA-MICCAI Brain Tumor Competition. The dataset size 

is 7MB and consists of 2 subfolders as negative and positive. While there are 98 negative images, 

there are 129 positive images, a total of 227 Brain MRI images. The images are in 96 DPI 

resolution, 24-bit depth, the images are at least 200 pixels in width and height and jpg image 

format. The image format is jpg Positive/Negative MGMT status, used to label the tumor types. 

The dataset used in the study has a public license and is frequently used in the fields of medicine, 

cancer, computer vision free of charge and provides uninterrupted access and download. Two 

sample images from the dataset are shown in Fig. 1.  

 

 

Figure 1: Sample images from the dataset. 
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2.2. The Vision Transformers 

In 2022, the ViT emerged as a competitive alternative to CNNs, which are currently state-

of-the-art in computer vision and thus widely used for various image recognition tasks. ViT 

models outperform the latest CNN technology by nearly four times in terms of computational 

efficiency and accuracy. Unlike traditional CNNs, which eliminate the need for manually crafted 

features, the ViT distinguishes itself by leveraging a self-attention mechanism to gather global 

contextual information from the entire image. This innovative approach involves dividing an 

input image into fixed-size patches, subjecting each patch to linear embeddings that transform 

them into high-dimensional vectors, and then processing these vectors through a transformer 

encoder. This methodology empowers ViT with the ability to skillfully capture complex long-

range dependencies and subtle relationships between different regions of the image.  

In this study, a pre-trained ViT neural network will be used for the classification of brain 

MRI images. The model utilizes a transformer architecture to encode image inputs into feature 

vectors. The network consists of two main components: the backbone and the head. The backbone 

is responsible for the encoding step, where it takes input images and extracts feature vectors. The 

head is responsible for making predictions by mapping the encoded feature vectors to prediction 

scores. By employing transfer learning, the model can be fine-tuned for better performance on 

specific tasks. The block diagram of the ViT network is illustrated in Fig. 2 [15]. 

 

Figure 2: The block diagram of the ViT network. 

This diagram outlines the architecture of a ViT network that makes predictions for K 

classes and illustrates how the network is structured to enable transfer learning for a new dataset 

with K classes. ViTs represent a revolutionary architecture in computer vision, using the ideas of 

the Transformer model—originally designed for natural language processing (NLP)—to interpret 

visual information. ViTs analyze pictures by segmenting them into fixed-size patches, typically 



Demiroğlu (2024), ADYU J SCI, 14(2), 140-156 
 

 148 

16x16 pixels, and using each patch as a token, similar to words in natural language processing 

tasks. The patches are flattened and linearly inserted into a fixed-dimensional space, with 

positional encodings used to preserve spatial information. The Transformer encoder, central to 

ViTs, employs self-attention processes to represent global interactions across patches, enabling 

the network to successfully capture long-range dependencies and contextual characteristics. In 

contrast to CNNs, which depend on localized operations, ViTs are proficient at collecting global 

context, especially when trained on extensive datasets. Nonetheless, their quadratic complexity 

in self-attention renders them computationally demanding for high-resolution photos. To address 

this, versions like as Swin Transformers implement hierarchical structures and localized self-

attention, enhancing computing efficiency. Hybrid models integrate the advantages of CNNs and 

ViTs by employing convolutional layers for preliminary feature extraction before transmitting 

data to Transformer layers. Mobile ViTs tackle the issue of resource use, facilitating 

implementation on edge devices. Notwithstanding their benefits, ViTs are data-intensive, 

sometimes necessitating considerable pretraining on large datasets like ImageNet or JFT-300M 

to achieve optimal performance. In the absence of such resources, their performance may be 

inferior to that of CNNs, which are intrinsically more efficient with smaller datasets. 

Nevertheless, ViTs exhibit exceptional scalability and adaptability, rendering them suitable for a 

range of vision applications, such as image classification, object identification, medical image 

analysis, and video comprehension. Their applicability is expanding, with research aimed at 

enhancing computing efficiency and versatility. 

It would be comprehensive to include information about how the components of the ViTs 

model contribute to the model performance. The Backbone in a deep learning model refers to the 

feature extraction component. This module processes input data, such as an image, and extracts 

both low- and high-level features that are subsequently used by other parts of the model. In ViTs, 

the backbone is built on the Transformer architecture. Unlike traditional convolutional neural 

networks (CNNs), ViTs divide visual input into patches and process each patch as a vector. These 

vectors are then analyzed using the Transformer model's attention mechanism, making it a unique 

method for feature extraction. In detail: 

• Input Images and Patches: ViT segments an image into fixed-size patches. For example, an 

image of size 224x224 can be divided into 16x16 patches, with each patch converted into a 

vector. 

• Patch Embeddings: Each patch is transformed into a vector and serves as input for the 

Transformer model. 
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• Transformer Encoder: These patch vectors are processed by the encoder in ViT, which 

leverages the attention mechanism to understand the context of each patch, thereby extracting 

higher-level features. 

In summary, the backbone provides the foundational structure for extracting meaningful 

features from visual data. The Head module represents the inference component of the model. It 

transforms the features extracted by the backbone into a final output. In ViT, the head module 

typically performs the following steps: 

• Pooling and Classification: Features from the backbone are aggregated and formatted for 

final classification, often using global average pooling or a Multi-Layer Perceptron (MLP). 

• Result Generation: The output is tailored for specific tasks, such as classification, regression, 

or other objectives. For instance, in image classification, the head module predicts the class 

of the input image. 

ViT commonly uses a single "class token" in its head module, which combines the 

representations of all patches for classification. This process is carried out using the attention 

mechanism typical of Transformer architectures. 

Functions of the Backbone and Head Modules 

• Backbone: Extracts and transforms features from the image into meaningful high-level 

representations. 

• Head: Utilizes these features to perform specific tasks, such as classification. 

In summary: 

• The Backbone processes visual data and extracts features in a format that the model can 

understand. 

• The Head uses these features to produce the final output, such as a class prediction. 

Together, these two components form the core structure of Google's Vision Transformer, 

playing a crucial role in processing visual data and generating accurate predictions. In traditional 

artificial intelligence models, performance augmentation techniques are often employed in the 

literature by extracting features from the model post-training, prior to the classification layer, and 

utilizing alternative classifiers instead of the network's classifier. This study utilized the 
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characteristics from the head layer of the ViT network post-training, employing classical 

classifiers for classification. 

The ViTs represents a notable advancement in deep learning and image processing, 

presenting distinct benefits while encountering certain limits. In contrast to conventional CNNs, 

ViT obviates the necessity for convolutional layers by employing the Transformer architecture, 

hence offering a more adaptable and generalizable framework for visual applications. By 

modifying the Transformer, first created for natural language processing, for visual input, ViT 

acquires a more profound comprehension of contextual relationships inside pictures. The attention 

mechanism proficiently captures long-range dependencies, accurately representing the links 

between distant components in a picture. Moreover, ViT provides versatility in data preprocessing 

and network architecture, enabling the modification of patch dimensions and attention techniques. 

It excels on extensive datasets, such as ImageNet, frequently attaining elevated accuracy rates. 

Nonetheless, ViT possesses some restrictions. Its dependence on attention processes and a 

substantial number of parameters renders it computationally demanding, necessitating robust 

hardware such as GPUs or TPUs and extended training durations. The large number of parameters 

leads to prolonged and more resource-demanding training. Another difficulty is its inferior 

performance on tiny datasets, as CNNs frequently surpass ViT. To get optimal outcomes with 

constrained data, ViT generally necessitates methodologies such as pre-trained models or data 

augmentation. In our work utilizing a dataset of 227 brain MRI images, we employed transfer 

learning to address these problems. This method increased the model's accuracy to 81.9%, 

illustrating the efficacy of transfer learning in augmenting ViT's performance with limited 

datasets. In conclusion, although ViT presents revolutionary advancements in image processing, 

its efficacy is contingent upon the accessibility of computing resources and extensive datasets. 

However, methods like transfer learning can alleviate its shortcomings, rendering it an effective 

instrument for visual analytic tasks. 

3. Results 

80% of the dataset is used for training, while 20% is strictly reserved for test data that is 

not involved in the training process. The scanned images in the dataset are scaled and normalized 

to a uniform size of 384x384x3 and treated as colored images during both the training and testing 

phases. The training parameters are determined as Mini Batch Size = 16, Max Epochs = 5, 

Iterations Per Epoch = 11 and Validation Frequency = 3. This study utilized hyperparameter 

values commonly seen in the literature. The MiniBatchSize was set at 16, and the MaxEpochs 

was established at 5. These options are typically used due to their efficacy in training machine 

learning models. The IterationsPerEpoch value was computed as the estimated ratio of the entire 
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dataset size utilized for training divided by the MiniBatchSize. The ValidationFrequency values 

were determined by dividing the IterationsPerEpoch by the MaxEpochs, resulting in a framework 

where validation steps are evenly distributed throughout the training phase. The model's 

performance was consistently assessed throughout and following the training process. The 

selection of these hyperparameters seeks to enhance the efficiency of the training process as well 

as the validation and generalization performance of the model. 

The training of the network utilized Stochastic Gradient Descent with Momentum (SGDM) 

as the optimizer, employing a stochastic solver. Parallel computing was leveraged on a graphics 

card, with 16 parallel workers running simultaneously to accelerate the training process. The 

remaining training parameters are InitialLearnRate = 1e-4, Shuffle = every-epoch and 

ExecutionEnvironment = parallel. The specifications of the computer used in the experiment are 

listed in Table 1. 

Table 1: Specifications of the computer used in the experiment. 

Processor 12th Gen Intel(R) Core(TM) i9-12900F   2.40 GHz 

Cores, Processors 16, 24 

Installed RAM 64.0 GB (63.7 GB usable) 

GPU NVIDIA RTX A4000 

DirectX version 12 (FL 12.1) 

GPU Memory 47.9 GB (16.0 GB Dedicated, 31.9 GB Shared) 

SSD Capacity 477 GB 

The training process was completed in 26 minutes and 3 seconds. Training accuracy was achieved 

as 0.7826. Fig. 3 gives the confusion matrix obtained.  

 

Figure 3: The confusion matrix. 

Upon examining the Confusion Matrix, it is observed that out of 46 test samples, 20 are 

negative and 26 are positive images. Among the negative images, 12 were correctly predicted, 

while 8 were misclassified. Similarly, out of 26 positive images, 24 were accurately predicted. 
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The progress of training iterations, the duration of each iteration, mini-batch performance, test 

performance, and errors are presented in Table 2. 

Table 2: Training iterations. 

Epoch Iteration 

Time 

Elapsed 

(hh:mm:ss) 

Mini-

batch 

Accuracy 

Validation 

Accuracy 

Mini-batch 

Loss 

Validation 

Loss 

1 1 00:00:36 31.25% 47.83% 2.6602 1.1102 

1 3 00:01:36 43.75% 56.52% 2.1689 1.1805 

1 6 00:03:07 75.00% 56.52% 0.7524 0.9590 

1 9 00:04:32 50.00% 63.04% 2.2467 1.0096 

2 12 00:06:00 50.00% 63.04% 1.3735 0.6843 

2 15 00:07:23 37.50% 58.70% 2.3455 0.9527 

2 18 00:08:45 81.25% 76.09% 0.3105 0.5432 

2 21 00:10:15 75.00% 58.70% 1.1402 1.4605 

3 24 00:11:40 87.50% 71.74% 0.4229 0.6494 

3 27 00:13:02 62.50% 60.87% 1.8355 0.9578 

3 30 00:14:25 68.75% 89.13% 1.8386 0.4378 

3 33 00:15:51 62.50% 89.13% 0.9929 0.4451 

4 36 00:17:12 81.25% 65.22% 0.5713 0.8979 

4 39 00:18:34 87.50% 80.43% 0.6988 0.4610 

4 42 00:19:59 56.25% 89.13% 1.3256 0.4217 

5 45 00:21:21 81.25% 60.87% 0.6538 1.0530 

5 48 00:22:45 75.00% 71.74% 0.5961 0.5908 

5 50 00:23:38 62.50%  2.0322  

5 51 00:24:08 93.75% 80.43% 0.1706 0.4489 

5 54 00:25:31 93.75% 73.91% 0.1351 0.6625 

5 55 00:26:01 68.75% 78.26% 0.6194 0.5166 

It would be useful to enlighten the meanings of the above training parameters. An Epoch 

signifies a full traversal of the whole training dataset. This is a quantitative measure of the number 

of instances the model has encountered the complete dataset throughout the training process. 

During each epoch, the dataset is partitioned into smaller segments known as mini-batches, and 

the model is modified iteratively for each mini-batch. These updates are termed Iterations, and 

the quantity of iterations per epoch is contingent upon the batch size and the dataset size. The 

Time Elapsed (hh:mm:ss) captures the total duration since the commencement of training, 

facilitating the assessment of training efficiency and progress over time. It is very beneficial for 

predicting the completion time of the instruction. Mini-batch Accuracy evaluates the model's 

performance on the current mini-batch during training, offering a rapid yet localized assessment 

of its predictive capability. Validation Accuracy assesses the model's performance on a distinct 

validation set post-epoch, indicating its capacity to generalize to novel data. Loss values are also 

essential. Mini-batch Loss measures the model's mistake on the current mini-batch during 

training, informing the necessary adjustments to the model's weights. The validation loss, 

computed post-epoch, reflects the model's performance on the validation dataset. If the validation 

loss ceases to decline or starts to rise while the training loss continues to fall, it may indicate 
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overfitting. Monitoring these variables collectively offers an extensive perspective on the training 

process, facilitating the prompt identification of problems such as overfitting, underfitting, or 

ineffective training. 

The training and the error visualities are given in Fig. 4. As seen in the figure, the test 

accuracy of the training process using the ViT network reached 78.26%. Before passing through 

the classification layer, the dataset's training features were extracted and classified using classical 

classifiers such as Tree, Discriminant Analysis, SVM, KNN, and others.  

 

Figure 4: The training and the error graphs. 

The classification results are shown in Table 3. Upon reviewing the results, the accuracy 

increased to 81.9%, representing a 3.64% improvement compared to the standard training 

performance. 

Table 3: Top 12 accuracies of classical classifiers. 

No Models Sub Models Accuracy (%) 

1 Tree Coarse Tree 81.9% 

2 Quadratic Discriminant Quadratic Discriminant 81.9% 

3 Navie Bayes Gaussian Naïve Bayes 81.9% 

4 Navie Bayes Kernek Navie Bayes 81.9% 

5 KNN Medium KNN 81.5% 

6 Ensemble Subspace Discriminant 81.5% 

7 Binary GLM Logistic Regression Binary GLM Logistic Regression 81.1% 

8 Efficient Linear SVM Efficient Linear SVM 81.1% 

9 SVM Linear SVM 81.1% 

10 SVM Medium Gaussian SVM 81.1% 

11 Linear Discriminant Linear Discriminant 80.6% 

12 SVM Quadric SVM 80.6% 
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Similarly, when examining the confusion matrix for the classical classifier that achieved 

the highest performance given in Fig. 6, it is observed that out of 227 training and test samples—

the entire dataset—98 are negative and 129 are positive images. Among the negative images, 76 

were correctly predicted, while 22 were misclassified. Similarly, out of 129 positive images, 110 

were accurately predicted. 

 
Figure 5: Coarse tree confusion matrix. 

Figure 6 shows the prediction distribution of the classical classifier that achieved the 

highest performance. This distribution illustrates how the model predicted across different 

classes, highlighting the frequency of correct and incorrect predictions for both the positive and 

negative samples. The visualization provides insights into the classifier's overall accuracy and the 

balance between true positives, false positives, true negatives, and false negatives. 

 
Figure 6: Coarse tree predictions. 
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Hence, the success of the proposed method is shown. 

4. Conclusion 

The field of medical imaging has witnessed substantial progress in brain tumor detection, 

primarily driven by advancements in machine learning and deep learning algorithms. Traditional 

classifiers like Support Vector Machines, Decision Trees, and k-Nearest Neighbors, when 

combined with effective feature extraction techniques, have demonstrated promising results in 

identifying tumors from MRI scans. Recent research has consistently highlighted the efficacy of 

these classical classifiers in analyzing extracted features from MRI images, leading to enhanced 

diagnostic capabilities. Feature extraction, a pivotal step in the classification process, plays a 

crucial role in optimizing the performance of these models. 

ViT, a groundbreaking development in medical imaging and tumor detection, has emerged 

as a powerful tool. Leveraging the transformer architecture, which has proven highly effective in 

natural language processing, ViT enables the efficient processing of visual data. This approach 

facilitates the capture of long-range dependencies within images, empowering the model to 

discern intricate patterns associated with brain tumors. Numerous studies have validated the 

effectiveness of ViT in various classification tasks, including medical imaging. In our research, 

the ViT network achieved a classification accuracy of 78.26% on the given dataset. To further 

enhance tumor detection performance, we extracted features from the ViT network and fed them 

to classical classifiers. Notably, the Decision Tree classifier exhibited an impressive accuracy of 

81.9% when utilizing these extracted features. 

In conclusion, the classification of brain MRI images using ViT presents a novel approach 

that seamlessly integrates the strengths of deep learning and traditional machine learning 

methods. By combining the powerful feature extraction capabilities of deep learning models with 

the effective classification techniques of classical classifiers, this approach offers a promising 

avenue for improving the accuracy and reliability of brain tumor detection.  
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