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Abstract 

Due to the fast advancement of big data, applying Machine Learning (ML) techniques to detect Soil Pollution 

(SP) at Potentially Contaminated Sites (PCS) across many sectors and regional sizes has emerged as a 

prominent research focus. The challenges in acquiring essential indices of SP sources and routes result in 

present methodologies exhibiting low predictive accuracy and an inadequate scientific foundation. This study 

gathered environmental data concerning heavy metal and organic contamination from 200 PCS across six 

representative sectors. Twenty-one indices derived from fundamental data, potential SP from products and 

materials, SP efficacy, and the migrating capability of SP were employed to build the SP detection index 

method. The research integrated the score into the new characteristic group, including 11 indicators using 

consolidation computation. The newly selected feature subset was utilized for training ML designs, including 

Random Forests (RF), Support Vector Machines (SVM), and Multilayer Perceptrons (MLP), and evaluated to 

ascertain its impact on SP recognition methods. The study findings indicated that the four newly developed 

indices by feature fusion exhibit an association with SP comparable to that of the original index. The 

component analysis suggests that several indices related to fundamental information, contamination potential 

from products and raw materials, and SP prevention levels significantly influence SP to varying extents. The 

index of the migratory capability of soil contaminants has minimal influence on the classification job of SP 

detection inside PCS. This research introduces a novel technological approach for identifying SP via big data 

and ML techniques while offering an overview and scientific foundation for PCS's environmental 

administration and SP mitigation. 
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Introduction and Background 

Due to rapid urbanization and economic development, several industrial businesses have ceased operations or 

relocated, resulting in many Potentially Contaminated Sites (PCS) (Obiri-Nyarko et al., 2021). Detecting Soil 

Pollution (SP) is a crucial requirement for the ecological risk analysis of PCS and for implementing ecological 

oversight of lands utilized by businesses (Askari et al., 2020; Danková et al., 2021). Due to the intricate origins 

of pollutants, the sample survey methodologies and detection analyses employed to ascertain the SP of PCS 

frequently yield ambiguous border determinations, significant prediction discrepancies, and elevated expenses. 

The causes and processes of SP, encompassing source-sink relationships and the extent of the effect of each 

identifying indicator, must be more adequately delineated. Scientists want to develop an SP recognition system 

by establishing a pollution recognition index structure, which can be integrated with site data and 

contamination migration algorithms to more swiftly and effectively identify site pollution and associated risks 
(Li & Sun, 2024; Paul et al., 2020). 

Due to significant variations in collection sources and techniques, mining analytical perspectives, and 

processing techniques for site environmental information, the index methods employed in prior research to 

identify SP varied. Previous research primarily utilizes geography, company scale, industry classifications, and 

manufacturing history to develop index systems (Vinante et al., 2021). In contrast, methodologies for 

identifying SP from PCS are derived from firm web pages and records between additional resources. Soil 

classifications, physicochemical characteristics, remote sensing facts, and other fundamental data are critical 

indicators for identifying SP and genetic pathways (Maurya et al., 2020). Utilizing a review, land usage 

classifications, and additional data, Baier et al. employed evaluation to assess the impact of metal mines on 

adjacent SP across several scenarios (Baier et al., 2022). Zhai et al. employed high-resolution mapping 

imagery, land usage facts, soil classifications, and ecological variables to examine spatiotemporal variations 

in China's energy extraction and utilization sector (Zhai et al., 2021). Prior research frequently emphasizes the 

indices and the magnitude of learning information while neglecting contamination processes and driving 

variables. Detecting SP from PCS at regional dimensions and across many sector categories must have 

adequate accuracy and scientific rigor (Wood & Blankinship, 2022). 

Despite significant advancements in prior research utilizing Machine Learning (ML) techniques for 

SP identification, the emphasis was mainly on model assessment metrics (Huang et al., 2023). A study on the 

interpretability of models and the determinants of SP still needs to be completed. Model comprehension is 

crucial for recognizing SP, as it informs feature engineering, data gathering, and decision-making on the 

sustainability and prevention of PCS (Elizondo-Martinez et al., 2020). The pollution source-route-acceptor 

model for companies has four index groups: environmental risk control threshold, SP state, SP migratory route, 

and SP receptors. This technical definition is a crucial foundation for detecting SP from PCS across various 

sectors and regional sizes in China (Hu et al., 2021). The technical description employs the expert scoring 

technique to establish the index rating, which entails a degree of subjectivity. Developing empirical and 

objective index weighting and scoring standards is essential in choosing feature methodologies and 

comprehension (Ramesh & Sanampudi, 2022).  

Feature selection approaches are employed to investigate the determinants of SP, namely the inherent 

connection of simple, variable in nature, or tree-oriented designs, to ascertain the significance and featuring 

ratios of characteristics. For instance, Random Forests (RF) (Van Der Westhuizen et al., 2023), XGBoosts (Ye 
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et al., 2023), and the remaining modeling choice of feature analysis techniques are employed to determine the 

significance of SP detection indices. The elucidation of "black box" designs, including Support Vector 

Machines (SVM) (Deiss et al., 2020) and Convolutional Neural Networks (CNN) (Ray et al., 2020), together 

with the assessment of the influence of SP detection indices on-site contamination and their beneficial and 

detrimental correlations, remains insufficient. 

Jas et al. introduced the Shapley Additional exPlanations (SHAP) structure, which evaluates every 

member's involvement in a cooperative function and offers a goal allocation of advantages (Jas & Dodagoudar, 

2023). ML defines the issue as a task if characteristics are considered individual participants. By integrating 

this with ML, the significance of each feature's participation is quantified as the feature's significance.  

In contrast to the inherent interpretation approaches of linearised and tree-based method embeddings, 

the suggested approach is traditional. It generates a score for SVM, Multiple Layered Perceptrons (MLP), and 

neuronal networks to assess the impact of each parameter (Mosavi et al., 2021). The paradigm offers forecasts 

that exhibit favorable or adverse correlations with the targeted factor, facilitating regional and universal 

interpretations (Camgözlü & Kutlu, 2023).  

This study developed an SP detection index method encompassing primary data, possible SP from 

products and raw materials, SP control levels, and the migratory capability of soil contaminants (Khan et al., 

2021). In contemporary ecology and environmental research, RF, SVM, and MLP models were employed to 

develop identification algorithms for SP in PCS. This work aims to (1) validate the precision of ML algorithms 

developed using pollutant sources and route indices of locations. Identify an attribute fusion technique to 

enhance the efficacy of ML predictions and the understanding of models utilizing the SHAP architecture. 

Identify the critical criteria to provide a scientific foundation for directing SP management in factories and 

enhancing the existing technical standards for SP risk assessment of PCS (Li et al., 2023). This research aims 

to introduce a novel technological approach for identifying SP via big data and ML techniques while offering 

a scientific foundation for the ecological management of sites and SP mitigation (Angin et al., 2020; Mohamed 

et al., 2024). 

Materials and Methods 

Figure 1 summarizes the three-layer model created for estimating SP risk levels. The initial layer provided 

comprehensive data on SP. In the secondary level, the picture was disaggregated into elements, and the 

characteristics of the elements indicating the selected elements were retrieved. The factors are categorized into 

three categories: 1) The values of red-green-blue (R, G, and B) and their composite index; 2) the lengths and 

gradients of elements relative to the target terrain, like plants, lakhs, and industries; and 3) The distances and 

gradients of pixels concerning certain functional sections of manufacturing plants, such as waste from 

industries disposal zones. The risk for lead SP at the sample stations was selected as a dependent factor. In the 

subsequent level, many methods, namely RF, Extreme RD (ERF), SVM, and MLP were learned using the 

obtained features, and their efficacy was assessed. The methodologies pertinent to each component are 

delineated in the subsequent sub-sections. 
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Figure 1. Workflow of the research 

Input 

The research site is in Zhongxiang (Figure. 2). The environment is monsoon, with an average yearly 

temperatures of 16.2 °C and a yearly rainfall of 947.2 mm. The average yearly wind velocity is 3.4 m/s, with 

the predominant wind path being from South-east to North-west. During its formation, this region constituted 

an ancient sea. After the Silurian period, it was elevated to terrestrial due to the Caledonian orogeny and 

incorporated into Dahong. During the area, the Himalayan tectonic activity caused variations in elevation and 

fractures, leading to the development of a framework and the structural structure characterized by an anticline 

and minor mistakes inside foldings. The most significant thickness ranges from 7160 to 10265 meters. Paddy 

and flavor-aquic soil in the plain constituted 95.21% of the entire agricultural area. In comparison, the soil 

layer of the steep hills included approximately 4.22% of the farm area in the city. 

 

Figure 2. Study area 
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The primary agricultural products of the area include rice, wheat, rape, and maize. Natural phosphate 

resources are regionally plentiful, constituting one-sixth of China's phosphate resources. The annual local 

fertilizer production with phosphorus is around 6M metric tons. The phosphate companies were built in 1958 

and have expanded since 2005. The current phosphate capability is 6M tons per year, whereas the overall 

manufacturing capacity of fertilizer is 7M tons. The two firms depicted in Figure 2 within the examined region 

are phosphate facilities. Company 1 was founded in 2002, with a yearly manufacturing ability of 4.1M tons. 

The yearly phosphate production for Company 2 was 500,000 tons. Extensive phosphorus occurring and 

manufacturing have resulted in significant soil and water contamination, suggesting potential risks to people 

and the natural world.  

1,068 soil specimens were gathered. Sampling sites were established on 90 m periodic grids, further 

refined to 45 m near two fertilizer facilities. Specimen positions verified using outdoors. Three to five 

superficial soil specimens were amalgamated at every sampling site to yield a representative aggregation 

specimen. After eliminating substantial dust and rocks, the collected specimens were sun-dried for seven days 

and cropped to a particle size of less than 2 mm. Before analysis, the components were preserved in jars inside 

a heat-regulated condition (5°C). 

A pH meter measured the soil pH at a solid-to-fluid proportion of 1:6. Soil As levels were analyzed 

per the China Standard. Materials have been crushed and filtered to a particle size of less than 0.5 mm. 0.4 g 

of soil underwent digestion in a mixture comprising 2 ml of hydrofluoric (HF) acids, 4 ml of nitric acids 

(HNO3), 2 ml of hydrochloric acids (HCl), and 2 ml of hydrogen peroxides (H2O2). The acquired solution 

was analyzed for contamination, and the soil content was determined. Table presents the amounts of As and 

the pH levels of the soil. The accepted and empty specimens were established to validate the exactness and 

precision of the chemical tests.  

Feature Extracting Process 

A picture of the research location with a resolution of 0.5 meters was acquired. The amount of clouds was 0% 

when the picture was captured, and a geometrical adjustment was performed using Environment 10.5. The 

picture was aligned with the geodetic coordinate systems for the sample sites. The picture pixels were allocated 

relative supervises, and characteristics were obtained utilizing Python and the Geospatial Data Abstraction 

Framework. Characteristics comprising the highest and lowest band levels, ratios of two groups, and other 

indexes were computed. Scores from adjacent elements were obtained, and the average standard variations 

were measured. 

The positions of detected elements in the picture (e.g., lakhs, plants, and industries) were designated. 

The distances and variations among sample sites and labeled elements were computed using the following 

equations (Equations (1) to (3)): 

𝐷 = √(𝑝𝑥 − 𝑝𝑡)
2 + (𝑞𝑥 − 𝑞𝑡)

2       (1) 

𝐺𝑝 =
𝑝𝑥−𝑝𝑡

min(𝐷)
         (2) 

𝐺𝑞 =
𝑞𝑥−𝑞𝑡

min(𝐷)
         (3) 

Where 𝑝𝑥 and 𝑞𝑥 denote the dimensions of point x, and 𝑝𝑡 and 𝑞𝑡 Represents the dimensions of a 

specified element correspondingly.  
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Samples taken near the two fertilizer facilities had heightened danger levels, indicating that these 

industries were significant sources of contamination. Elevated contamination levels were predominantly 

located northeast of the plants. Detectable inputs of potential pollutant release from the facilities were 

designated, comprising the buildings, open land, chemical storage sites, and regions. The spacing and 

variations of sample location to the closest origin were computed. 

Forecasting Function 

The collected soil specimens were categorized into the entire research region, testing region 1, and testing 

region 2. All groups randomly designated 50% of the sampling points as the training database, while 50% were 

allocated for validation. The prediction classifications were taught and developed using the following types of 

categorization methods: (i) SVM, (ii) MLP, (iii) RD, and (iv) ERF. The final technique is the additional tree 

classification system, a variant of RF characterized by reduced variance and heightened bias. ERF correlates 

with enhanced randomness and improved precision in classification. Each model underwent training 500 times 

with varying random states to provide robust findings. Five hundred forecasting scores were obtained for every 

designated location, and the median was defined as the forecasted score. 

Verification 

Modeling forecasts were assessed by analyzing them with validating data sources, using evaluation variables 

based on risk categorization (i.e., lower, moderate, or high). Kappa scores of 0.3-0.7 signify medium 

consistency, 0.7-0.9 denote strong consistency and values over 0.8 represent near-perfect consistency. 

Ordinary and essential kriging interpolating and Inverse Dimension Weighted Interpol (IDWI) were conducted 

to establish a baseline for comparison with the predictive modeling. The Kriging interpolation technique 

necessitates that the data adhere to a typical distribution. The contamination content is very skewed. To 

facilitate Kriging, the Box-Cox conversation was initially performed on the database to approach the usual 

distribution of the information. Over 40 variable permutations were executed for each sample location, and the 

mean of the predicted scores obtained using connection approaches was utilized as the resultant forecasting 

score. 

Results and Discussions 

The SP levels in database A ranged from 6.12 to 11.42 g/g, with a 1.25 µg/g variation. Database B exhibited 

ranges from 7.21 to 15.0 ng/g, with a variation of 1.17 µg/g. The National Standard of China establishes a 

contamination risk limit for farming SPs at 20 g/g. The analysis of soil specimens indicated that the SPs in the 

studied region fell within an acceptable range. The limit for SP danger on farm land is 20 g/g; the SP levels in 

the two research locations are low, indicating minimal influence on the soil. The research's location is 

unsuitable for agriculture, as earlier research suggests that SP levels over 10 μg/g might impede agricultural 

yields. 

Feature Selection 

The coordinates of the sample locations were utilized to choose the spectrum in the drone-mounted 

hyperspectral photos. Following an empirical analysis, the spectrum mean of a 3 x 3- vector was utlised as the 

spectral information. The present research employed cross-validation for characteristics chosen after 

preprocessing. The best number of repetitions is determined using rounds of Monte Carlo mixed with error. 

Certain feature bands are picked at specific intervals. According to the findings in Figures 3 and 4, 30 bands 
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were chosen from database A after 121 repetitions, whereas 21 bands were selected from database B after 139 

repetitions. The categories with the lowest error are thus selected as the optimal selections. 

  

Figure 3. Database A feature selection analysis 

  

Figure 4. Database B feature selection analysis 

Regression Model 

The spectrum information was analyzed using MLP, SVM, RF, and Deep Neural Network (DNN) models for 

regression, with identical models applied to both databases for comparison analysis. Upon successful 

completion of cross-validation, the model predicts each sample. The outcomes of the four different models 

over the two databases are as follows. The highest value is 1; the nearer it is to 1, the superior the model's 

predictive capability. The proximity of the red dot to the 1:1 line in the forecasting algorithm indicates greater 

precision of the framework. The red dots for every design are closely aligned, with only a few dots positioned 

further away. The DNN algorithm has superior forecasting accuracy. Among the several models, the red dot 

representing the DNN algorithm is nearest to the 1:1 line, indicating a nearly perfect match. 

 

Figure 5. Evaluation analysis 
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Figure 5 indicates that the predictive outcomes of different methods exhibit great accuracy. The system 

employed in prior research has an error of 0.75. In this investigation, the error value of the modeling in both 

databases surpasses 0.75; errors arise when forecasting significant values, leading to an elevated value. The 

SVM, a widely utilized model for soil spectra forecasting, has significant consistency and achieves good 

accuracy in predicting for both databases. The error of the handheld spectrometry used in prior investigations 

is around 0.8. The RF model needs more samples to leverage its benefits in scenarios with few samples. The 

findings align with those of previous investigations employing hand-held spectrometry. The metrics for the 

DNN system on the two databases exhibit the highest accuracy. The results indicate that the DNN forecasting 

system is superior to the four assessment models across the two databases. The quality of the soil specimens 

will limit the model's estimating capability. If the soil surroundings have values over 20 g/g, the precision of 

the model requires more investigation. 

Many devices are employed in the methodologies for predicting SPs. The predominant technique is 

the predictive method with hand-held spectrometry. This used an outfitted with a hyperspectral camera to 

gather spectrum information. The forecast accuracy is comparable to the hand-held spectrometer, serving as a 

viable alternative. 

Overall SP Distribution Map 

The assessment findings indicate that the DNN exhibits the highest result. The DNN is employed to produce 

the SP dispersion mapping. The research categorized the anticipated values into five ranges based on the 

group's mean value. Five periods are designated by distinct colors: dark green (0-7 µg/g), light-colored green 

(7-12 µg/g), yellow (12-15 µg/g), orange (15-20 µg/g), and red (20+ µg/g). The resulting SP dispersion map 

for database A indicates that the SP concentration in the SP is below eight µg/g, with the red areas (exceeding 

14 µg/g) being comparatively uncommon. This aligns with the average of the sample measuring findings. The 

SP concentration in the probably polluted mining region is relatively low. The vehicle's passage resulted in an 

elevated level of SP due to soil compaction and exposure. 

Database B is a potentially polluted location, exhibiting indications of probable dry riverbeds on the 

surface. The deposition of the slag is considered to have occurred due to precipitation. It indicates that SP 

continues to enter the flowing water and requires remediation. The mean of database B (average 10.54 µg/g) 

is much greater than database A (average 10.24 µg/g). The SP dispersion mapping indicates that the quantity 

of red segments (exceeding 15 ug/g) in Database B is markedly more significant than in Database A. 

The two SP dispersion maps databases demonstrate that employing a DNN model with UAV 

hyperspectral imagery is an excellent way to generate SP dispersion diagrams, providing substantial assistance 

for soil administration and surveillance. Both databases are 2 kilometers apart and were obtained on different 

days. It indicates a specific level of universality.  

Extract the Spectrum 

In this investigation, the drone operated at an altitude of 50 m, with hyperspectral pictures exhibiting a spatial 

resolution of around 0.04 m. The spectral means of 1 x 1, 3 x 3, and 5 x 5- vectors were employed for analysis 

to ascertain the appropriate size. The following evaluation was used to identify bands incorporated into the 

predictive model through extensive experimentation. The research utilized the spectral means of various pixel 

dimensions as input for the predictive model. The hyperspectral combination of different methods 

demonstrates an overall result with an error above 0.7 in database A. 
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Obtaining hyperspectral information from pictures exhibits instability, with the error being more minor 

on database B. Following the standard treatment of 3 x 3 pixels, both databases' accuracy is enhanced, 

suggesting that the spectrum mean can augment durability. A spectrometer is employed to acquire the spectra 

of an SP specimen, combining the obtained data on several occasions. Using the 5 x 5 pixel mean for filtering 

diminishes the model's precision due to the spectral difference of the soil, as the averaged spectrum 

encompasses several spectra that are entirely unlike. The assessment findings indicate that the DNN framework 

possesses distinct benefits compared to the other methods in figure 6 and 7.  

 

Figure 6. Database A dispersion analysis 

 

Figure 7. Database B dispersion analysis 

The height at which drones gather flight data is significantly correlated with the median size of the 

spectral frame. The typical spectrum window size employed in several research is 3 * 3 when the height of the 

drone-mounted camera is below 100 meters. When the flight height of a drone exceeds 100 meters, most studies 

employ a single pixel. Spectrum unmixing enhances precision in investigations of altitudes beyond 1000 

meters. The geographic unity of the predicted materials with the algorithm's forecast is significant. The 

constituents of soil, water, and vegetation are distinctly dissimilar, and the spectrum varies significantly. 

Several trials are necessary to determine the suitable processing procedure for the spectrum extraction process, 

considering the varying flight heights and assessment elements. Suitable methodologies can enhance the 

predictive accuracy of the algorithm. 

Conclusion 

This research showed that the precision and generalizability of ML algorithms for predicting SP at locations 

might be enhanced by selecting highly correlated indices and minimizing redundant indices using feature 

fusion. The interpreting study of the models indicated that the index of fundamental data, contamination 

potential from products and raw materials, and the SP control level of companies varied in their significance 

regarding the impact on SP at sites. The stratum data indices showed no significant relevance to categorizing 

SP identification at the locations. In the ecological oversight of PCS, greater emphasis should be placed on 

aspects associated with polluting sources and routes and the amount of pollution management. Certain indices 

and their evaluation criteria within the technical specifications for assessing SP and risk should be refined, 

enhancing the precision of identifying outcomes. Future studies will leverage big data and advanced models to 

enhance the effectiveness and uniformity of site questionnaire gathering, thereby addressing challenges in 
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acquiring site ecological data and augmenting the accuracy and generalizability of ML techniques in detecting 

SP from PCS. 
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