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Abstract: This study investigates the real-time integration of machine learning 

techniques with Internet of Things (IoT) data to monitor and predict the behavior of 

pressure switches in an industrial environment. Predictive maintenance in industrial IoT 

systems is critical to increase operational efficiency and minimize unexpected failures. 

The increasing complexity of industrial processes has made integrating machine learning 

algorithms and IoT data a powerful solution for proactive maintenance. In this context, 

the study aims to perform anomaly detection and failure prediction in pressure switches 

by analyzing real-time sensor data and applying Random Forest, Isolation Forest, and 

Local Outlier Factor algorithms. The performance of the models is evaluated using the 

MetroPT-3 Train Dataset. Performance metrics like accuracy, precision, recall, and F1 

score assess the models' effectiveness. The Random Forest Classifier showed the highest 

performance in anomaly detection with an accuracy rate of 99.92%. The findings 

emphasize the significant potential of machine learning and the Internet of Things in 

enhancing predictive maintenance, improving system reliability, and contributing to the 

broader field of industrial IoT. 

  
  

(Araştırma Makalesi) 
 

Endüstriyel IoT'de Tahmini Bakımın Geliştirilmesi: Basınç Anahtarlarında Gerçek Zamanlı 

Anomali Tespiti için Bir Makine Öğrenmesi Yaklaşımı 
 
 

Anahtar Kelimeler: 

Öngörücü Bakım, 

Makine Öğrenimi, 

Anomali Algılama, 
Gerçek Zamanlı Sensör 

Verileri, 

Basınç Anahtarı İzleme 

 

Özet: Bu çalışma, endüstriyel bir ortamda basınç anahtarlarının davranışını izlemek ve 

tahmin etmek için makine öğrenimi tekniklerinin Nesnelerin İnterneti (IoT) verileriyle 

gerçek zamanlı entegrasyonunu araştırmıştır. Endüstriyel IoT sistemlerinde öngörücü 

bakım, operasyonel verimliliği artırmak ve beklenmeyen arızaları en aza indirmek için 

kritik öneme sahiptir. Endüstriyel süreçlerin artan karmaşıklığı, makine öğrenimi 

algoritmalarını ve IoT verilerini entegre etmeyi proaktif bakım için güçlü bir çözüm 

haline getirmiştir. Bu bağlamda çalışma, gerçek zamanlı sensör verilerini analiz ederek 

ve Rastgele Orman, Yalıtım Ormanı ve Yerel Aykırı Değer Faktörü algoritmalarını 

uygulayarak Basınç anahtarlarında anormallik tespiti ve arıza tahmini yapmayı 

amaçlamıştır. Modellerin performansı MetroPT-3 Tren Veri Seti üzerinde 

değerlendirilmiştir. Modellerin etkinliği, doğruluk, hassasiyet, geri çağırma ve F1 puanı 

gibi performans ölçütleriyle değerlendirilmiştir. Rastgele Orman Sınıflandırıcısı, 

%99,92'lik bir doğruluk oranıyla anormallik tespitinde en yüksek performansı 

göstermiştir. Bulgular, makine öğreniminin ve Nesnelerin İnterneti’nin öngörücü bakımı 

geliştirmede, sistem güvenilirliğini iyileştirmede ve daha geniş endüstriyel IoT alanına 

katkıda bulunmada önemli potansiyelini vurgulamıştır. 
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1. INTRODUCTION  

 
The Internet of Things (IoT) is essential in monitoring and 

maintaining equipment and systems in the modern 

industrial environment. IoT technology provides real-time 

data from various sensors, providing more accurate and 

timely information on the operational status of critical 

components. One such application is monitoring pressure 

switches in industrial environments where reliable 

operation is vital to ensure safety and efficiency. 

 

This study aims to monitor and predict the behavior of a 

pressure switch in an industrial environment using 

machine learning techniques. The pressure switch sensor 

in trains plays a critical role in monitoring and controlling 

the pressure levels in various systems. These sensors 

detect pressure changes and send signals to activate or 

deactivate systems based on preset thresholds to ensure 

safety and efficiency.  

 

This research uses the MetroPT-3 Train Dataset [1] to 

analyze real-time sensor data collected from IoT devices. 

MetroPT-3 Train Data consists of 15 data types, as shown 

in Table 1 and Figure 1. The MetroPT-3 Train Dataset 

includes comprehensive sensor readings such as pressure, 

temperature, engine current, and air intake valve readings. 

These data are critical to understanding the behavior of 

the pressure switches under various operating conditions.  

 

The main goal of this study is to improve proactive 

maintenance activities, thereby optimizing industrial 

equipment's operational efficiency and reliability. The 

methods in this study include applying multiple machine 

learning algorithms to predict pressure switch status. 

Specifically, Random Forest Classifiers, Isolation 

Forests, and Local Outlier Factor algorithms are used to 

identify anomalies and predict potential failures. These 

methods were chosen for their robustness and efficiency 

in processing high-dimensional and complex IoT data 

applications. 

 

Basic performance metrics such as accuracy, precision, 

recall, and F1 score are used to evaluate the effectiveness 

of the models. These measurements provide a 

comprehensive evaluation of the performance of the 

models, ensuring that they can accurately and reliably 

predict the condition of the pressure switch. The findings 

from this study underscore the significant potential of 

combining machine learning and IoT in industrial 

applications. The analysis using these technologies 

highlights improvements in predictive maintenance 

strategies and overall system reliability.  

 

This research aims to contribute to the literature by 

providing a practical application of machine learning 

techniques in the context of industrial IoT. It demonstrates 

how advanced analytics can be seamlessly integrated with 

IoT data to achieve better operational results. The results 

underscore the importance of adopting innovative 

technologies to increase the efficiency and reliability of 

industrial systems. This work is a significant step forward 

in the field of industrial IoT, showing how real-time 

sensor data and machine learning can be used to monitor 

and predict the behavior of critical components. 

Integrating the Internet of Things and advanced analytics 

offers a promising approach to improving maintenance 

practices, reducing downtime, and increasing industrial 

equipment's overall efficiency and reliability. 

2. LITERATURE REVIEW 

 

Anomaly detection is essential for railway operations' 

safety, efficiency, and reliability [2][3]. Survey studies 

show a rapid increase in publications because research in 

this field is still developing [4][5]. While IoT devices 

generate large amounts of data that can be monitored for 

anomalies, trains equipped with sensors and monitoring 

systems also provide rich time series data for analysis [6].  

 

Anomaly detection in trains highlights innovative 

technologies such as the Internet of Things and directed 

waves to improve railway systems' safety, reliability, and 

maintenance practices [7]. Large-scale implementation is 

recommended in the long term to ensure better safety 

standards for railway lines and achieve better results in the 

future [8]. 

 

Thanks to sensor data, possible malfunctions or 

maintenance needs in train components can be identified 

in advance, anomalies related to safety concerns can be 

detected, and deviations in operational efficiency can be 

corrected [9]. By integrating anomaly collections with IoT 

technologies, performance operators can improve the 

reliability of train units in intelligent cities [10]. 

 

Various studies have been conducted on train abnormality 

detection, including pantograph-catenary systems and 

locomotive conditions [11][12][13]. Abnormalities are 

detected by monitoring irregularities in tracks using 

MEMS accelerometers and other sensors and real-time 

data monitoring [12]. Field experiments conducted on the 

Datong-Qinhuangdao Railway line have demonstrated the 

system's ability to monitor 24-hour real-time monitoring 

with minimal use of track resources and high accuracy in 

detecting speed and carriage amount [13].  

 

IoT technologies are critical in improving railway system 

safety, reliability, and operational efficiency. These 

technologies can predict maintenance needs and take 

proactive measures. IoT-based Rail Transportation 

Security Comprehensive Detection and Tracking Method 

is critical in anomaly detection [14][15]. The experiments 

aim to detect anomalies on railway tracks and vehicles 

through the sensor system mounted on the wagon [16]. 

 

Early detection of faults and reduced operational 

disruptions improve train safety, reliability, and efficiency 

[12]. Its effectiveness and applicability on an IoT-based 

distribution monitoring system called RailMon focuses on 

specific parameters within a certain range of 

representation. This system reduces temperature changes 

in the beams, allowing crack damage to be detected or 

fixed features to be determined from a long distance [17].  
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In the case of trains, anomalies can indicate potential 

safety risks, equipment malfunctions, safety breaches, or 

operating inefficiencies [18]. Principles and machine 

learning methodologies for IoT applications can be 

directly applied to train anomaly detections. Just as IoT 

devices generate large amounts of data that require real-

time processing and analysis, trains also generate rich data 

about their operations, performance, and status [19]. 

 

Researchers frequently explore machine-learning 

techniques to analyze real-time sensor data and detect 

anomalies [20]. Extensive simulations performed on 

Sydney Trains, Australia, show that the use of anomaly 

detection shows efficiency increases ranging from 21% to 

165% in ten different scenarios, and the study 

demonstrates the potential to transfer over 250 Gigabits of 

data via T2W communications using widespread Wi-Fi 

networks [21]. 

 

This study analyses sensor data collected from various 

sensors for anomaly detection in pressure switches. There 

are studies on anomaly detection using sensor data on 

trains. For instance, The IoT-based Railway Control 

System developed in Egypt detects train anomalies and 

improves safety. This system detects and responds to 

anomalies using real-time data monitoring and analysis. 

This enables early detection and response to problems 

such as train fires, train breakages, or derailments 

[22][23]. Using a real-world dataset obtained from a 

public transport service in Porto, Portugal, focusing 

specifically on the Air Production Unit (APU) of trains, 

various sensor signals and digital signals are analyzed for 

anomaly detection and fault prediction in trains and GPS 

information [24].  

 

Using data collected from various sensors located on 

trains and train stations, researchers can create robust 

anomaly detection systems to improve railway operations' 

overall safety and reliability [25]. The concept of anomaly 

detection with IoT in trains aligns with the discussed 

research on anomaly detection in IoT environments using 

machine learning [26]. Both areas highlight the need to 

identify deviations from expected patterns or unusual 

events in data collected from IoT devices.  

 

There are studies on the MetroPT-3 Train Dataset that 

apply machine learning classification algorithms for fault 

prediction and diagnosis [27][28][29]. However, these 

studies do not specifically focus on anomaly detection in 

pressure switches. 

3. MATERIALS AND METHODS 

 
In this study, machine learning techniques were used to 

attempt to predict the pressure switch's status. Real-time 

sensor data collected from IoT devices is investigated to 

monitor and predict the behavior of a pressure switch in 

an industrial environment.  
 

 

 

Table 1. MetroPT-3 Train Data Set 

DATA EXPLANATION 

TP2 The pressure on the compressor data 

TP3 The pressure data generated at the 

pneumatic panel 

H1 The pressure data generated due to 

pressure drop when the discharge of 
the cyclonic 

separator filter occurs 

DV_pressure The pressure data drop generated 

when the towers discharge the air 

dryer 

Reservoirs The downstream pressure data of the 

reservoirs 

Oil_temperature The oil temperature data of the 

compressor 

Motor_current Data related to motor current. 

COMP The electrical signal data of the air 

intake valve on the compressor 

DV_eletric The electrical signal data that controls 

the compressor outlet valve 

Towers The electrical signal data that defines 

the tower responsible for drying the 

air and 

draining the humidity removed from 
the air 

MPG The electrical signal data for starting 
the compressor under load 

LPS The electrical signal data that detects 
and activates when the pressure drops 

a threshold 

Pressure_switch The electrical signal data that detects 

the discharge in the air-drying towers 

Oil_level The electrical signal data that detects 

the oil level on the compressor 

Caudal_impulses The electrical signal data that counts 

the pulse outputs 

 

In this study, multiple machine learning algorithms have 

been used to predict the state of the pressure switch. These 

include the Random Forest Classifier, Isolation Forest, 

and Local Outlier Factor. The Random Forest Classifier 

is a supervised learning algorithm used for classification 

tasks. Isolation Forest and Local Outlier Factor (LOF) are 

unsupervised learning algorithms primarily used for 

anomaly or outlier detection. These algorithms were 

chosen because they can deal with high-dimensional and 

complex data and have proven effectiveness in industrial 

IoT applications.  

 

Random Forest Classifier: This algorithm is robust to 

noise and handles complex data distributions. It requires 

labeled data for supervised learning and it is intensive 

computationally. 

 

Isolation Forest: This algorithm was used for anomaly 

detection. It is efficient for large datasets and doesn't 

require labeled data. It may miss anomalies with complex 

relationships. 

 

Local Outlier Factor: This algorithm is used for anomaly 

detection. It detects local anomalies based on data density. 

It is sensitive to the choice of neighbors and struggles with 

high-dimensional data. 
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Figure 1. Time Series of Features 
 

 

Pressure_switch data shows the electrical signal that 

detects the discharge in the air-drying towers and takes 

values as 0 or 1, as shown in Figure 1. The 1516948 line 

of Pressure_switch data consists of 12990 data of 0s and 

1503958 data of 1s. 0s represent an anomaly, and 1s 

represent no anomaly in this data. 

Various metrics were used to evaluate model 

performance, including accuracy, precision, recall, and F1 

score [30][31]. These metrics are essential to determine 

how accurate and reliable the model is. For the 

explanation of these metrics, we use the abbreviations 

below. 
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TP: True Positive 

TN: True Negative 

FP: False Positive 

FN: False Negative 

 

Accuracy: Calculated as the ratio of the model's correct 

predictions in the test data to the total predictions. 

 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 

 

Precision: Calculated as the ratio of the positive samples 

correctly predicted by the model to the total positive 

predictions. 

 

Precision = TP/(TP+FP) 

 

Recall (Sensitivity): Calculated as the ratio of positive 

samples correctly predicted by the model to the total true 

positive samples. 

 

Recall = TP/(TP+FN) 

 

F1 Score: Calculated as the harmonic mean of precision 

and sensitivity. This was used to evaluate the overall 

performance of the model. 

 

F1-Score = 2*((Precision*Recall)/(Precision+Recall)) 

 

Performance metrics are calculated based on the model's 

predictions on test data. Additionally, the confusion 

matrix, which visually represents the model's correct and 

incorrect predictions, was used to visualize the model's 

performance. 

4. RESULTS 

4.1. Observed Anomalies 

 

The analysis of the features from February to September 

2020 reveals key patterns and anomalies. Anomalies in 

data cannot be observed at first glance. In this study, 

anomalies on pressure_switch are analyzed using several 

features and anomaly detection models. Based on these 

models, we predicted anomalies with respect to Class 0 

and Class 1; Class 0 represents anomalies, and Class 1 

represents data with no anomalies. 

 

 

 
Figure 2. Correlation Matrix of the Features  
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Table 2. Model Parameters 

ML Algorithm Parameter Description Value 

Random Forest n_estimators Number of trees in the forest 100 (default) 

criterion Function to measure the quality of a split gini (default) 

min_samples_split Minimum number of samples to split an internal node 2 (default) 

min_samples_leaf Minimum number of samples at a leaf node 1 (default) 

max_features Number of features for the best split sqrt (default)  

Isolation Forest contamination Proportion of anomalies expected in the dataset 0.1 

n_estimators Number of base estimators in the ensemble 100  

max_features Number of features to pull from the dataset for 

training each base estimator 

1.0 (all features) 

Local Outlier 

Factor (LOF) 

contamination Proportion of anomalies expected in the dataset 0.1 

n_neighbors Number of neighbors for calculating the LOF score 20 

leaf_size Leaf size for the KDTree or BallTree algorithms for 

fast neighbor searches 

30 (default) 

 
 

 
Figure 3. The importance values of features based on 

Random Forest 
 

 
Figure 4. Random Forest Classifier Confusion Matrix for 

Anomaly Detection on Pressure Switch  
 
 

4.2. Anomaly Detection Models 

 

The correlation matrix in Figure 2 shows in detail the 

relationships between various features in the data set. 

Correlation coefficients range between -1 and 1, with 1 

indicating perfect positive correlation, -1 indicating 

perfect negative correlation, and 0 indicating no 

correlation. For example, there is a moderate positive 

correlation between Pressure_switch and 

Caudal_impulses (0.29), implying that they tend to 

increase together. A weak negative correlation between 

Pressure_switch and MPG (-0.13) shows that these two 

variables tend to move slightly in opposite directions. 

There is a negligible or very weak correlation between 

Pressure_switch and some features like TP2 (-0.07), TP3 

(0.03), and H1 (0.06), indicating no significant 

relationship. 

 

While the correlation matrix in Figure 2 finds the linear 

correlation between some features and Pressure_switch is 

weak, the relationship might be strong nonlinear. The 

feature importance chart based on the Random Forest 

model, as shown in Figure 3, highlights the importance of 

each feature in predicting Pressure_switch. Figure 3 

shows a strong nonlinear relationship between 

Pressure_switch and some features like DV_electric, 

Caudal_impulses, and Oil_level. 

 

Based on all features, Random Forest, Isolation Forest, 

and Local Outlier Factor models are developed for 

anomaly detection on pressure switches, using the 

parameters shown in Table 2. For these models, 20% of 

the data was used for testing, and the remaining 80% was 

used for training. The seed for the random number 

generator is selected to be 42. 

 

The performance of the Random Forest Classifier model 

was evaluated as relatively high. The accuracy rate of the 

model was calculated as 99.92%, precision as 99.93%, 

recall (sensitivity) as 99.99%, and F1 score as 99.96%. 

These results show that the model correctly identifies 

positive classes (high sensitivity) and keeps the number of 

false positives to a minimum (high sensitivity). In 

particular, the sensitivity rate is 99.99%, showing that the 

model detects positive samples almost without error. 

 
Table 3. Model Performances  

METRİC RANDOM 
FOREST  

ISOLATION 
FOREST 

LOCAL 
OUTLIER 
FACTOR (LOF) 

Accuracy 0.9992 0.8999 0.9000 
Precision 0.9993 1.0000 1.0000 
Recall 0.9999 0.8999 0.9000 
F1 Score 0.9996 0.9473 0.9474 

 

Table 3 shows the results of the algorithms. The Random 

Forest Classifier model's accuracy rate is 99.92%. The 

Random Forest Classifier model can correctly detect 
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99.92% of real anomalies, which reveals that the model 

produces very few false positives and false negatives. 

Random Forest outperforms Isolation Forest and LOF 

across all metrics, making it the best-performing 

algorithm for this anomaly detection task. It provides the 

most reliable results with minimal trade-offs between 

precision and recall. Isolation Forest and LOF show 

comparable performance, with identical precision and 

nearly identical F1 scores, though LOF has a slight edge 

in recall. The perfect precision of Isolation Forest and 

LOF indicates they are excellent at avoiding false 

positives but may underperform in detecting all anomalies 

compared to Random Forest. 

 

Using Random Forest to achieve the best possible balance 

across all metrics is critical for pressure switch anomalies 

based on the results. It is better to consider Isolation Forest 

or LOF if avoiding false positives (high precision) is the 

priority, with trade-offs on the recall and accuracy. 

 

The high metric results reflect the performance of the 

majority class, which is the normal case, but the confusion 

matrix shown in Figure 4 highlights poor anomaly 

detection. This is due to class imbalance. Because most 

data is in the normal class, metrics like accuracy and 

precision are heavily influenced by how well the model 

performs in the normal class. 

 

5. DISCUSSION 

 

The study focuses on enhancing predictive maintenance 

in industrial Internet of Things (IoT) systems through 

real-time anomaly detection in pressure switches using 

machine learning techniques. This approach is critical in 

improving operational efficiency and reducing 

unexpected failures in industrial environments. The work 

integrates IoT data with advanced machine learning 

models like Random Forest, Isolation Forest, and Local 

Outlier Factor to predict failures in pressure switches, 

which are vital for industrial and railway safety systems. 

 

Random Forest is a supervised classifier algorithm, while 

Isolation Forest and Local Outlier Factor are unsupervised 

anomaly detection algorithms. Random Forest requires 

labeled data for supervised learning. Isolation Forest may 

miss anomalies with complex relationships, and the Local 

Outlier Factor algorithm struggles with high-dimensional 

data. The Random Forest Classifier demonstrated 

superior performance with an accuracy of 99.92%, 

precision of 99.93%, recall of 99.99%, and F1 score of 

99.96%. Both Isolation Forest and Local Outlier Factor 

achieved a precision of 100%, but their recall and overall 

performance were lower compared to Random Forest. 

 

Random Forest effectively balanced precision and recall, 

making it the best choice for detecting pressure switch 

anomalies. Isolation Forest and Local Outlier Factor 

showed strengths in avoiding false positives but struggled 

with false negatives due to the class imbalance in the 

dataset. 

 

The study focused on pressure switches in a specific 

industrial and railway context using the MetroPT-3 Train 

Dataset, which might limit the applicability of the 

findings to other industrial components or systems. 

Features such as pressure levels, motor current, and oil 

temperature are analyzed in the study. The feature 

importance analysis highlighted key predictors like 

electrical signals (e.g., DV_electric) and caudal impulses 

for anomaly detection. The dataset had an imbalance 

between normal (class 1) and anomalous (class 0) data, 

affecting the models' ability to detect anomalies 

effectively.  

 

Future research can expand on this work by addressing 

class imbalance through advanced sampling techniques or 

ensemble methods. In the future, more efforts can focus 

on optimizing computational efficiency to enable real-

time anomaly detection in larger and more diverse IoT 

systems. Other than pressure switches, the methodology 

can be adapted for other critical components in various 

industrial domains, enhancing safety and efficiency 

across different domains. Future studies can integrate 

other deep learning techniques to improve reliability and 

transparency, providing insights into model decisions and 

anomaly detection. 

 

6. CONCLUSION 

 

This study examined advanced technologies such as 

sensor systems, IoT integration, and machine learning 

techniques for anomaly detection in pressure switches of 

railway systems. The findings of this study show that 

sensor and IoT-based systems are practical tools for early 

anomaly detection in rails and vehicles. These systems 

can detect potential problems early by monitoring speed, 

temperature, and vibration.  

 

Machine learning models are powerful tools for detecting 

anomalies in railway operations. This study highlighted 

the role of sensor systems in detecting train anomalies, 

revealing the importance of IoT in safety and maintenance 

processes by analyzing real-time sensor data and applying 

Random Forest, Isolation Forest, and Local Outlier Factor 

machine learning algorithms. Random Forest is a 

supervised classifier algorithm, while Isolation Forest and 

Local Outlier Factor are unsupervised anomaly detection 

algorithms.  

 

Performance metrics like accuracy, precision, recall, and 

F1 score evaluated these models' effectiveness. The 

Random Forest Classifier showed the highest 

performance in anomaly detection with an accuracy rate 

of 99.92% in detecting anomalies of pressure switches in 

the train.  
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