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Abstract: This study employs the unified method, a powerful approach, to address the intricate challenges posed by fractional 
differential equations in mathematical physics. The principal objective of this study is to derive novel exact solutions for the time-
fractional thin-film ferroelectric material equation. Fractional derivatives in this study are defined using the conformable fractional 
derivative, ensuring a robust mathematical foundation. Through the unified method, we derive solitary wave solutions for the 
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hydrodynamics. The behavior of these solutions is analyzed using the conformable derivative, shedding light on their dynamic 
properties. Analytical solutions, formulated in hyperbolic, periodic, and trigonometric forms, illustrating the impact of fractional 
derivatives on these physical phenomena. This paper highlights the capability of the unified method in tackling complex issues 
associated with fractional differential equations, expanding both mathematical techniques and our understanding of nonlinear physical 
phenomena. 
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Introduction 
Nonlinear partial differential equations (NLPDEs) are 
fundamental in the fields of science and engineering, 
providing critical frameworks for modeling and 
analyzing real-world phenomena (Sun et al., 2018). PDEs 
are widely applied across diverse disciplines, from 
physics and chemistry to engineering and finance, where 
they enable a more nuanced understanding of complex 
physical and dynamical systems. In recent years, 
fractional differential equations (FDEs) have attracted 
substantial attention due to their generalization of 
classical integer-order models, offering enhanced 
flexibility and accuracy in representation (Ray et al., 
2014). The introduction of fractional order derivatives 
introduces additional degrees of freedom, allowing these 
models to more precisely capture the intricacies of 
physical processes and yielding improved results in 
practical applications when compared to traditional 
integer-order models. 
Fractional partial differential equations (FPDEs) have 
thus become instrumental across multiple domains, such 
as physics, chemistry, control theory, acoustics, 
viscoelasticity, electrochemistry, fluid dynamics, and 
engineering. These equations support a more accurate 
modeling of real-world phenomena, especially those with 
memory and hereditary properties, by reflecting the 

temporal and spatial dependencies in a system more 
comprehensively. Nonlinear FDEs, in particular, allow for 
exact solutions that describe a variety of complex 
nonlinear behaviors, offering essential insights into the 
dynamics of sophisticated systems. The expanded 
capability of FPDEs to capture and interpret complex 
behaviors highlights their growing importance in 
advancing scientific understanding across these diverse 
fields (Mainardi, 2018; Wang et al., 2023). 
The quest to find reliable and exact solutions for 
nonlinear FDEs has spurred significant research efforts; 
as such solutions are essential for a complete 
understanding of the physical implications of these 
equations. Researchers have developed various methods 
to tackle nonlinear FDEs, providing a rich set of tools for 
analyzing and modeling intricate phenomena. Solitary 
wave solutions, in particular, have garnered attention for 
their effectiveness in elucidating the fundamental physics 
behind a wide range of phenomena, contributing to fields 
as varied as hydrodynamics, optics, and materials 
science. This pursuit has not only enriched the repertoire 
of mathematical techniques available but has also 
deepened our understanding of nonlinear physical 
phenomena, marking nonlinear FDEs as a vital element in 
modern scientific and engineering research (Wang et al., 
2023). 
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Thin-film ferroelectric materials are characterized by 
unique dielectric properties, notably their ability to 
retain polarization even after an external electric field is 
removed. The mathematical modeling of these materials 
often involves a complex set of equations to describe the 
relationship between the electric displacement field, 
polarization, and electric field within the thin film 
structure. The governing equation, typically derived from 
the Landau-Ginzburg-Devonshire theory, incorporates a 
nonlinear polarization term, accounting for ferroelectric 
hysteresis, as well as gradient energy terms that describe 
domain wall behavior. This equation is crucial for 
understanding the dynamic response and stability of 
polarization in thin films, which are widely used in 
memory storage devices, sensors, and actuators. 
Furthermore, solving these equations provides insights 
into optimizing ferroelectric material properties at 
nanoscale dimensions, where size-dependent effects play 
a significant role. The thin-film ferroelectric equation, 
therefore, serves not only as a theoretical framework but 
also as a practical tool in engineering next-generation 
electronic devices (Martin and Rappe, 2016). 
Further the time-fractional thin-film ferroelectric 
material equation (TFFEME) holds a significant role 
across various branches of physics and thermodynamics, 
providing critical insights into the behavior and 
optimization of thin-film materials. Thin films, 
characterized by material layers with thicknesses 
typically in the micrometer range, are profoundly 
influenced by the deposition process, which largely 
determines their properties. Recent advancements in 
optimizing the performance of these materials have 
greatly expanded their applications, enhancing their 
relevance in contemporary technology (Setter et al., 
2006). The TFFEME finds practical utility across multiple 
domains, with applications ranging from memory devices 
and actuators to sensors, each with unique performance 
requirements tailored to specific contexts. For instance, 
ferroelectric sensors prioritize high spontaneous 
polarization, while ferroelectric memory devices demand 
enhanced fatigue resistance (Gruverman et al., 1997). 
In response to the increasing demand for miniaturization 
within microelectronics, TFFEME-based devices have 
been scaled down in feature size, now approaching the 
nanoscale (Qin et al., 2008). Such advancements 
underscore the adaptability of TFFEME across diverse 
applications, reinforcing its importance within modern 
technological landscapes. The one-dimensional time-
fractional form of the TFFEME is given by (Zahran et al., 
2022) (equation 1). 
 

𝑛𝑛𝑐𝑐
𝑞𝑞𝑑𝑑2
𝜕𝜕𝛽𝛽𝐺𝐺(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕𝛽𝛽

+ [(𝑔𝑔2 − 2𝛼𝛼)𝐺𝐺 + 𝑔𝑔4𝐺𝐺3 + 𝑔𝑔6𝐺𝐺5]

− 𝑤𝑤∆𝐺𝐺 = 0, 

1 

 

where 𝑛𝑛𝑐𝑐 and 𝑞𝑞𝑑𝑑 are density of mass and particles. 
𝑔𝑔2, 𝑔𝑔4 , 𝑔𝑔6 are indicating both pressure and temperature. 
𝑤𝑤 is the space non-uniformity coefficient, and 𝛼𝛼 is the 
reciprocal of the electric susceptibility. 

These phenomena can be effectively modeled using 
NLPDEs. Consequently, obtaining traveling wave 
solutions of NLPDEs is of significant importance. In order 
to gain insight into the underlying mechanisms of these 
physical phenomena, it is imperative to investigate their 
solutions. Solutions to NLPDEs not only address specific 
problems but also provide profound insights into the 
fundamental physical aspects within related fields. As a 
result, numerous powerful methodologies have been 
developed to obtain exact solutions for nonlinear 
equations. These methods, including the tanh-function 
expansion method (Fan, 2000), Jacobi elliptic function 
expansion method (Liu et al., 2001), homogeneous 
balance method (Wang et al., 1996), exponential function 
method (He and Wu, 2006; Ekici and Unal 2020), (G’/G)-
expansion method (Zhang et al., 2008; Ekici and Unal, 
2022), Adomian decomposition method (El-Sayed and 
Gaber, 2006), homotopy analysis method (Arafa et al., 
2011), differential transformation method (Odibat and 
Momani, 2008; Ekici and Ayaz 2017), unified method 
(Akcagil and Aydemir, 2018), and Kudryashov’s method 
(Kaplan et al., 2016; Ekici, 2023), among others, have 
been widely employed in exploring nonlinear 
phenomena across various scientific disciplines. 
This study can be summarized as follows: Section 2 
provides an overview of the conformable fractional 
derivative and its fundamental properties, along with a 
step-by-step explanation of the unified method. In 
Section 3, the unified method, a key approach in solving 
fractional partial differential equations and the central 
focus of this work, is given. Additionally, exact solutions 
for fractional partial differential equations are obtained 
using the unified method in Section 3. Finally, a 
comprehensive discussion of the findings is presented, 
along with suggestions for future research directions. 
 
2. Materials and Methods 
We give with a brief overview of the conformable 
fractional derivative, emphasizing its fundamental 
properties.  
Definition; Let 𝛽𝛽 ∈ (0,1] and 𝜛𝜛:ℝ⁺ ∪ {0} → 𝑅𝑅 are be 
given. The conformable fractional derivative of 𝜛𝜛 of 
order 𝛽𝛽 is defined as follows (equation 2): 
 

�𝑇𝑇𝛽𝛽𝜛𝜛�(𝑡𝑡) = lim
𝜀𝜀→0

𝜛𝜛�𝑡𝑡 + 𝜀𝜀𝑡𝑡1−𝛽𝛽� −𝜛𝜛(𝑡𝑡)
𝜀𝜀 , (𝑡𝑡 > 0). 

2 

 

Theorem; Let 𝛽𝛽 ∈ (0,1], 𝑡𝑡 > 0 and 𝜛𝜛,𝜓𝜓 be 
𝛽𝛽 −differentiable. Then we can write the following 
properties. 
 
∗  𝑇𝑇𝛽𝛽(𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠) = 𝑘𝑘(𝑇𝑇𝛽𝛽𝜛𝜛) + 𝑠𝑠(𝑇𝑇𝛽𝛽𝜓𝜓), for all 𝑘𝑘, 𝑠𝑠 ∈ ℝ. 
∗  𝑇𝑇𝛽𝛽(𝑡𝑡𝑚𝑚) = 𝑚𝑚𝑡𝑡𝑚𝑚−𝛽𝛽 for all 𝑚𝑚 ∈ ℝ. 
∗  𝑇𝑇𝛽𝛽(𝜆𝜆) = 0, for all constant functions 𝜛𝜛(𝑡𝑡) = 𝜆𝜆. 
∗  𝑇𝑇𝛽𝛽(𝜛𝜛𝜛𝜛) = 𝜛𝜛(𝑇𝑇𝛽𝛽𝜓𝜓) + 𝜓𝜓(𝑇𝑇𝛽𝛽𝜛𝜛). 

∗  𝑇𝑇𝛽𝛽 �
𝜛𝜛
𝜓𝜓
� = 𝜓𝜓(𝑇𝑇𝛽𝛽𝜛𝜛)−𝜛𝜛(𝑇𝑇𝛽𝛽𝜓𝜓)

𝜓𝜓²
 . 

∗ If, in addition, 𝜛𝜛 is differentiable, then (equation 3); 
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�𝑇𝑇𝛽𝛽𝜛𝜛�(𝑡𝑡) = 𝑡𝑡1−𝛽𝛽 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 �. 3 

 

The derivative of order 𝛽𝛽 for a constant is zero. 
Derivatives can be applied to both differentiable and non-
differentiable functions (Abdeljawad, 2015; Li and Peng, 
2023). 
The unified method is an advanced analytical approach 
that has gained considerable recognition in mathematical 
physics for its effectiveness in solving nonlinear 
fractional differential equations. The method has gained 
renown for its capacity to produce precise analytical 
solutions to complex and nonlinear equations, thus 
providing researchers with a robust instrument with 
which to address a wide range of challenging problems. A 
key strength of the unified method lies in its flexibility 
and adaptability, making it especially valuable for cases 
involving fractional derivative equations and complex 
boundary conditions. 
In this study, we apply the unified method to derive 
stable and explicit soliton solutions for FDEs. This 
method accommodates a general form of nonlinear 
evolution equations, offering a structured approach for 
exploring the intricate dynamics inherent in fractional 
models, as outlined below. By employing the unified 
method, we aim to advance our understanding of these 
equations and highlight its potential as a powerful 
framework for future research in nonlinear fractional 
systems. 
In this section we illustrate the unified method for 
solving NPDEs. Suppose that a NPDEs are in the following 
form (equation 4): 
 

𝑃𝑃(𝑢𝑢,𝐷𝐷𝑡𝑡
𝛽𝛽𝑢𝑢, 𝑢𝑢𝑥𝑥,𝐷𝐷𝑡𝑡

𝛽𝛽𝑢𝑢𝑥𝑥,𝐷𝐷𝑡𝑡
2𝛽𝛽𝑢𝑢, . . . ) = 0, 4 

 

where 𝛽𝛽 denotes the conformable fractional derivative, 
while 𝑃𝑃 denotes a polynomial involving 𝑢𝑢 and its various 
partial derivatives, encompassing the highest order 
derivative and nonlinear terms. The unified method will 
be elucidated to derive typical and broad-spectrum 
soliton solutions for NFDEs. The fundamental phases of 
the unified method are outlined as follows: 
Step 1: Assign a compound variable ξ with the real 
variables x and t by the following 
transformation(equation 5): 
 

𝑢𝑢(𝑥𝑥 , 𝑡𝑡) =  𝑈𝑈 (𝜉𝜉), 𝜉𝜉 =  𝑥𝑥 − 
𝑘𝑘

Γ(1 + 𝛽𝛽) 𝑡𝑡
𝛽𝛽, 5 

 

where 𝑘𝑘 is wave velocity. The wave variable assigned in 
equation 5 transforms equation 4 into the following 
ordinary differential equation (ODE); 
 

𝑄𝑄(𝑈𝑈,−𝑘𝑘𝑈𝑈′,𝑈𝑈′,−𝑘𝑘𝑈𝑈′′, 𝑘𝑘2𝑈𝑈′′, . . . ) =  𝑂𝑂. 6 
 

Here, 𝑄𝑄 represents a polynomial involving 𝑈𝑈 and its 
derivatives with respect to 𝜉𝜉. We integrate equation 6 as 
many times as feasible, and for the sake of simplicity, we 
set the constant(s) of integration to zero. 
Step 2: We express the exact solution of equation 6 in the 
following form (equation 7): 
 

U (ξ)  =  a0  + ��ai φi + bi φ−i� ,
M

i=1

 
7 

 

where M is positive integers, a0 , ai , bi (i =
 1, 2, 3, … , M ) are constants to be determined and φ =
 φ(ξ) satisfies following the Riccati differential equation 
8. 
 

φ′(ξ) =  φ2(ξ) +  λ , 8 
 

where φ′ =  dφ
dξ

 and λ is a constant. The general solution 

of equation 8 as follows: 
Set 1: When 𝜆𝜆 <  0, the solutions of equation 8 

φ(ξ) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �−(𝐴𝐴2+𝐵𝐵2)𝜆𝜆−𝐴𝐴√−𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐ℎ�2√−𝜆𝜆(𝜉𝜉+𝜉𝜉0)�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ�2√−𝜆𝜆(𝜉𝜉+𝜉𝜉0)�+𝐵𝐵
,

−�−(𝐴𝐴2+𝐵𝐵2)𝜆𝜆−𝐴𝐴√−𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐ℎ�2√−𝜆𝜆(𝜉𝜉+𝜉𝜉0)�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ�2√−𝜆𝜆(𝜉𝜉+𝜉𝜉0)�+𝐵𝐵
,

√−𝜆𝜆 − 2𝐴𝐴√−𝜆𝜆
𝐴𝐴+𝑐𝑐𝑐𝑐𝑐𝑐ℎ�2√−𝜆𝜆(𝜉𝜉+𝜉𝜉0)�−𝑠𝑠𝑠𝑠𝑠𝑠ℎ�2√−𝜆𝜆(𝜉𝜉+𝜉𝜉0)�

,

−√−𝜆𝜆 + 2𝐴𝐴√−𝜆𝜆
𝐴𝐴+𝑐𝑐𝑐𝑐𝑐𝑐ℎ�2√−𝜆𝜆(𝜉𝜉+𝜉𝜉0)�+𝑠𝑠𝑖𝑖𝑖𝑖ℎ�2√−𝜆𝜆(𝜉𝜉+𝜉𝜉0)�

,

   

where 𝐴𝐴, 𝐵𝐵 and 𝜉𝜉0 are arbitrary constants. 
Set 2: When 𝜆𝜆 >  0, the solutions of equation 8 

φ(ξ) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �(𝐴𝐴2−𝐵𝐵2)𝜆𝜆−𝐴𝐴√𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐�2√𝜆𝜆(𝜉𝜉+𝜉𝜉0)�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�2√𝜆𝜆(𝜉𝜉+𝜉𝜉0)�+𝐵𝐵
,

−�(𝐴𝐴2−𝐵𝐵2)𝜆𝜆−𝐴𝐴√𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐�2√𝜆𝜆(𝜉𝜉+𝜉𝜉0)�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�2√𝜆𝜆(𝜉𝜉+𝜉𝜉0)�+𝐵𝐵
,

𝑖𝑖√𝜆𝜆 − 2𝐴𝐴𝐴𝐴√𝜆𝜆
𝐴𝐴+𝑐𝑐𝑐𝑐𝑐𝑐�2√𝜆𝜆(𝜉𝜉+𝜉𝜉0)�−𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠�2√𝜆𝜆(𝜉𝜉+𝜉𝜉0)�

,

−𝑖𝑖√𝜆𝜆 + 2𝐴𝐴√𝜆𝜆
𝐴𝐴+𝑐𝑐𝑐𝑐𝑐𝑐�2√𝜆𝜆(𝜉𝜉+𝜉𝜉0)�+𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠�2√𝜆𝜆(𝜉𝜉+𝜉𝜉0)�

,

  

where 𝐴𝐴, 𝐵𝐵 and 𝜉𝜉0 are arbitrary constants. 
Set 3: When λ =  0, the solutions of equation 8 

φ(ξ) = −
1

ξ + ξ0
 , 

where ξ0 arbitrary constant (Akter et al., 2020) 
Step 3: Employing the homogeneous balance method 
outlined in equation 6 enables us to determine the 
positive integer values of 𝑀𝑀 corresponding to the 
solution described in equation 7. By substituting the 
solution from equation 7 into equation 6 and 
incorporating the Riccati equation depicted in equation 8, 
we obtain a polynomial expression in terms of 𝑈𝑈(𝜉𝜉). This 
polynomial, upon equating coefficients of similar powers 
of U(ξ) to zero, yields specific sets of algebraic equations. 
Step 4: Upon substituting equation 7 into equation 6 
alongside equation 8, a polynomial expression in terms of 
𝑈𝑈(𝜉𝜉) is derived. Equating all coefficients of 𝑈𝑈(𝜉𝜉) to zero 
leads to a system of algebraic equations. By employing 
the Maple program, we can effectively solve this system 
to determine the values of parameters such as 
a0 , ai , bi (i =  1, 2, 3, … , M ), and 𝜆𝜆. Subsequently, upon 
substituting these values and equation 8 into equation 7, 
exact solutions for the reduced equation 4 can be 
obtained. 
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3. Application 
Now we apply the unifed method to obtain for analytic 
solution of the time-fractional thin-film ferroelectric 
material equation. This equation can be written as 
(equation 9); 
 

𝑛𝑛𝑐𝑐
𝑞𝑞𝑑𝑑2
𝜕𝜕𝛽𝛽𝐺𝐺(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕𝛽𝛽

+ [(𝑔𝑔2 − 2𝛼𝛼)𝐺𝐺 + 𝑔𝑔4𝐺𝐺3 + 𝑔𝑔6𝐺𝐺5]

− 𝑤𝑤
𝜕𝜕2𝐺𝐺(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥2 = 0. 

9 

 

Using the wave variable, substituting equation 5 into 
equation 9 reduces to the nonlinear ODE; 
 

�
𝑘𝑘2𝑛𝑛𝑐𝑐
𝑞𝑞𝑑𝑑2

− 𝑤𝑤�𝑈𝑈′′ + [(𝑔𝑔2 − 2𝛼𝛼)𝑈𝑈 + 𝑔𝑔4𝑈𝑈3

+ 𝑔𝑔6𝑈𝑈5] = 0, 

10 

 

where 𝑘𝑘, 𝑤𝑤, 𝛼𝛼, 𝑔𝑔2, 𝑔𝑔4, 𝑔𝑔6, 𝑛𝑛𝑐𝑐 and 𝑞𝑞𝑑𝑑 are constants (Zahran 
et al., 2022). By comparing the term U′′ with 𝑈𝑈5, utilizing 
the homogeneous balance principle (Wang et al., 2023), 
𝑁𝑁 +  2 =  5𝑁𝑁 is generated. Hence, 𝑁𝑁 =  1

2
 . When the 

transformation is 𝑈𝑈(ξ) = �𝑃𝑃(ξ) used, equation 10 can be 
decreased, as: 
 

�
𝑘𝑘2𝑛𝑛𝑐𝑐
𝑞𝑞𝑑𝑑2

− 𝑤𝑤� �
1
2 𝑃𝑃𝑃𝑃

′′ −
1
4

(P′)2�

− [(𝑔𝑔2 − 2𝛼𝛼)𝑃𝑃2 + 𝑔𝑔4𝑃𝑃3

+ 𝑔𝑔6𝑃𝑃4] = 0, 

11 

 

where 𝑃𝑃′ = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. Balancing the highest order term 𝑃𝑃𝑃𝑃′′ and 

𝑃𝑃4 in equation 11 we have 𝑁𝑁 = 1. 
 

𝑃𝑃(𝜉𝜉) = a0 + a1φ+ 𝑏𝑏1φ−1. 12 
 

We substitute equation 12 into equation 11 and collect 
all the terms with the same power of 𝑃𝑃𝑖𝑖(𝜉𝜉) (𝑖𝑖 =
 0,1, 2, . . . , 8), and equating each coefficient to zero, yields 
a set of algebraic equations. Solving these equations with 
the aid of the mathematical software Maple, yields the 
following solutions for 𝑘𝑘, 𝑠𝑠, 𝑏𝑏1, 𝑎𝑎0 , 𝑎𝑎1 : 
Case 1: 

𝑎𝑎0 =
−3𝑔𝑔4
8𝑔𝑔6

 , 𝑏𝑏1  =
9𝑔𝑔42

256𝑎𝑎1𝑔𝑔62
 , 𝜆𝜆 = −

9𝑔𝑔42

256𝑎𝑎1𝑔𝑔62
 

, 

 𝑤𝑤 = −
4
3𝑎𝑎1

2𝑔𝑔6 + 𝑘𝑘2
𝑛𝑛𝑐𝑐
𝑞𝑞𝑑𝑑2

, 𝛼𝛼 =
𝑔𝑔2
2 −

3
2
𝑔𝑔42

𝑔𝑔6
 . 

Substituting these results into equation 12, we reach the 
results: 
(a) Hyperbolic function solutions (when 𝜆𝜆 <  0): 

𝑃𝑃11(𝜉𝜉) =
−3𝑔𝑔4
8𝑔𝑔6

 

+
9𝑔𝑔42 �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)� + 𝐵𝐵�

256𝑎𝑎1𝑔𝑔62 �𝐴𝐴�−(𝐴𝐴2 + 𝐵𝐵2)𝜆𝜆 − 𝐴𝐴√−𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)��
 , 

𝑃𝑃12(𝜉𝜉) =
−3𝑔𝑔4
8𝑔𝑔6

 

−
9𝑔𝑔42 �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)� + 𝐵𝐵�

256𝑎𝑎1𝑔𝑔62 ��−(𝐴𝐴2 + 𝐵𝐵2)𝜆𝜆 + 𝐴𝐴√−𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)��
 , 

𝑃𝑃13(𝜉𝜉) =
−3𝑔𝑔4
8𝑔𝑔6

 

+
9𝑔𝑔42 �𝐴𝐴 + 𝑐𝑐𝑐𝑐𝑐𝑐ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)� − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)��

256𝑎𝑎1𝑔𝑔62√−𝜆𝜆 �𝑐𝑐𝑐𝑐𝑐𝑐ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)� − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)� − 𝐴𝐴�
 ,  

𝑃𝑃14(𝜉𝜉) =
−3𝑔𝑔4
8𝑔𝑔6

 

+
9𝑔𝑔42 �𝐴𝐴 + 𝑐𝑐𝑐𝑐𝑐𝑐ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)� + 𝑠𝑠𝑠𝑠𝑠𝑠ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)��

256𝑎𝑎1𝑔𝑔62√−𝜆𝜆 �𝐴𝐴 − 𝑐𝑐𝑐𝑐𝑐𝑐ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)� − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ �2√−𝜆𝜆(𝜉𝜉 + 𝜉𝜉0)��
. 

 
 (b) Trigonometric function solutions (when 𝜆𝜆 >  0): 

𝑃𝑃15(𝜉𝜉) =
−3𝑔𝑔4
8𝑔𝑔6

 

+
9𝑔𝑔42 �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �2√𝜆𝜆�𝜉𝜉 + 𝜉𝜉0�� + 𝐵𝐵�

256𝑎𝑎1𝑔𝑔6
2 ���𝐴𝐴2 − 𝐵𝐵2�𝜆𝜆− 𝐴𝐴√𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐 �2√𝜆𝜆�𝜉𝜉 + 𝜉𝜉0���

 , 

𝑃𝑃16(𝜉𝜉) =
−3𝑔𝑔4
8𝑔𝑔6

 

−
9𝑔𝑔42 �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �2√𝜆𝜆�𝜉𝜉 + 𝜉𝜉0�� + 𝐵𝐵�

256𝑎𝑎1𝑔𝑔6
2 ���𝐴𝐴2 − 𝐵𝐵2�𝜆𝜆+ 𝐴𝐴√𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐 �2√𝜆𝜆�𝜉𝜉 + 𝜉𝜉0���

 , 

𝑃𝑃17(𝜉𝜉) =
−3𝑔𝑔4
8𝑔𝑔6

 

+
9𝑔𝑔42 �𝐴𝐴 + 𝑐𝑐𝑐𝑐𝑐𝑐 �2√𝜆𝜆�𝜉𝜉+ 𝜉𝜉0�� − 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 �2√𝜆𝜆�𝜉𝜉+ 𝜉𝜉0���

256𝑎𝑎1𝑔𝑔6
2√𝜆𝜆 �𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �2√𝜆𝜆�𝜉𝜉+ 𝜉𝜉0�� +  𝑠𝑠𝑠𝑠𝑠𝑠 �2√𝜆𝜆�𝜉𝜉 + 𝜉𝜉0�� − 𝑖𝑖𝑖𝑖�

 , 

𝑃𝑃18(𝜉𝜉) =
−3𝑔𝑔4
8𝑔𝑔6

 

+
9𝑔𝑔42 �𝐴𝐴 + 𝑐𝑐𝑐𝑐𝑐𝑐�2√𝜆𝜆�𝜉𝜉 + 𝜉𝜉0�� + 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 �2√𝜆𝜆�𝜉𝜉 + 𝜉𝜉0���

256𝑎𝑎1𝑔𝑔6
2√𝜆𝜆 �−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�2√𝜆𝜆�𝜉𝜉 + 𝜉𝜉0��+  𝑠𝑠𝑠𝑠𝑠𝑠 �2√𝜆𝜆�𝜉𝜉 + 𝜉𝜉0��+ 𝑖𝑖𝑖𝑖�

 . 

 
(c) Rational function solutions (when 𝜆𝜆 =  0) 

𝑃𝑃19(𝜉𝜉) =
−3𝑔𝑔4
8𝑔𝑔6

−
9𝑔𝑔4

2

256𝑎𝑎1𝑔𝑔6
2�𝜉𝜉+ 𝜉𝜉0�

 , 

where 𝜉𝜉 =  𝑥𝑥 − 𝑘𝑘
Γ(1+𝛽𝛽)

𝑡𝑡𝛽𝛽. 

Other cases of solutions can be obtained in a similar 
manner to the above case; however, these are omitted 
here for simplicity. 
 
Case 2:  

𝑎𝑎0 =
−3𝑔𝑔4
8𝑔𝑔6

 , 𝑏𝑏1  =
9𝑔𝑔42

256𝑎𝑎1𝑔𝑔62
 , 𝜆𝜆 =

9𝑔𝑔42

256𝑎𝑎12𝑔𝑔62
 

, 

 𝑤𝑤 = −
4
3 𝑎𝑎1

2𝑔𝑔6 + 𝑘𝑘2
𝑛𝑛𝑐𝑐
𝑞𝑞𝑑𝑑2

, 𝛼𝛼 =
𝑔𝑔2
2 −

15
128

𝑔𝑔42

𝑔𝑔6
. 

 
Case 3:  

𝑎𝑎0 =
−3𝑔𝑔4
8𝑔𝑔6

 , 𝑏𝑏1  = 0 , 𝜆𝜆 = −
9

64
𝑔𝑔42

𝑎𝑎12𝑔𝑔62
 

, 

 𝑤𝑤 = −
4
3𝑎𝑎1

2𝑔𝑔6 + 𝑘𝑘2
𝑛𝑛𝑐𝑐
𝑞𝑞𝑑𝑑2

, 𝛼𝛼 =
𝑔𝑔2
2 −

3
32

𝑔𝑔42

𝑔𝑔6
 . 

Case 4:  

𝑎𝑎0 =
−3𝑔𝑔4
8𝑔𝑔6

 , 𝑎𝑎1  = 0 , 𝜆𝜆 = −
64
9
𝑏𝑏12𝑔𝑔62

𝑔𝑔42
 

, 

 𝑤𝑤 = 𝑘𝑘2
𝑛𝑛𝑐𝑐
𝑞𝑞𝑑𝑑2

−
27

1024
𝑔𝑔44

𝑏𝑏12𝑔𝑔63
, 𝛼𝛼 =

𝑔𝑔2
2 −

3
32

𝑔𝑔42

𝑔𝑔6
 . 

 
4. Conclusion  
In this study, the time-fractional TFFEME problem was 
tackled using the unified method, which provided exact 
solutions. Through the unified method, intricate solutions 
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for rational, trigonometric and hyperbolic function types 
were derived, allowing for the identification of periodic, 
w-shaped, dark, and bright soliton structures in closed-
form solutions that characterize the governing model. 
The findings confirm that the unified method serves as an 
efficient and adaptable mathematical approach for 
deriving a range of solitary wave solutions under the 
influence of temporal fractional operators. All 
computations were conducted using Maple, 
demonstrating the method’s capability in extracting 
complex wave profiles with high accuracy and 
consistency. These solutions offer valuable insights into 
the intricate mechanisms underlying nonlinear physical 
phenomena, particularly in the context of wave 
collaboration. Our findings underscore the directness and 
efficiency of the unified method, highlighting its 
applicability to a wide array of nonlinear PDEs in 
mathematical physics. 
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