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I. INTRODUCTION 

Numerical differentiation is one of the most significant concepts in calculus, which has been everywhere in 

many fields of applied mathematics and engineering.  

There are several methods to treat the numerical differentiation issue. The most widely and commonly preferred 

method for solving numerical differentiation problems is finite difference method. Since numerical 

differentiation is an ill-posed problem by means of Hadamard [1-3]. For this reason, Tikhonov regularization 

method [3] and mollification method [4] have been proposed. Besides, Hanke and Scherzer [5] and Wang et al. 

[6, 7] have proposed techniques for many ill-posed problems. Nevertheless, most results in literature are sure 

about f'(x) (first order derivative). 

Furthermore, traditional finite difference methods [7-9] are widely used but often face challenges, particularly 

with ill-posed problems. To address this, the article introduces "Improved Forward Finite Difference" 

(FFD_improved) and "Improved Backward Finite Difference" (BFD_improved) techniques, which are derived 

from Taylor series expansions to provide more precise results than standard methods. This is one of the novel 

sides. There are also some works which employed interpolation methods to compute numerical differentiations 

[10-13]. Jianping L used Vandermonde determinant for computation of differentiation [14]. Numerical 

differentiation was performed by use of noisy data in mechanical engineering [15-19]. Yang et al also achieved 

differentiation by use of higher order spatial discretization method [20]. 
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Instead of all these methods in literature, this study presents more straightforward and precise methods with use 

of basic finite difference methods for second and third order derivative calculations of any functions. The 

proposed methods for second and third order derivatives are the combinations of Backward with Central Finite 

Difference and Forward with Central Finite Difference methods.  

The article is organized as follows: theoretical background is given in section 2. Proposed methods are given in 

section 3. Numerical results are presented for comparison purposes in section 4. Finally, results are discussed. 

 

II. EXPERIMENTAL METHOD / TEORETICAL METHOD 

The originating idea of finite difference techniques is based on the well-known Taylor series. The form of the 

Taylor series by defining a step size ℎ = 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖  and expressing as [7] 

 

𝑓𝑓(𝑥𝑥𝑖𝑖+1) = 𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝑓𝑓 ′(𝑥𝑥𝑖𝑖)ℎ + 𝑓𝑓′′(𝑥𝑥𝑖𝑖,)
2!

ℎ2 + 𝑓𝑓(3)(𝑥𝑥𝑖𝑖,)
3!

ℎ3 + ⋯+ 𝑓𝑓(𝑛𝑛)(𝑥𝑥𝑖𝑖,)
𝑛𝑛!

ℎ𝑛𝑛 + 𝑅𝑅𝑛𝑛.                                                       (1)   

 
        
Where the remainder term is defined as 

 

𝑅𝑅𝑛𝑛 = 𝑓𝑓(𝑛𝑛+1)(𝜀𝜀1)
(𝑛𝑛+1)!

ℎ𝑛𝑛+1.                                                                                                                                               (2) 

 

The term in eq (2) corresponds to O((𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)𝑛𝑛+1) which is O(hn+1) called as error. For backward form, Taylor 

series in eq (1) can be rewritten as  

 

𝑓𝑓(𝑥𝑥𝑖𝑖−1) = 𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑓𝑓 ′(𝑥𝑥𝑖𝑖)ℎ + 𝑓𝑓′′(𝑥𝑥𝑖𝑖)
2!

ℎ2 − 𝑓𝑓(3)(𝑥𝑥𝑖𝑖)
3!

ℎ3 + ⋯                                                                                       (3)     

      

One of the ways to approximate the first derivative is to subtract eq (3) from the Taylor series expansion in eq 

(1) to obtain: 

 

𝑓𝑓(𝑥𝑥𝑖𝑖+1) = 𝑓𝑓(𝑥𝑥𝑖𝑖−1) + 2𝑓𝑓 ′(𝑥𝑥𝑖𝑖)ℎ + 2𝑓𝑓(3)(𝑥𝑥𝑖𝑖)
3!

ℎ3 + ⋯                                                                                                 (4)     

 

This can be solved for 

 

𝑓𝑓 ′(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+1)−𝑓𝑓(𝑥𝑥𝑖𝑖−1)
2ℎ

− 𝑓𝑓(3)(𝑥𝑥𝑖𝑖)
3!

ℎ2 − ⋯                                                                                                              (5) 

 

Eq (5) can be also expressed as 



 
 J. Innovative Eng. Nat. Sci. vol. 5, no.1, pp. 158-175, 2025.                New methods for numerical differentiation               

160 
 

 
𝑓𝑓 ′(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+1)−𝑓𝑓(𝑥𝑥𝑖𝑖−1)

2ℎ
+ 𝑂𝑂(ℎ2).                                                                                                                           (6) 

 

Error is of the order of h2, even though the forward and backward approximations that are of the order of h. 

Therefore, Taylor series approximations yield the practical information that the centered difference is the most 

accurate representation of the derivative.  

Level of accuracy depends on both decreasing the step size and the number of terms of the Taylor series. 

By substituting first order derivative in eq (6) into eq (1), centered finite difference (CFD) representation of the 

second order derivative based on error O(h2) can be found as 

 

𝑓𝑓 ′′(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+1)−2f(𝑥𝑥𝑖𝑖)+𝑓𝑓(𝑥𝑥𝑖𝑖−1)
ℎ2

.                                                                                                                                (7)     

 

Third order derivative based on error O(h2):  

 

𝑓𝑓(3)(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+2)−2f(𝑥𝑥𝑖𝑖+1)+2𝑓𝑓(𝑥𝑥𝑖𝑖−1)−𝑓𝑓(𝑥𝑥𝑖𝑖−2)
2ℎ3

.                                                                                                             (8)                

 

With similar way, first derivative by Forward Finite Difference (FFD) based on O(h) is  

 

𝑓𝑓 ′(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+1)−𝑓𝑓(𝑥𝑥𝑖𝑖)
ℎ

+ 𝑂𝑂(ℎ) .                                                                                                                                (9) 

 

Second order derivative by FFD based on O(ℎ) can be written as  

 

𝑓𝑓 ′′(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+2)−2f(𝑥𝑥𝑖𝑖+1)+𝑓𝑓(𝑥𝑥𝑖𝑖)
ℎ2

.                                                                                                                              (10)   

 

Third order derivative by FFD based on O(ℎ) can be written as  

 

𝑓𝑓(3)(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+3)−3f(𝑥𝑥𝑖𝑖+2)+3𝑓𝑓(𝑥𝑥𝑖𝑖+1)−𝑓𝑓(𝑥𝑥𝑖𝑖)
ℎ3

.                                                                                                              (11)                

 

Similarly, the first derivative by Backward Finite Difference (BFD) based on O(h) is  

 

𝑓𝑓 ′(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖−1)
ℎ

+ 𝑂𝑂(ℎ).                                                                                                                               (12)                                                                       

 

Second order derivative by BFD based on O(ℎ) can be written as  
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𝑓𝑓 ′′(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖)−2f(𝑥𝑥𝑖𝑖−1)+𝑓𝑓(𝑥𝑥𝑖𝑖−2)
ℎ2

.                                                                                                                              (13)   

 
Third order derivative by BFD based on O(ℎ) can be written as  

 
 𝑓𝑓(3)(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖)−3f(𝑥𝑥𝑖𝑖−1)+3𝑓𝑓(𝑥𝑥𝑖𝑖−2)−𝑓𝑓(𝑥𝑥𝑖𝑖−3)

ℎ3
.                                                                                                             (14)                

 
By employing eq (6) and combining with eq (12), Improved Backward Finite Difference (BFD_improved) for 

second order derivative computation is 

 
𝑓𝑓 ′′(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+1)−f(𝑥𝑥𝑖𝑖−1)−f(x)+𝑓𝑓(𝑥𝑥𝑖𝑖−2ℎ)

2ℎ2
.                                                                                                                    (15)   

 
For third order derivative calculation, with combination of eq (6) and eq (13) the formulation by BFD_improved 

is 

 
 𝑓𝑓(3)(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+1)−f(𝑥𝑥𝑖𝑖−1)−2f(x)+2𝑓𝑓(𝑥𝑥𝑖𝑖−2)−𝑓𝑓(𝑥𝑥𝑖𝑖−3)

2ℎ3
 .                                                                                                  (16)   

 
Similarly, by using eq (6) and eq (9), Improved Forward Finite Difference (FFD_improved) for second order 

derivative computation is 

 
𝑓𝑓 ′′(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+2)−f(𝑥𝑥𝑖𝑖+1)−f(x)+𝑓𝑓(𝑥𝑥𝑖𝑖−ℎ)

2ℎ2
.                                                                                                                     (17)   

 
For third order derivative calculation, with the combination of eq (6) and eq (10), the formulation by 

FFD_improved is 

 

 𝑓𝑓(3)(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖+3)−2f(𝑥𝑥𝑖𝑖+2)+2f(x)−𝑓𝑓(𝑥𝑥𝑖𝑖−1)
2ℎ3

.                                                                                                               (18)   

 

III. RESULTS AND DISCUSSIONS 

A general algorithm with use of various step sizes is generated for application of the proposed methods in 

Matlab R2022a. Function list for numerical analyses is presented in Table 1. Corresponding numerical results for 

these functions are displayed in Figures 1-5. 

 
Table 1. Examples for several functions 
Example Function 
1 x2cos(x) 
2 152x 
3 

𝑥𝑥2𝑒𝑒−
𝑥𝑥2
2  

4 12𝑥𝑥4 + 10𝑥𝑥3  + 5𝑥𝑥2 + 3𝑥𝑥 + 2 
5 cos (𝑥𝑥)𝑒𝑒(𝑥𝑥2+5𝑥𝑥+3) 
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Figure 1. Numerical results for (a) second order derivative of f(x)=x2cos(x) (b) third order derivative of f(x)=x2cos(x) 
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Figure 2. Numerical results for (a) second order derivative of f(x)= 152x (b) third order derivative of f(x)= 152x 
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Figure 3. Numerical results for (a) second order derivative of f(x)= 𝑥𝑥2𝑒𝑒−
𝑥𝑥2

2   (b) third order derivative of f(x)= 𝑥𝑥2𝑒𝑒−
𝑥𝑥2
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Figure 4. Numerical results for (a)second order derivative of f(x)= 12𝑥𝑥4 + 10𝑥𝑥3  + 5𝑥𝑥2 + 3𝑥𝑥 + 2  (b) third order derivative of f(x)=12𝑥𝑥4 +
10𝑥𝑥3  + 5𝑥𝑥2 + 3𝑥𝑥 + 2              
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Figure 5. Numerical results for (a) second order derivative of f(x)= cos (𝑥𝑥)𝑒𝑒�𝑥𝑥2+5𝑥𝑥+3�  (𝐛𝐛) third order derivative of f(x)= cos (𝑥𝑥)𝑒𝑒�𝑥𝑥2+5𝑥𝑥+3� 
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3.1 Performance Analyses of New Algorithm 

The performance analyses are conducted using both error and elapsed time computations. The results of the error 

computations for the example functions are presented in Figures 6-10. 

 

 
 

 

Figure 6. Numerical results for (a) second order derivative of f(x)= x2cos(x) (b) third order derivative of f(x)= x2cos(x) 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00001 0.0001 0.001 0.01

Er
ro

r

Step Size

f(x)=x2*cos(x)
(a)

FFD

FFD_improved

BFD

BFD_improved

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00001 0.0001 0.001 0.01

Er
ro

r

Step Size

f(x)=x2*cos(x)
(b)

FFD

FFD_improved

BFD

BFD_improved



 
 J. Innovative Eng. Nat. Sci. vol. 5, no.1, pp. 158-175, 2025.                New methods for numerical differentiation               

168 
 

 

 

 

 

 
 

 

Figure 7. Numerical results for (a) second order derivative of f(x)=152x (b) third order derivative of f(x)=152x 
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Figure 8. Numerical results for (a) second order derivative of f(x)= 𝑥𝑥2𝑒𝑒−

𝑥𝑥2

2  (b) third order derivative of f(x)= 𝑥𝑥2𝑒𝑒−
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Figure 9. Numerical results for (a) second order derivative of f(x)= 12𝑥𝑥4 + 10𝑥𝑥3  + 5𝑥𝑥2 + 3𝑥𝑥 + 2   (b) third order derivative of 
f(x)= 12𝑥𝑥4 + 10𝑥𝑥3  + 5𝑥𝑥2 + 3𝑥𝑥 + 2 
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Figure 10. Numerical results for (a) second order derivative of f(x)= cos (𝑥𝑥)𝑒𝑒�𝑥𝑥2+5𝑥𝑥+3�  (b) third order derivative of f(x)= cos (𝑥𝑥)𝑒𝑒�𝑥𝑥2+5𝑥𝑥+3� 

 

It is proved that error approaches zero for both second and third order computations in Figures 6-10. Exact 
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Figure 11. For f(x)= 𝑥𝑥2cos (𝑥𝑥) 

 

 
Figure 12. For f(x)= 15(2𝑥𝑥) 

 

 
Figure 13. For f(x)= 𝑥𝑥2e�
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Figure 14. For f(x)= 12𝑥𝑥4 + 10𝑥𝑥3  + 5𝑥𝑥2 + 3𝑥𝑥 + 2 

 
 

 
Figure 15. For f(x)= cos (𝑥𝑥)𝑒𝑒�𝑥𝑥2+5𝑥𝑥+3� 

 
 

Smallest step size leads to a little increase in computation duration for each function. This situation is 

demonstrated in Figures 11-15.  

 

IV. CONCLUSIONS 

This paper presents alternative methods with use of CFD, BFD, FFD for second and third order derivative 

calculations. Exact solutions are obtained. So, there is no need to use extra terms for higher accuracy in second 

and third order differentiations. It is the first time in the literature that finite difference techniques are employed 

in new forms for numerical differentiation of second and third order.   
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It is also shown that new methods composing of CFD, BFD and FFD can be conveniently employed with any 

step size. BFD_improved and FFD_improved can be used confidently instead of BFD and FFD.  

For comparison purposes, various numerical examples have been selected and presented in Table 1. Within this 

context, a general algorithm has been designed, enabling simultaneous computations for both second and third 

order numerical differentiations, along with error and elapsed time calculations. This is another novel aspect of 

the paper.  

The findings presented in Figures 1-5 demonstrate that the improved methods achieve highly accurate derivative 

approximations with small step sizes for both second and third order differentiations, particularly when the step 

size is 0.00001. 

This observation is further validated in Figures 6-10, which show the error computations for both second and 

third order differentiations. 

Although the smallest step size leads to an increase in elapsed computation time for each example, as illustrated 

in Figures 11-15, employing the smallest step size remains the most convenient and accurate approach for 

calculations. 

The highest accuracy is achieved with a step size of 0.00001. The proposed methods in this paper can be 

effectively used by instructors and students in calculus courses for a wide range of functions. Additionally, these 

methods have potential applications in solving both Ordinary Differential Equations (ODEs) and Partial 

Differential Equations (PDEs). 

Consequently, these methods are valuable for both academic and practical applications in calculus, enhancing 

the accuracy and efficiency of numerical differentiation.  
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