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Introduction 

Skin diseases represent a significant public health issue due 

to their high prevalence and the detrimental effects they 

have on the quality of life of affected individuals. The skin 

and its appendages play a role in various disease processes, 

often displaying signs that are observable from afar. 

Dermatological disorders contribute to physical morbidity 

and are associated with anxiety, depression, and 

psychological disturbances. Hyperactive sebaceous glands 

contribute to conditions like acne and seborrheic dermatitis, 

characterized by the overproduction of sebum. In conditions 

such as ichthyosis, reduced sebum production frequently 

results in dry, flaky scales, contributing to a rough skin 

appearance. 'Skin diseases' is a broad term encompassing 

various abnormal conditions impacting the dermal and 

epidermal layers of the skin. The skin can indicate 

underlying diseases resulting from alterations in 

biochemical compounds. Skin diseases may be classified as 

primary, where the skin is directly affected, or secondary, 

where the skin exhibits significant lesions as a result of 

changes in another system or organ. These may arise from 

the irregular functioning of sweat and oil glands or from 

exposure to environmental pollutants, resulting in the 

development of anticipated skin diseases or conditions. This 

manuscript presents a thorough analysis of the causes, 

symptoms, and treatments of common skin diseases. Skin 

diseases represent a prevalent category of disorders, 

prompting millions of patients to seek medical attention. 

Psychological and social factors, including feelings of 

embarrassment and the concealment of a disease, primarily 

motivate individuals to consult a practitioner for skin 

disorders. Untreated skin diseases pose various significant 

health risks that may impede early diagnosis and 

appropriate treatment [1-4].  

Skin diseases are becoming increasingly prevalent across 

all races, ages, and specific occupations in contemporary 

society. Skin diseases appear to be increasingly prevalent. 

Skin diseases impact a wide range of individuals globally, 

manifesting in different tissue and organ systems, including 

hair and nails. Inflammatory skin rashes can be categorized 

based on their etiology, which may involve microorganisms 

or not. They may present with or without serum or plasma 

protein exudation and can be classified as primary or 

secondary effects of the lesions, exhibiting either acute or 

chronic symptoms. Acne, eczema, psoriasis, rosacea, and 

skin cancer represent prevalent dermatological conditions 

in contemporary society. The evolving understanding of 

skin diseases, which is a significant concern, has led to 

increased efforts in their detection and treatment. 
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ABSTRACT 

 
Vision Transformers (ViTs) represent the cutting edge of deep learning technology in medicine. Due to 

their large number of parameters, ViTs require extensive datasets for effective learning, which has become 
feasible with the digitization of healthcare. In contrast, classical classifiers typically operate with smaller 

datasets and fewer input features. High-resolution images, such as those obtained from dermoscopy, 

confocal microscopy, reflectance confocal microscopy, and Raman spectroscopy, are commonly used for 
diagnosing skin diseases in clinical practice. ViTs show significant promise in this area due to their unique 

design, which eliminates the need for convolutional operations used in convolutional neural networks 

(CNNs). This study introduces an artificial intelligence method for classifying skin diseases into five 
categories: normal, melanoma, arsenic-related conditions, psoriasis, and eczema. Images from the dataset 

were firstly preprocessed using the Adaptive Histogram Equalization (AHE) technique to enhance contrast 

and reveal critical details. ViTs were then employed to extract complex visual features from these images. 
These features were subsequently combined with traditional machine learning classifiers, resulting in 

highly accurate skin disease diagnoses. Additionally, comparative experiments were performed on 

dermatoscopic images from another dataset, reinforcing the versatility and effectiveness of this approach. 
The findings highlight the potential of integrating ViTs with classical classifiers to improve the accuracy 

and reliability of medical image classification tasks. 
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Significant changes in classification are occurring, 

informed by recent advancements in basic research and 

clinical support. While these skin diseases do not pose 

significant harm to humans, they can, in certain instances, 

disrupt the body's various internal regulatory systems. The 

significance of quality of life and psychodermatology 

research is crucial for comprehending such behaviors. 

Multiple factors contribute to the development of skin 

diseases, particularly the incidence of infections. The 

majority is attributed to contagious factors. Nonetheless, 

certain non-communicable factors may primarily arise from 

genetic influences, pharmaceuticals, dietary choices, and 

similar elements. These factors are crucial for preventing 

the initiation and cessation of a specific treatment. Prior to 

advancing, it is essential to comprehend the characteristics 

of the disease itself [5-9]. 

It is now widely recognized that dermatological conditions 

impact individuals' quality of life. The precise diagnosis of 

dermatological conditions has consistently posed a 

difficulty for healthcare professionals. Historically, the sole 

method for diagnosing skin problems was by visual 

inspection. Dermatologists began to acquire the expertise 

necessary to diagnose skin disorders using factors beyond 

morphological features, including systemic alterations and 

medical history. These procedures in clinical practice are 

hindered by uncertainty, protracted timelines, and the 

necessity for collaboration with the clinical laboratory. The 

advancement of technology has enabled the utilization of 

non-invasive patient assessment instruments across 

multiple medical fields. Due to advancements in artificial 

intelligence (AI) and computational capabilities, 

dermatology practitioners have developed tools to assist in 

the investigation of skin problems [10-13].  

Combining AI and machine learning (ML) methods carries 

the potential for analyses, decision rules, and disease 

predictions based on big dermatological data. The ML 

methods enable the classification of skin lesions as 

accurately as dermatologists. Consequently, the current 

improvements have moved the long-used rule-based expert 

systems towards applied computer health diagnostics and a 

meaningful patient care supporting methodology [14]. It is 

quite well known that in medicine the error rate in diagnosis 

changes with diseases, diagnostic aims, and physicians. The 

further role of AI in medicine is inevitable and will 

continuously grow, portending an increasing role in 

dermatology. The everyday diagnostic methodology of skin 

diseases is performed by either primary care physicians, 

dermatologic residents, or field-specialized dermatologists. 

The decreasing number of dermatologists ignites 

difficulties in people’s accessibility to dermatological 

diagnostic facilities. An additional problem within 

diagnosis is the inter- and intraobserver variability. Several 

solutions have been proposed over the years in order to 

decrease this variability, and the improvement of the 

methods has started to grow due to the availability of big 

datasets [15, 16]. The renewed level of interest in the 

importance of AI in the field of dermatological diagnostics 

has been observed over the last five years. All the above-

mentioned arguments formed the basis for this review, 

proving the state of the art regarding computer-assisted 

dermatological diagnostics, and calling for an in-depth 

review of recent applications in this field. For the above-

mentioned reasons, the objectives of this review are to 

perform an in-depth analysis and comparison of the 

potential area of deep learning, especially convolutional 

neural networks, and ML algorithms. Moreover, the final 

aim of this review is to propose a future perspective for AI 

enhancement in dermatology [17, 18]. The literature reveals 

a progressive evolution in the application of ML and deep 

learning (DL) methodologies to enhance diagnostic 

accuracy and accessibility in dermatological practice. 

Kawahara and Hamarneh provide an essential foundation 

by highlighting the critical role of accurate skin disease 

diagnosis in determining effective treatment strategies [19]. 

Building on this groundwork, [20] assess the robustness of 

deep learning methods within clinical workflows. Chan et 

al. expand the discussion by providing a comprehensive 

overview of current ML applications in dermatology [21]. 

An innovative interactive deep learning system aimed at 

differential diagnosis of malignant skin lesions is 

introduced in [22]. Chowdary et al. offer a comprehensive 

survey of various ML and DL techniques for diagnosing 

dermatological diseases in [23] and [24] further emphasizes 

the role of automated analysis in dermatology, detailing the 

use of convolutional neural networks (CNNs) for skin 

cancer classification. The study in [25] discuss the 

transformative potential of AI in dermatology, particularly 

in addressing the global shortage of dermatologists. Mode 

specifically, [26] provides a comprehensive overview of the 

application of ViTs in the automated segmentation and 

classification of skin lesions, particularly in the context of 

dermoscopy images. The authors underscore the 

significance of precise lesion segmentation as a critical 

precursor to accurate skin cancer diagnosis, highlighting the 

transformative impact that advanced deep learning and 

machine learning models have had on this field. The study 

in [27] highlights the advantages of ViTs over traditional 

CNNs, particularly their ability to capture long-range 

dependencies within data, which is crucial for accurately 

interpreting complex medical images. This capability is 

particularly relevant in the context of skin disease detection, 

where the identification of subtle patterns can significantly 

impact diagnosis and treatment. the comprehensive survey 

in [28] emphasizes the promising results achieved by ViTs 

in medical image segmentation, particularly in 

histopathology. The authors discuss various innovative 

architectures, such as DHUnet and MaxViT-UNet, which 

leverage ViTs for improved feature aggregation and 

segmentation accuracy. The study in [29] investigates the 

incorporation of ViTs for enhanced skin lesion diagnosis. It 

emphasizes the benefits of ViTs, especially their capacity to 

capture long-range relationships and intricate patterns in 

dermoscopic pictures. The article highlights the versatility 

of ViTs in managing intricate datasets and illustrates their 

capability to enhance diagnostic precision while 

minimizing interobserver variability. The results support 

the implementation of ViTs in practical dermatological 

processes to improve diagnosis accuracy. In addition, [30] 

presents Assist-Dermo, a streamlined ViTs model intended 
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for multiclass skin lesion categorization. The model 

substantially decreases computing complexity by the 

utilization of separable attention techniques, maintaining 

accuracy. Assist-Dermo specializes in the classification of 

various skin lesions, such as melanoma, basal cell 

carcinoma, and benign diseases. The study highlights the 

model's efficacy in resource-limited conditions, rendering it 

appropriate for implementation in distant or under-

resourced clinical contexts. Experimental findings illustrate 

the model's resilience and its capacity to democratize access 

to AI-driven diagnostic instruments for skin health. The 

ViTs has been used in pre-diagnosis of skin diseases in [31]. 

The study indicates potential in utilizing Visual 

Transformers for skin disease detection, enhancing 

accuracy, computing efficiency, and scalability, which may 

greatly aid clinical environments and practical medical 

diagnostics. Skin cancer classification study using medical 

ViTs can be found in [32]. The paper validates the 

effectiveness of medical ViTs in improving skin cancer 

classification, presenting a robust alternative to 

conventional methods and demonstrating great promise for 

future medical applications. There can be found more 

valuable studies in the literature dealing with the issue. 

ViTs have several advantages compared to conventional 

CNNs, especially in the realm of medical picture 

processing. In contrast to CNNs, which utilize 

convolutional layers to identify local patterns, ViTs utilize 

self-attention processes that are proficient at collecting 

global dependencies over an entire image. This skill is 

essential for the analysis of intricate medical pictures, 

particularly in skin disease categorization, where nuanced 

patterns and extensive contextual linkages greatly affect 

diagnostic precision. Furthermore, ViTs remove the 

inductive biases seen in CNNs, including localization and 

translational invariance, enabling superior generalization 

across varied datasets. Their patch-based processing 

enables the management of high-resolution photos without 

significant preprocessing. The experimental findings of this 

work indicate that ViTs, when integrated with traditional 

classifiers, improve classification performance and display 

resilience to fluctuations in picture quality and data 

distribution. These characteristics establish ViTs as a 

revolutionary instrument in enhancing dermatological 

diagnostics, beyond the constraints of CNN-based methods, 

and facilitating the development of more accurate and 

dependable automated diagnostic systems. 

This paper presents an AI approach for diagnosing various 

skin diseases. The dataset which includes the images 

categorize the images into 5 clusters which are normal, 

melanoma, arsenic, psoriasis and eczema. In the study, skin 

images were first preprocessed using the Adaptive 

Histogram Equalization (AHE) technique, enhancing image 

contrast to reveal critical details. Following this 

preprocessing, features were extracted from the images 

using ViTs, known for their ability to capture intricate 

visual information. These extracted features were then 

classified using traditional ML classifiers, enabling 

accurate diagnosis of the skin conditions under 

investigation. The results highlight the effectiveness of 

combining ViTs with classical classifiers in medical image 

classification tasks.  

In further sections, the dataset of the images is briefly 

presented and the structure of ViTs is given. An illustrative 

example is considered to show the effectiveness of the 

method and the results are clearly discussed. 

Background 

As given in the previous section, the dataset has skin images 

categorized into 5 groups. The dataset used in this study is 

the Skin Diseases Dataset downloaded from Kaggle [33]. 

Sample images from the dataset can be seen in Figure 1. 

 

Figure 1. Sample images of skin diseases from the dataset. 

The dataset size is 3.02 GB and consists of images 

categorized into five subfolders: Normal, Melanoma, 

Arsenic, Psoriasis, and Eczema. It contains a total of 7,356 

skin disease images, distributed as follows: 1,815 Normal 

images, 1,575 Melanoma images, 741 Arsenic images, 

1,724 Psoriasis images, and 1,501 Eczema images. Each 

image has a resolution of 72 DPI, 24-bit depth, and 

dimensions predominantly around 3000 x 4000 pixels, 

saved in JPG format. This dataset is publicly licensed, freely 

accessible, and widely used in fields such as medicine, 
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cancer research, and computer vision, offering 

uninterrupted access and download. 

The class descriptions are as follows: 

• Normal: Images of healthy, unaffected skin. 

• Melanoma: Images depicting melanoma, a serious type 
of skin cancer. 

• Arsenic: Skin lesions resulting from exposure to 
arsenic, a known risk factor for various skin diseases. 

• Psoriasis: Chronic autoimmune condition that causes 
rapid skin cell accumulation, leading to scaling and 
inflammation. 

• Eczema: Also known as atopic dermatitis, 
characterized by itchy and inflamed skin. 

The dataset can be applied in several areas: 

• Classification: Training models to classify different 
skin conditions from images. 

• Computer Vision Tasks: Used for segmentation, 
object detection, and other image analysis tasks. 

• Medical Research: Developing AI models to assist 
dermatologists in diagnosing skin conditions. 

After a brief description about the dataset, the ViTs method 

can be presented. The exploration of ViTs in image 

classification has garnered significant attention in recent 

years, reflecting a shift from traditional CNNs towards 

architectures that leverage self-attention mechanisms. The 

literature reveals a rich tapestry of insights into how ViTs 

operate, their advantages over CNNs, and the challenges 

that remain in optimizing their performance for various 

applications. General ViTs architecture is illustrated in 

Figure 2 [34]. 

 
Figure 2. General Architecture of the ViTs. 

In 2020, Han et al. provided a foundational understanding 

of ViTs, emphasizing the role of the self-attention layer in 

facilitating global interactions between image patches. 

They introduced several innovative approaches aimed at 

enhancing the self-attention mechanism, including 

DeepViT's cross-head communication and KVT's k-NN 

attention, which prioritize locality and reduce noise in 

attention calculations. Their work underscored the 

importance of network architecture, hinting at the potential 

for new designs that could further bridge the performance 

gap between ViTs and established CNNs [35]. 

After this foundation, Naseer et al. delved into the 

properties of learned representations in ViTs, particularly in 

safety-critical domains. Their comparative analysis with 

CNNs illuminated the robustness and generalization 

capabilities of ViTs, revealing that the self-attention 

mechanism allows for effective long-range interaction 

modeling. This study highlighted the adaptability of ViTs 

to various nuisances in data, showcasing their potential for 

real-world applications where reliability is paramount [36]. 

Cao et al. further explored the training dynamics of ViTs, 

demonstrating that these architectures could achieve state-

of-the-art performance even with limited datasets. Their 

findings indicated that the representations learned from 

small datasets could enhance performance on larger 

datasets, suggesting a promising avenue for leveraging 

ViTs in scenarios where data is scarce [37]. In the same 

year, Parvaiz et al. examined the application of ViTs in 

medical computer vision, particularly for diagnosing 

diabetic retinopathy. They emphasized the advantages of 

ViTs over CNNs in terms of accuracy, driven by the 

attention mechanism's ability to assess global context. This 

work pointed to the transformative potential of ViTs in 

healthcare, while also acknowledging the challenges that 

need to be addressed for broader adoption [38]. Jelassi et al.  

contributed to the understanding of ViTs by demonstrating 

that these models can learn spatially localized patterns 

effectively. Their introduction of a positional attention 

mechanism provided insights into how ViTs can maintain 

spatial structure while generalizing across different 

datasets, reinforcing the notion that ViTs are not merely a 

replacement for CNNs but rather a complementary 

approach with unique advantages [39]. Nguyen et al.  

further expanded on the operational differences between 

ViTs and CNNs, investigating the robustness of ViTs 

against various perturbations. Their visualization 

techniques offered a deeper understanding of how ViTs 

process information, revealing clustering behaviors in 

feature embeddings that could inform future architectural 

improvements [40]. General block diagram of the method 

in this study is given in Figure 3.   

ViTs has 3 models, which can be listed as follows: 

• base-16-imagenet-384 — A base-sized model with 86.8 
million parameters and a patch size of 16. The network is 
fine-tuned using the ImageNet 2012 dataset at a resolution 
of 384x384. 

• small-16-imagenet-384 — A small-sized model with 
22.1 million parameters and a patch size of 16. The 
network is fine-tuned using the ImageNet 2012 dataset at 
a resolution of 384x384. 

• tiny-16-imagenet-384 — A tiny-sized model with 5.7 
million parameters and a patch size of 16. The network is 
fine-tuned using the ImageNet 2012 dataset at a resolution 
of 384x384. 

In this study, the base-16-imagenet-384 model is 

implemented. 
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Figure 3. General block diagram of the method in this paper.

 

Classification Study 

This study allocated 80% of the dataset for training and 

retained the remaining 20% exclusively for testing, 

guaranteeing that no test data were utilized during training. 

Initially, diagnostic outcomes were produced via the ViTs 

network applied directly to the original dataset. 

Subsequently, other preprocessing measures were 

implemented to improve the model's performance. The 

preprocessing approach commenced with the 

transformation of the dataset's color structure, translating 

the RGB images into the Lab color space, a model that 

differentiates luminance from chromaticity. Only the initial 

channel, which denotes brightness, was taken from this 

change. The channel was further treated with Contrast-

Limited Adaptive Histogram Equalization (CLAHE), an 

adaptive histogram technique aimed at improving local 

contrast more efficiently. Enhancing the visual quality of 

digital images by increasing their contrast has been an 

attractive research topic in the field of image processing. 

The histogram equalization method is employed to improve 

the contrast of the image by altering the histogram of the 

accumulated pixel intensity values. However, the traditional 

approach of histogram equalization amplifies the noise and 

diminishes the quality of the image through loss of useful 

information such as detailed features. To resolve these 

problems and to preserve the pertinent information of the 

image, CLAHE was proposed. The basic principle of 

CLAHE lies in employing adaptive histogram equalization 

locally to minimize the contrast limit effect in an efficient 

manner [41]. The improvement in image processing 

techniques, along with the wide and growing use of medical 

imaging applications, has necessitated the introduction of 

new CLAHE implementation techniques, which are the 

major focus of this paper. To improve the performance of 

the detection system, better image contrast is essential in 

image processing applications. In most of the research 

works, the enhancement of images has been carried out 

using histogram equalization, which provides uniform gray 

values for an image. The most popular technique used to 

improve both the visual quality of the digital image and the 

diagnostic characteristics of the image is the algorithm 

contrast-limited adaptive histogram equalization. The 

limitations of the histogram equalization method are solved 

by using CLAHE for applications such as night 

photography, medical imaging, satellite images, fingerprint 

recognition, and iris recognition [42]. 

Following preprocessing, two datasets were established: 

one with the original images and another with the 

preprocessed images. Both datasets were used for training 

to evaluate the impact of preprocessing on classification 

performance, allowing a comparison between the ViT 

network’s performance on raw versus enhanced data. 

Figure 4 shows samples of the original and the preprocessed 

images. 

The scanned images in the dataset were resized to a uniform 

dimension of 384x384 pixels with three color channels, 

ensuring consistency across all samples. These images were 

then scaled and normalized, maintaining their color 

properties, and subsequently used in both training and 

testing phases. The training parameters are listed in Table 

1. The network training utilized Stochastic Gradient 

Descent with Momentum (SGDM) as the optimizer, paired 

with a stochastic solver to enhance convergence speed and 

stability. To accelerate the training process, parallel 

computing was employed on a GPU with 16 concurrent 

workers. Key training parameters included an initial 

learning rate set to 1e-4, shuffling at each epoch to prevent 

overfitting, and an execution environment configured for 

GPU processing. 

 

Figure 4. Original and Preprocessed Images 
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Table 1. The training parameters. 

MiniBatchSize  16 

MaxEpochs  5 

Iterations PerEpoch  Original Dataset:           367 

Preprocessed Dataset:   735 

Validation Frequency  Original Dataset:             92 

Preprocessed Dataset:   184 

After the training, accuracy for the original dataset was 

achieved at 0.7383, with the training process completed in 

7 hours, 35 minutes, and 58 seconds. Similarly, the training 

accuracy for the preprocessed dataset improved to 0.7631, 

though the training duration was longer, taking 10 hours, 26 

minutes, and 51 seconds to complete. The confusion matrix 

obtained with the original dataset is given in Figure 5. 

 

Figure 5. Confusion Matrix obtained with the original 

dataset. 

The confusion matrix analysis reveals the classification 

results for 1,471 test samples, distributed across five 

categories: 148 Arsenic, 300 Eczema, 315 Melanoma, 363 

Normal, and 345 Psoriasis images. The model achieved 

varied accuracy across these categories, demonstrating 

areas of strength and some weaknesses. 

In the Arsenic category, 72 images were classified 

correctly, while 76 were misclassified, indicating room for 

improvement in distinguishing this condition. For Eczema, 

the model performed well, with 249 images correctly 

classified and only 51 misclassified. Notably, all 315 

Melanoma images were correctly identified, showcasing 

the model's strength in Melanoma detection. For Normal 

skin images, 330 were accurately classified, with 33 images 

incorrectly labeled. The Psoriasis category, however, 

presented the greatest challenge, with only 120 images 

accurately predicted and a substantial 225 misclassified. 

This pattern highlights the need for further refinement, 

particularly for Arsenic and Psoriasis, to enhance the 

model’s diagnostic accuracy in these categories. The 

confusion matrix thus provides valuable insights into 

performance strengths, as well as areas for targeted 

improvements. The confusion matrix obtained by the 

preprocessed dataset is given in Figure 6. 

 

Figure 6. Confusion Matrix obtained with the preprocessed 

dataset. 

The confusion matrix analysis reveals the classification 

results for a total of 2,942 test samples, which include 296 

Arsenic, 600 Eczema, 630 Melanoma, 726 Normal, and 690 

Psoriasis images. The model's performance varied across 

these categories, highlighting both strengths and areas 

needing improvement.  

For the Arsenic category, 217 images were accurately 

classified, with 79 misclassifications, indicating a moderate 

level of performance that could be enhanced. The Eczema 

category showed that 434 images were correctly predicted, 

but there were 166 misclassifications, suggesting further 

refinement is necessary for this condition as well. The 

model demonstrated exceptional accuracy in the Melanoma 

category, with 626 images correctly identified and only 4 

misclassified, indicating a robust capability in detecting this 

type of skin disease. In the Normal category, 655 images 

were accurately classified, while 71 were misclassified, 

showcasing strong performance but also a need to address 

those misclassifications. In contrast, the Psoriasis category 

revealed significant challenges, with only 313 images 

correctly identified and a considerable 377 misclassified. 

This considerable number of errors indicates that the 

model's performance in classifying Psoriasis requires 

substantial improvement. Overall, the breakdown of results 

highlights the model's strengths in identifying Melanoma 

and Normal images, while emphasizing the need for 

enhancements in the classification of Arsenic, Eczema, and 

particularly Psoriasis. Table 2 summarizes the key metrics 

observed during the training process, including the progress 

of training iterations, the duration of each iteration, mini-

batch performance, test performance, and errors. This table 

provides a comprehensive overview of how the model's 

performance evolved over time, showcasing the 

effectiveness of the training process. The training and error 

graphics obtained with the preprocessed dataset is given in 

Figure 7.
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Table 2. Iteration process of the preprocessed dataset. 

Epoch Iteration 
Time Elapsed 

(hh:mm:ss) 

Mini-batch 

Accuracy 

Validation 

Accuracy 

Mini-batch 

Loss 

Validation 

Loss 

1 1 00:01:29 12.50% 21.52% 48.207 51.771 

1 184 00:32:50 93.75% 67.91% 0.5019 11.021 

1 368 01:04:02 68.75% 70.12% 0.5567 0.9623 

1 552 01:35:09 75.00% 71.35% 0.5287 0.8154 

2 736 02:06:14 81.25% 72.64% 0.4622 0.9427 

2 920 02:37:35 81.25% 71.86% 0.4056 0.9531 

2 1104 03:09:03 100.00% 70.84% 0.1247 12.708 

2 1288 03:40:13 75.00% 73.28% 0.5681 0.9984 

3 1472 04:11:27 93.75% 75.32% 0.1451 0.7364 

3 1656 04:42:55 81.25% 74.34% 0.4851 0.7988 

3 1840 05:14:22 81.25% 72.94% 0.3430 0.8805 

3 2024 05:45:53 87.50% 73.69% 0.3709 0.7215 

4 2208 06:17:06 87.50% 75.66% 0.2403 0.7593 

4 2392 06:48:13 75.00% 75.19% 0.4032 0.7778 

4 2576 07:19:23 87.50% 75.56% 0.1639 0.9141 

4 2760 07:50:37 93.75% 75.49% 0.2257 0.8536 

5 2944 08:21:57 93.75% 76.07% 0.1682 0.7871 

5 3128 08:53:01 93.75% 76.55% 0.2448 0.7558 

5 3312 09:24:12 87.50% 77.02% 0.3339 0.7229 

5 3496 09:55:22 81.25% 74.37% 0.3821 10.234 

5 3675 10:25:42 81.25% 76.31% 0.2276 0.7182 

As illustrated in Figure 7, the test accuracy achieved during 

the training process using the preprocessed data with the 

ViTs network reached 76.31%. In comparison, the test 

accuracy obtained from the training process with the 

unprocessed data was 73.83%. This indicates that the 

preprocessing step contributed to an enhancement of 2.48% 

in overall performance. The features from the dataset were 

extracted from the ViT network prior to the classification 

layer, and these features were subsequently classified using 

a range of traditional classifiers, including K-Nearest 

Neighbors (KNN), Support Vector Machines (SVM), 

Neural Networks, Ensemble methods, Discriminant 

Analysis, Efficient Logistic Regression, among others. The 

results of these classification efforts are summarized in 

Table 3. Upon analysis of the classification results, it is 

noteworthy that the accuracy increased significantly to 

90.6%, reflecting an impressive 18.04% improvement 

compared to the baseline training accuracy. 

This substantial increase underscores the effectiveness of 

using the ViT network for feature extraction and the 

subsequent classification process, demonstrating the 

potential of this approach in enhancing diagnostic 

performance for skin disease classification. 

Figure 8 shows the confusion matrix for the Weighted KNN 

model which has the highest classification accuracy 

according to Table 3. 

Upon analyzing the confusion matrix for the classical 

classifier that achieved the highest accuracy, we observe 

that the dataset comprises a total of 14,716 training and test 

samples. This dataset includes 1,482 Arsenic images, 3,002 

Eczema images, 3,152 Melanoma images, 3,630 Normal 

images, and 3,448 Psoriasis images. 

The classification results for each category are as 
follows: 

• Arsenic images: Out of 1,482 images, 1,396 were 
correctly classified, with 86 misclassifications, 
indicating strong performance in this category. 

• Eczema images: Of the 3,002 images, 2,261 were 
accurately classified, while 741 were misclassified, 
revealing significant challenges in correctly identifying 
this condition. 

• Melanoma images: All 3,139 images were correctly 
identified, although 13 were misclassified, 
demonstrating exceptional accuracy in detecting this 
type of skin disease. 

• Normal images: From the 3,630 images, 3,513 were 
correctly predicted, with 117 misclassifications, 
showing robust performance but highlighting some 
areas for improvement. 

• Psoriasis images: Among the 3,448 images, 2,598 were 

accurately classified, but 850 were misclassified, 

indicating that this category presents substantial 

difficulties for the classifier.
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Figure 7. Training and error parameters of the preprocessed dataset.

 

Figure 8. Confusion Matrix obtained with the Weighted 

KNN model 

This analysis illustrates the classifier's strong overall 
performance, particularly in identifying Melanoma 
images, where it achieved perfect accuracy. However, it 
also highlights challenges in accurately classifying 
Eczema and Psoriasis images, suggesting the need for 
further refinement in these areas to improve diagnostic 
accuracy across all skin disease categories. Finally, 
Figure 9 shows the ROC curve for the weighted KNN 
model. 
After preprocessing the dataset, the Psoriasis class, with 
3,448 samples, has the highest number of examples, 
following the Normal class, which contains 3,002 
samples. When examining the confusion matrix for both 
the original dataset and the preprocessed dataset, it is 
observed that the Psoriasis class is most frequently 
misclassified as the Eczema class. A closer comparison 
of the images from these two classes with the other three 

classes in the dataset reveals that the visual features of 
the Psoriasis and Eczema classes are very similar to each 
other. In contrast, their differences from the other classes 
are much more distinct. This similarity explains why the 
Psoriasis class is most often misclassified as the Eczema 
class. It also highlights that these misclassifications are 
not primarily due to the number of images in the classes 
but rather due to the high degree of visual similarity 
between certain classes. 

Table 3. Classification results of the best 15 classifiers. 

Model Sub Model Accuracy 

KNN Weighted KNN 87.72% 

SVM Weighted KNN 87.68% 

SVM Quadratic SVM 87.67% 

Neural Network 
Bilayered Neural 

Network 
87.64% 

Neural Network 
Medium Neural 

Network 
87.63% 

Ensemble Bagged Trees 87.56% 

Neural Network 
Narrow Neural 

Network 
87.56% 

Neural Network 
Trilayered Neural 

Network 
87.47% 

KNN Coarse KNN 87.40% 

KNN Medium KNN 87.20% 

KNN Cosine KNN 87.20% 

SVM 
Coarse Gaussian 

SVM 
87.16% 

KNN Cubic KNN 87.11% 

Discriminant 
Quadratic 

Discriminant 
87.05% 

Efficient Logistic 

Regression 

Efficient Logistic 

Regression 
87.01% 
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Figure 9. ROC curve for the weighted KNN model. 

Hyperparameter tuning is a crucial element for 
attaining optimal performance using ViTs models, a 
topic that was not well addressed in the initial discourse. 
This work carefully changed many hyperparameters to 
optimize the ViT architecture for skin disease 
categorization. The learning rate was set at AA, a figure 
selected to optimize the balance between convergence 
speed and stability during training. The batch size was 
configured to 16, enhancing memory efficiency while 
preserving the model's generalization capability. A 
maximum of five epochs were utilized for training, 
guided by early termination conditions to prevent 
overfitting. The Adam optimizer, together with weight 
decay regularization, was utilized to improve 
optimization efficiency and reduce the likelihood of 
overfitting to limited datasets. The patch size, an 
essential hyperparameter of the ViT, was established at 

16 to maintain an optimal equilibrium between global 
context and local feature representation in the pictures. 
The quantity of attention heads and transformer layers 
was optimized to enhance model performance while 
maintaining tolerable computing complexity. To 
mitigate the fluctuation in input photos, data 
augmentation techniques, including random cropping 
and flipping, were employed during training to enhance 
the model's resilience. Hyperparameter tuning was 
conducted iteratively, with validation accuracy as the 
principal metric, with grid search and human 
modifications directing the selection process. Through 
the optimization of these hyperparameters, the ViT 
model attained improved feature extraction skills, 
illustrating its appropriateness for intricate medical 
picture classification tasks. Subsequent research will 
investigate sophisticated optimization techniques, 
including Bayesian optimization, to enhance model 
efficiency. 

The findings of this study demonstrate the efficacy of 
combining ViTs with classical classifiers for accurate 
skin disease diagnosis. To provide context and highlight 
the significance of these results, a comparison with 
existing studies in the literature was conducted. Table 4 
summarizes key metrics, such as accuracy, methods 
used, datasets employed, and clinical applicability, for 
several state-of-the-art approaches in skin disease 
classification. This table highlights the comparative 
advantages of the proposed framework, particularly its 
ability to achieve high accuracy with reduced 
computational requirements. The combination of ViTs 
for feature extraction and classical classifiers for final 
diagnosis proves to be a balanced approach, suitable for 
deployment in resource-constrained clinical settings. 

 

 

Table 4. Comparison with some of the existing studies 

Study Methodology Dataset Size and Classes Accuracy  Clinical 

Applicability 

This Study 
ViT + Classical 

Classifiers 
7,356 images, 5 classes  90.6% 

High (ViT for global 

context, low 

compute cost of 

classifiers) 

DEEPSCAN [29] 
ViT-Based 

Diagnostics 

Dermoscopic Dataset, 

Binary (Benign/Malignant) 
92.4% 

High (Focus on 

malignant lesion 

detection) 

Assist-Dermo [30] 
Lightweight 

Separable ViT 

Multiclass Dataset, 3 classes

  
88.7% 

Moderate (Efficient 

but less 

generalizable) 

Srinivasu et al. [12] 
MobileNetV2 + 

LSTM  
ISIC 2018, Binary 87.2% 

Low (Convolutional 

focus, limited 

generalization) 

Inthiyaz et al. [7] 
CNN-Based Deep 

Learning 
Custom Dataset, 7 classes  85.4% 

Moderate (High 

compute 

requirements) 

Chan et al. [21] Ensemble of CNNs ISIC 2017, Multiclass 86.9% 

Low (High 

complexity and 

compute-intensive) 
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Parvaiz et al. [38] 
ViT + Pretrained 

ResNet 
Custom Dataset, 5 classes  89.1% 

High (Focus on 

medical image 

generalization) 

Jelassi et al. [39] 
ViT with Positional 

Attention 

Multiclass Dataset, 4 classes

  
91.0% 

Moderate (ViT 

adaptation for small 

datasets) 

Das et al. [14] CNN + SVM Hybrid Custom Dataset, Binary 84.3% 

Low (Limited 

scalability to 

multiclass tasks) 

Khan et al. [26] 
Vision Transformers 

for Skin Cancer 

Dermoscopic Dataset, 

Multiclass 
93.1% 

High (Focused on 

segmentation + 

classification 

synergy) 

Conclusions 

ViTs represent a cutting-edge deep learning technology 

with significant applications in the medical field, 

particularly in skin disease diagnosis. Due to their 

architecture, ViTs require a large number of parameters 

and, consequently, a substantial dataset for effective 

learning. The rapid digitization of healthcare has now made 

this feasible. In contrast, classical classifiers operate with 

relatively fewer input data, making them suited for cases 

with limited datasets. In clinical settings, high-resolution 

imaging techniques such as dermoscopy, confocal 

microscopy, reflectance confocal microscopy, and Raman 

spectroscopy are frequently employed for diagnosing skin 

diseases. ViTs are especially promising in clinical practice 

as they do not rely on convolutional operations, offering an 

advantage over traditional convolutional neural networks 

(CNNs). In this study, the experiments were based on 

classifying the images in the dataset which were categorized 

into five classes. We conducted these experiments on 

preprocessed images from two datasets, one of which 

consisted of dermatoscopic images. The primary dataset 

used in this study contained skin images classified into five 

categories: normal, melanoma, arsenic, psoriasis, and 

eczema. To enhance image quality, Adaptive Histogram 

Equalization (AHE) was applied in preprocessing, which 

improved contrast and highlighted essential details. 

Following this, ViTs were utilized to extract intricate 

features from the images, which were then input into 

traditional machine learning classifiers to aid in the accurate 

diagnosis of skin conditions. The results underscore the 

effectiveness of combining ViTs with classical classifiers 

for medical image classification tasks, suggesting that this 

approach can significantly enhance diagnostic accuracy in 

skin disease detection.  

This study's results, showcasing the effectiveness of 

integrating ViTs with traditional classifiers for skin 

condition identification, possess considerable promise for 

practical use. The exceptional accuracy attained, especially 

for situations such as melanoma, highlights the model's 

dependability in identifying significant skin disorders that 

necessitate immediate action. ViTs' capacity to identify 

complex visual characteristics, including small lesions, 

improves diagnostic accuracy, rendering them appropriate 

for use in clinical settings where misinterpretation may lead 

to serious repercussions. The suggested architecture may be 

integrated into teledermatology systems, facilitating remote 

diagnosis in under-resourced or rural regions. The 

lightweight characteristics of classical classifiers allow for 

a reduction in the processing demands of utilizing ViT-

extracted features, rendering the system suitable for edge 

devices such as smartphones and portable diagnostic 

instruments. This accessibility might mitigate the global 

deficit of dermatologists and enhance early detection rates, 

particularly for high-risk disorders. Moreover, the system's 

modular architecture facilitates ongoing upgrades, 

including fresh datasets to enhance generalization 

progressively. Integrating with electronic health record 

systems might yield a full diagnostic procedure, merging 

image analysis with patient history and clinical 

documentation. To guarantee effective adoption, thorough 

validation with varied, real-world datasets is required. 

Creating intuitive interfaces and offering training for 

healthcare providers would augment its effectiveness. The 

suggested approach signifies progress in incorporating AI-

driven solutions into clinical practice, providing a scalable, 

efficient, and precise instrument for improving 

dermatological treatment. 
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