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Abstract 

 

The Kolmogorov-Petrovskii-Piskunov (KPP) equation (eq.) can be considered a generalized form of the 

Fisher, Huxley and Fitzhugh-Nagumo Eqs., which have applications in chemistry, biology and physics. In 

this article, the nonlinear KPP eq. is discussed with the modified sub equation method, one of the analytical 

methods. With the successfully implemented method, trigonometric and hyperbolic solutions of the KPP 

eq. are presented. 3 D, 2 D and contour graphics are presented by giving arbitrary values to the parameters 

in the solutions produced. Also, the attained results are compared with the existing solutions in the literature. 

The effectiveness and applicability of the applied method to nonlinear differential eqs. (NPDEs) are 

examined in this paper. 

 

Keywords: Kolmogorov–Petrovskii–Piskunov equation, the modified sub equation method, traveling 

wave solutions. 

 

1. Introduction 

 

Applied mathematics plays an effective role in modeling 

many situations encountered in real life, especially for 

fluid dynamics, plasma physics and virus spreading 

populations. NPDEs are critical tools in understanding 

and simulating such real-life phenomena. The scientific 

community has shown increasing interest in solving these 

equations. Especially lately, numerical and analytical 

methods have been used to solve NPDEs. In this context, 

applied mathematicians are working intensively to reach 

solutions to these equations and numerous new analytical 

methods have been introduced to the literature in this 

field. There are a variety of methods such as Hirota 

bilinear method [1], (G ′/G)-expansion method [2], 

( )2G G  method [3], the modified Kudryashov method 

[4], the Clarkson–Kruskal (CK) direct method [5], 

sumudu transform method [6] and so on [7-14] to attain 

exact solutions of NPDEs. 

It is known that the classical KPP eq. explains such 

phenomena as the propagation of nerve impulses and the 

evolution of dominant genes (biology), combustion 

(physics), propagation of concentration waves (chemical 

kinetics) and many others [15]. 

In this study, we will consider the KPP eq., a quasi-linear 

parabolic eq. seen in mathematical biology, combustion 

theory, and modeling of some reaction-diffusion 

processes [16]. 

In order to attain exact solutions of KPP eq. in the form 

mentioned below, we will employ the modified sub 

equation method [17] 
2 3 0t xxu u u vu u , − + + + =                 (1) 

here , ,v   are real numbers.  

KPP eq., includes the Huxley, Burgers-Huxley, Fisher, 

Fitzhugh-Nagumo and Chaffee-Infanfe eqs., is of great 

importance in the field of physics [17]. These models are 

important in biology. The KPP eq. represents the genetic 

model for the spread of the dominant gene throughout the 

population. Many scientists have used various techniques 

to solve the KPP eq. Some of these techniques are 

(G ′/G)-expansion method [17], modified simple 

equation method [18], homotopy analysis method [19], 

the first integral method [20, 21], the modified trial 

equation method [22], (1/G') -expansion method [23]. 
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In this study, an effective technique called the modified 

sub equation method [24], is adopted to attain the exact 

solutions of the KPP eq. This study is new in the literature 

because the exact solutions of the model evaluated using 

modified sub equation method, have not been presented 

before. 
 

2. Modified sub-equation method 

 

We evaluate this method to arrive at solutions for NPDEs 

[24]. Let's think of NPDEs as 

( ), , , , ,... 0.t x tt xxW u u u u u =                (2)   

Implementation of wave transformation                                    

( ) ( ), , , 0,U u x t U x wt w = = = −      (3) 

here w is speed of wave. Eq. (2) converts into ODE 

( ), , ,... 0.T U U U  =                   (4) 

Eq. (4) is thought to have a solution 

( ) ( ) ( )( )0

1

.
N

i i

i i

i

U a a a    −

−

=

= + +  (5)          

At least one of the “ Na ” coefficients must be different 

from zero. Constants to be specified inhere are 

( ), 0ia i N  , and according to the principle of 

balance,  1,2,3,...N   is attained by balancing the 

term in (4) and, solution of the Riccati eq. is ( )   

( ) ( )( )
2

,     = +                 (6) 

here   can be any kind of constant. Some special 

solutions of Riccati eq. in (6) are given below. 

( )

( )

( )

( )

( )

tanh , 0

coth , 0

tan , 0

cot , 0

1
, 0 ( .)M is a const

M

  

  

    

  





− − − 

− − − 



= 

− 


− = +

   (7) 

In eq. (4), by applying eqs. (5, 6), equating all coefficients 

in ( ), 0,1,...,ia i N=  to zero, new polynomial with 

respect to ( )   is attained according to a non-linear 

system of algebraic eqs. resulting in 

( ) ( ), 0,1,..., .i i N  =  To find solutions to nonlinear 

algebraic eqs., we decide on 

( ), , , , 0,1,...,iM w a i N =  constants. The solutions 

of eq. (6) are substituted into the constants generated 

from this system and placed inside eq. (5) by aid of 

formula (7). In this way, exact solutions for eq. (2) are 

attained.    

 

3. Application of the method  

If the transformation in eq. (3) is applied, taking into 

account eq. (1), the following nODE is obtained. 

2 3 0U wU U vU U .  − − + + + =    (8)        

In the eq. (8), we consider the non-linear term and the 

highest-order linear term. These terms are U  and 
3U . 

Applying the balancing principle in eq. (8), we attain 

1N =  and in eq. (5) the following situation is reached: 

( ) ( )
( )

1 2 0

1
,U a a a  

 
= + +                           (9) 

inhere 
0 1 2a , a ,a  are constants to be determined. 

If eq. (9) is written in eq. (8) and following systems of 

eqs. are written with the necessary corrections: 

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

2 3

0 0 0 1 1 2 0 1 2 2

2 2

1 1 0 1 0 1 1 2

2 2

1 1 0 1

3

1 1

2 2

2 2 0 2 0 2 1 2

2 2

2 2 0 2

2

0

1

3

2

2

2

1

3

2 6

0

: 0,

:

:

2

:

0,

2 3 3 ,

3 0,

2 0,

1
: 2 2 3 3

1

:

0,: 3

1
2

a va a w a va a a a a wa

a a va a a a a a

wa va a a

a a

a a va a a a a a

w a va a a

a

   

   





   

 

 

 

 

 

 

 

 

 

+ + − + + +

− + + +

− + +

− +

− + + +

+ +

−

=

=

=

=

=

+

=

3

2 0.a =

                  (10) 

, , , ,v w    and 
10 2, ,a a a  constants are reached from 

eq. (10) the system employing a program. 
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Case 1:  

( )3 2 3 22 2
0 2 0 22 2

12 2 4

0 0 0 0 2

2 4 62
0

va a va aa a
, , a , , w .

a a a a a
  

+ +
= − = − = = =

                                         (11) 

The hyperbolic solution to eq. (1) can be determined by 

writing the values of eq. (11) in eq. (9). 

 

( )

( )

1

3 22
0 22

22

0 0 2

0
2

2

2

0

6

u x,t

t va aa
coth x a

a a a
a .

a

a

=

  +
  −

    
−

             (12)   

 

 

 Fig.1: Graphs of the eq. (12) for 

0 20 2 0 001 0 02a . , a . , v .= = = . 

Case 2:  

( )3 2 3 22 2
0 2 0 22 2

12 2 4

0 0 0 0 2

2 4 62
0

va a va aa a
, , a , , w .

a a a a a
  

+ +
= − = − = = =

     

                  (13)   

The hyperbolic solution to eq. (1) can be determined by 

writing the values of eq. (13) in eq. (9). 

 

( )

( )

2

3 22
0 22

2 2

0 0 2

0
2

2

2

0

6

u x,t

t va aa
a tanh x

a a a
a .

a

a

  +
  −

    
= −

     (14) 

 

 

Fig.2: Graphs of the eq. (14) for 

0 20 2 0 001 0 02a . , a . , v .= = = . 

Case 3:  

2 2 2 2

2 2 2 2 2
12 2 3 4

0 0 0 0 0

4 4 2 2
0

a a a a a
, , a , v , , w .

a a a a a
  = = = = − = = −

 (15)         

The trigonometric solution to eq. (1) can be determined 

by writing the values of eq. (15) in eq. (9). 
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( )3

2

2 2
22

0 0

0
2

2

2

0

2

u x,t

a ta
cot x a

a a
a .

a

a

  
+  

   = +               (16)        

 

 

Fig.3: Graphs of the eq. (16) for 
0 20 2 0 001a . , a .= = . 

 

Case 4:  

2 2 2 2

2 2 2 2 2
12 2 3 4

0 0 0 0 0

4 4 2 2
0

a a a a a
, , a , v , , w .

a a a a a
  = = = = − = = −

         

                                            (17) 

The trigonometric solution to eq. (1) can be determined 

by writing the values of eq. (17) in eq. (9). 

 

 ( )4

2

2 2
2 2

0 0

0
2

2

2

0

2

u x,t

a ta
a tan x

a a
a .

a

a

  
+  

   = −              (18)        

 

 

Fig.4: Graphs of the eq. (18) for 
0 20 2 0 001a . , a .= = . 

 

Case 5:  

( )2 2

0 1 0 0
22 2 2

1 1 1 1

2 4 22
0

a a a a
, a , v , , w .

a a a a


 

+
= = = − = =          

                               (19) 

The hyperbolic solution to eq. (1) can be determined by 

writing the values of eq. (19) in eq. (9). 

 

( )5

0
0 1

1

2
u x,t

ta
a a tanh x .

a
 

  
= − − − −  

  

   (20)      
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Fig.5: Graphs of the eq. (20) for 

0 10 02 0 01 0 001a . , a . , .= = = − . 

 

Case 6:  

( )2 2

0 1 0 0
22 2 2

1 1 1 1

2 4 22
0

a a a a
, a , v , , w .

a a a a


 

+
= = = − = =          

                              (21) 

The hyperbolic solution to eq. (1) can be determined by 

writing the values of eq. (21) in eq. (9). 

 

( )6

0
0 1

1

2
u x,t .

ta
a coth x a

a
 

  
= − − − −  

  

      (22)       

          

 
 

Fig.6: Graphs of the eq. (22) for 

0 10 02 0 01 0 001a . , a . , .= = = − . 

 

Case 7:  

( )2 2

0 1 0 0
22 2 2

1 1 1 1

2 4 22
0

a a a a
, a , v , , w .

a a a a


 

+
= = = − = =

(23)     

The trigonometric solution to eq. (1) can be determined 

by writing the values of eq. (23) in eq. (9). 

( )7

0
0 1

1

2
u x,t

ta
a a tan x .

a
 

  
= + −  

  

    (24)        
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Fig.7: Graphs of the eq. (24) for 

0 10 02 0 01 0 001a . , a . , .= = = . 

 

Case 8:  

( )2 2

0 1 0 0
22 2 2

1 1 1 1

2 4 22
0

a a a a
, a , v , , w .

a a a a


 

+
= = = − = =          

                             (25) 

The trigonometric solution to eq. (1) can be determined 

by writing the values of eq. (25) in eq. (9). 

( )8

0
0 1

1

2
u x,t .

ta
a cot x a

a
 

  
= − −  

  

         (26)    

 

 

Fig.8: Graphs of the eq. (26) for 

0 10 02 0 01 0 001a . , a . , .= = = . 

 

4. Results and Discussion 

 

In this study, by applying the modified sub equation 

method to the KPP model, we obtained the hyperbolic 

type of traveling wave solutions eqs. (12, 14, 20, 22) and 

the trigonometric type of traveling wave solutions in eqs. 

(16, 18, 24, 26) that satisfy eq. (1). The 2 D, 3 D and 

contour graphs of the hyperbolic solutions we attained 

are presented in Fig.s 1-2 and 5-6. The 2 D, 3 D and 

contour graphs of the trigonometric solutions we attained 

are presented in Fig.s 3-4 and 7-8. 

If we compare the solutions obtained in the study with 

the solution in the literature; Wongsaijai et al. obtained 

similar solutions to the solutions we obtained with the 

tanh method [25].  

However, in our study using modified sub equation 

method, hyperbolic and trigonometric solutions were 

attained by taking into account the situations in eqs. (11), 

(15) and (19). 
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For the set (1-8); Wongsaijai et al. obtained the 

hyperbolic solutions in eqs.  (10-11) under the restriction 

number (12); the hyperbolic solutions in eqs. (13-14) 

under the restriction number (15); the hyperbolic 

solutions in eqs.  (16-17) under the restriction number 

(18); and the hyperbolic solutions in eqs.  (19-20) under 

the restriction number (21) [25]. 

As can be seen, the methods in the studies are different 

and our produced solutions are of trigonometric and 

hyperbolic type, while the solutions they obtained in the 

Wongsaijai et al.  study are of hyperbolic type and are 

different solutions [25]. 

 

5. Conclusion 

 

In this study, we have been reached the exact solutions of 

the KPP eq. by using the modified sub equation method. 

Hyperbolic and trigonometric type solutions of the KPP 

eq. are presented with a powerful, reliable and effective 

method. Exact solutions are known to have a significant 

impact on a wide range of physical events.We think that 

when the constants in the exact solutions generated in this 

work acquire physical relevance, their value will 

increase. Contour 2 D and 3 D graphs are presented for 

appropriate values of the constants in the produced 

solutions. These solutions were produced using the 

Mathematica program.The applied method is reliable, 

easy and effective in finding exact solutions of NPDEs. 
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