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Abstract: Thermal Simultaneous Localization and Mapping (SLAM) is a burgeoning field that collects robotics, computer vision, and 
thermal imaging. In this paper, we tried to present a thorough review of recent advancements in thermal SLAM, with a focus on its role 
in enhancing object detection and tracking. For better performance in low light, resistance to obstructions, and accuracy in bad weather, 
thermal SLAM systems work better with visual-based SLAM systems because they use changes in temperature in the environment. The 
review paper explains the fundamental principles of SLAM, including sensor technologies, data fusion techniques, and mapping 
algorithms. It then explores the methodologies used for object detection and tracking within the Thermal SLAM framework, 
encompassing classical approaches and deep learning techniques tailored for thermal imagery analysis. Additionally, the paper discusses 
challenges and limitations specific to thermal SLAM, such as thermal drift, sensor noise, and calibration issues, while also identifying 
potential areas for future research. The paper provides a comprehensive survey of applications that utilize thermal SLAM for object 
detection and tracking across various domains, including autonomous navigation, surveillance, search and rescue operations, and 
environmental monitoring. It synthesizes case studies and experimental results from relevant literature to demonstrate the effectiveness 
and practicality of thermal SLAM in complex scenarios where traditional visual-based methods struggle. Overall, this review emphasizes 
the role of thermal SLAM in advancing autonomous systems and enabling robust object detection and tracking in challenging 
environments. Examining recent developments, challenges, and applications, it sheds light on the progress made in this field. 
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1. Introduction 
Thermal Simultaneous Localization and Mapping (SLAM) 
is a developing discipline that integrates robotics, 
computer vision, and thermal imaging. This study 
presents a thorough examination of the latest 
developments in thermal SLAM, specifically highlighting 
its contribution to improving object detection and 
tracking. Thermal SLAM systems are more effective than 
visual-based SLAM systems in low light conditions, when 
there are obstructions, and during bad weather. This is 
because thermal SLAM systems rely on detecting changes 
in temperature in the surroundings. 
In the field of robotics and autonomous systems, one of 
the most important tasks is using a technique known as 
Simultaneous Localization and Mapping (SLAM) that 
accomplishes estimation of robot’s position in a 
generated map. The essential aim of this system is to 
offer assistance to a mobile agent in the process of 
navigating through an unfamiliar environment. The agent 
is able to simultaneously determine its location and then 
create a map to cover the adjacent “surrounding” area 
thanks to this capability. It is essential for autonomous 

systems to have an accurate estimation of the location 
and the surrounding map because it serves as a 
forerunner to a variety of other robotic operations, 
including navigation, exploration, and manipulation. The 
front end and the back end are the two fundamental 
components that make up a conventional structural 
localization and mapping architecture. The front end is 
tasked with acquiring sensor input and converting it into 
a more appropriate format for inference. Conversely, the 
back end utilizes the data obtained from the front end to 
calculate the agent’s states. Additionally, the back end 
plays a vital role in generating an environment 
representation and optimizing the agent states that are 
consistent across the entire globe (Cadena et al., 2016; Li 
et al., 2019). Most front-ends used in SLAM systems 
primarily depend on either range sensor (such as depth 
or LIDAR sensors) or vision sensors (RGB cameras) to 
detect the adjacent environment. Noteworthy examples 
are ORB-SLAM as explored in the research by Mur-Artal 
et al. (2015) which employs RGB sensors, and LOAM by 
Zhang and Singh (2014) which utilizes LIDAR sensors as 
their respective SLAM front-ends. While both range-
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based and vision-based SLAM systems generally perform 
effectively across different applications, their success 
significantly relies on ideal visibility circumstances. 
Nevertheless, the use of current sensors that are based 
on range, as well as vision for SLAM estimates, becomes 
challenging in the presence of unfavorable lighting 
conditions or airborne particulates like dust, soot, and 
smoke. For example, it is commonly recognized that RGB 
cameras are unable to operate in low light conditions; in 
contrast, cameras based on depth can be affected by 
bright illumination and glare (Debeunne and Vivet, 2020; 
Khattak et al., 2019b). Similar visual challenges arise 
when RGB or other sensors operate in environments 
with airborne particles (such as depth and LIDAR), as 
discussed by Bijelic et al. (2020) dense fog, or mist. 
Thermal imaging cameras, in contrast, are unaffected by 
most airborne pollutants and illumination conditions, as 
explored in the research by Brunner and Peynot (2014). 
The Long-Wave Infrared (LWIR) data released by nearby 
objects is captured by these cameras. The cameras that 
utilize properties of thermal imaging have distinct 
benefits that make them a practical alternative for SLAM 
applications in areas with limited visual information. 
However, the development of a complete thermal SLAM 
system poses a series of difficult obstacles. The key 
problem is to abstract or encode temperature data in a 
way that best supports the graph optimization process. 
The difficulty of this task stems from the fact that 
cameras utilizing thermal properties record the 
temperature distribution of the surroundings rather than 
their visual appearance and shape. The problem is 
exacerbated by the re-measurement accuracy of 8-bit 
thermal data, which reduces contrast and complicates 
the application of conventional feature identification and 
data binding techniques. 
 In addition, these types of thermal cameras require 
periodic halting of a process that takes between 0.5 and 1 
second to perform Non-Uniformity Correction (NUC), 
often referred to as Flat Field Correction (FFC) (Mouats 
et al., 2015; Delaune et al., 2019). During this procedure, 
the sensor is exposed to a consistent temperature to 
calculate the correction values for fixed- pattern noise. 
Thermal cameras pose several additional challenges, 
including restricted resolution, deteriorating signal-to-
noise ratio, and diminished contrast over time. These 
concerns suggest that the traditional approaches used for 
other optical sensors are not suitable for the usual front-
end abstraction process in thermal SLAM systems, as 
explained by Wang et al. (2017). Thermal SLAM utilizes 
temperature fluctuations in the surroundings and 
enhances conventional visual-based SLAM systems by 
providing additional benefits, including better detection 
and tracking in low-light situations, resistance to 
obstructions, and improved accuracy in unfavorable 
weather conditions. 
1.1. Non-Uniformity Correction (NUC) 
Non-Uniformity Correction (NUC) is an essential 
preprocessing step in thermal imaging that compensates 

for the inherent inconsistencies in the response of 
thermal detectors Wu et al (2023). These inconsistencies 
can degrade image quality, which in turn affects the 
accuracy of subsequent tasks like localization and 
mapping in systems such as SLAM. Thermal cameras are 
susceptible to fixed pattern noise (FPN), a phenomenon 
caused by variations in the sensitivity of individual 
sensor elements. These variations arise due to 
manufacturing imperfections or external environmental 
factors, leading to a non-uniform thermal response 
across the camera’s array of detectors. 
To address these issues, NUC typically involves a brief 
pause in image capture, during which the thermal camera 
analyzes a uniform temperature source. This process 
allows the camera to adjust for sensitivity discrepancies, 
thereby improving the uniformity of the thermal images. 
However, this adjustment process can result in 
temporary data interruptions, halting image capture for a 
short period. As a result, real-time applications such as 
thermal SLAM, which require continuous data 
acquisition, are challenged by these interruptions. 
The NUC process, if not properly executed, can introduce 
artifacts into the thermal images, such as blurred edges, a 
low signal-to-noise ratio, and inadequate texture 
representation. These artifacts negatively impact the 
clarity of thermal images and, consequently, the accuracy 
of localization and mapping tasks. To address these 
challenges, this study proposes a novel scene-based NUC 
method that is integrated with a monocular thermal 
SLAM system. This method not only reduces the data 
interruptions typically caused by NUC but also improves 
the overall quality of thermal images by taking advantage 
of real-time processing capabilities inherent in modern 
SLAM technologies. By incorporating advanced denoising 
algorithms along with optimized NUC strategies into our 
MonoThermal-SLAM framework, this approach aims to 
expand the use of thermal cameras in a variety of 
challenging environments. This integration ensures high-
quality spatial localization and mapping, even in 
conditions that previously hindered real-time thermal 
imaging applications. 
1.2. FFC (Flat Field Correction) 
Flat Field Correction (FFC) is an essential preprocessing 
technique applied to thermal images to compensate for 
non-uniformities in sensor response, which can be 
exacerbated in challenging environments such as fire 
incidents as explored in the research by van Manen et al. 
(2023). The performance of thermal cameras can 
degrade due to various factors, including temperature 
variations and environmental conditions. In this study, 
FFC is particularly crucial given that inconsistent image 
quality may hinder feature extraction and pose 
estimation accuracy. 
In the context of FirebotSLAM, a proactive triggering 
mechanism for FFC was employed based on several 
criteria: changes in temperature detected by the camera, 
the vehicle's turning rate, anticipated turns during 
navigation, and elapsed time since the last correction. 
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This adaptive approach ensures that corrections are 
performed at critical moments when inaccuracies are 
most likely to occur. 
It was observed that timely application of FFC 
significantly contributes to maintaining consistent image 
quality throughout data acquisition phases during fire 
scenarios. The integration of FFC into FirebotSLAM 
enables better feature tracking by mitigating noise and 
enhancing overall imaging reliability. However, it is 
important to note that while effective during periods 
with stable environmental conditions or gradual changes 
in scene temperature, rapid fluctuations—such as those 
caused by dynamic fire sources—may still challenge 
traditional correction methodologies. 
The authors highlight that further optimization of FFC 
routines could enhance system resilience against harsh 
thermal gradients encountered within smoke-filled 
environments while improving the robustness of 
extracted features for Odometry calculations. 
1.3. LWIR (Long-Wave Infrared) 
(Improving SLAM with Thermal Imagery) 
Recent advancements in Simultaneous Localization and 
Mapping (SLAM) have encountered significant challenges 
when applied to Long-Wave Infrared (LWIR) imagery. 
Traditional visual SLAM methods often struggle in 
environments characterized by poor visibility or 
substantial illumination changes, such as those found at 
night or in adverse weather conditions. Keil et al. (2024) 
address these challenges by proposing a novel approach 
that integrates learned feature descriptors into existing 
Bag of Words (BoW) localization frameworks. 
The authors highlight that thermal imagery experiences 
dramatic temperature-driven appearance changes from 
day to night, which complicates feature extraction and 
recolonization tasks within SLAM systems. They reveal 
that conventional feature descriptors such as ORB are not 
robust enough to maintain consistency across these 
diurnal variations, leading to failures in place 
recognition. 
To mitigate these issues, the study employs Gluestick—a 
learning-based method for feature extraction and 
matching—to enhance robustness against illumination 
changes. The authors introduce an extensive dataset 
collected with FLIR Boson thermal cameras over 24-hour 
cycles, providing valuable resources for training and 
testing their proposed methodology. 
The results show that their integrated approach 
significantly improves local tracking performance and 
successfully enables relocalization between day and 
night imagery—achieving high recall rates compared to 
traditional methods like ORB-SLAM3. This work 
represents a significant step towards achieving all-day 
autonomy for robotic systems utilizing LWIR cameras, 
ultimately paving the way for more effective long-term 
mapping solutions in diverse environments. 
 
 
 

2. Simultaneous Localization and Mapping 
(SLAM) 
Mapping is a crucial mechanism employed by mobile 
robots to create maps of the locations they operate in. 
These maps are utilized to determine their relative 
location within the environment, facilitating effective 
path planning (localization). The creation of Extended 
Kalman Filter SLAM (EKF-SLAM) technology is where 
SLAM got its start, as described by Leonard and Durrant-
Whyte (1991). Initial efforts in integrating SLAM involved 
a wide range of sensors, such as LIDAR, ultrasonic, 
inertial sensors, and GPS. Montemerlo (2002) proposed 
FastSLAM, a hybrid approach that combines Particle 
Filter and Extended Kalman Filter algorithms. Later, the 
same team introduced an improved version called 
FastSLAM 2.0, as explored in the research by 
Montemerlo et al. (2003). Dellaert and Kaess (2006) 
made a significant contribution to the field by 
introducing Square Root Smoothing and Mapping is a 
crucial mechanism employed by mobile robots to create 
maps of the locations they operate in. These maps are 
utilized to determine their relative location within the 
environment, facilitating effective path planning 
(localization). The creation of Extended Kalman Filter 
SLAM (EKF-SLAM) technology is where SLAM got its 
start. Initial efforts in integrating SLAM involved a wide 
range of sensors, such as LIDAR, ultrasonic, inertial 
sensors, and GPS. Montemerlo (2002) proposed 
FastSLAM, a hybrid approach that combines Particle 
Filter and Extended Kalman Filter algorithms. Later, the 
same team introduced an improved version called 
FastSLAM 2.0, as explored in the research by 
Montemerlo et al. (2003). Dellaert and Kaess (2006) 
made a significant contribution to the field by 
introducing Square Root Smoothing and Mapping (SAM), 
a technique that uses square root smoothing to improve 
the optimization of the SLAM problem, resulting in 
improved mapping efficiency. Kim et al. (2007) 
introduced a method called Unscented FastSLAM 
(UFastSLAM) that utilizes unscented transformation. This 
method has been shown to have improved resilience and 
accuracy when compared to FastSLAM 2.0. The field of 
SLAM has recently experienced a significant increase in 
interest in camera-based systems to decrease the weight 
and complexity of the systems. Camera-based SLAM 
systems that rely exclusively on visual input are usually 
known as visual SLAM (vSLAM), as noted by Taketomi et 
al. (2017). Significantly, the field of literature has 
witnessed the development of low-computation methods 
specifically designed for unmanned aerial vehicles (UAVs) 
that have limited onboard resources. Among these 
methods, visual Odometry stands out as a common 
Simultaneous Localization and Mapping (SLAM) 
application for small UAVs. Initial inquiries examined the 
incorporation of both Long Wave Infrared (LWIR) and 
visible spectra to tackle difficulties presented by 
environmental elements like fog or smoke. Maddern and 
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Vidas (2012) introduced a technique for integrating 8-bit 
thermal and RGB images to facilitate UAV navigation. 
Their research uncovered notable daily fluctuations in the 
visible spectrum, which differed from the thermal 
spectrum’s steady but less pronounced features. The 
integration of the combined spectrum resulted in 
enhanced outcomes compared to algorithms that rely 
exclusively on visual or thermal frames. Poujol et al. 
(2016) showed that significant improvements in 
performance can be achieved by integrating visual and 
thermal spectra in traditional visual Odometry methods. 
Their research utilized two image fusion methods: 
monochrome threshold-based image fusion (Rasmussen 
et al., 2009) and monocular visual Odometry, as explored 
in the research by Geiger et al. (2011). These techniques 
were applied to data gathered from an electric car 
navigating through an urban setting. The experimental 
results highlighted the enhanced value of fused images, 
which resulted in more resilient solutions. In a 
preliminary assessment, Brunner and Peynot (2010) 
examined the integration of optical and thermal cameras 
for determining position in settings filled with smoke or 
dust, with a specific emphasis on autonomous ground 
vehicles (AGVs). Although visual scans were not sufficient 
for determining relative movements, thermal imaging was 
able to offer estimates, albeit with less precision. 
Additionally, Brunner et al. (2013) suggested a technique 
to improve a Visual SLAM (VSLAM) algorithm by 
integrating LWIR and normal spectra. The SLAM 
architecture described by Chen et al. (2017) utilizes both 
thermal and visual data to create a color map of situations 
with low lighting conditions. One of the most widely 
approaches is Graph-based SLAM that used for 
Simultaneous Localization and Mapping (Grisetti et al., 
2010), where the robot's trajectory and the environment 
map are represented as a graph as shown in Saputra et al 
(2020). In this method, robot poses are modeled as 
nodes, and the spatial relationships between them are 
represented as edges based on sensor measurements and 
motion constraints. Optimization techniques are applied 
to adjust the node positions, minimizing errors and 
refining both the robot's path and the map. This 
approach effectively handles large-scale environments 
and loop closures, ensuring accurate, consistent mapping 
and localization (Hoshi et al., 2024). In the study by 
Mouats et al. (2014), a method called multispectral 
stereo Odometry was presented. This method combines 
optical and thermal sensors and is specifically designed 
for ground vehicles. Khattak et al. (2019a) combined 
radiometric sensors, the FLIR Tau2, and a visual camera 
to facilitate the movement of a tiny quadrotor in poorly 
illuminated indoor situations contaminated with dust. 
The use of an Intel NUC-i7 computer for onboard 
processing, along with thermal frames, allowed for 
effective feature selection and Extended Kalman 
Filtering to estimate drone Odometry. This ensured 
consistent performance even in situations with poor 
visibility. 

SLAM is vital for autonomous navigation and exploration, 
but current solutions struggle with performance 
consistency due to a lack of diverse, high-quality datasets 
and robust evaluation metrics. One major issue is the 
absence of high-quality datasets that cover diverse all-
weather conditions and provide a reliable metric for 
assessing robustness. This limitation significantly 
restricts the scalability and generalizability of SLAM 
technologies, impacting their development, validation, 
and deployment. To address this Zhao et al. (2023), 
introduce SubT-MRS, a challenging dataset designed to 
enhance SLAM in all-weather environments. It includes 
over 30 diverse scenes, multimodal sensors (LiDAR, 
cameras, IMU, thermal), and various robot locomotion 
(aerial, legged, wheeled). We also propose new 
robustness metrics, offering valuable insights for 
advancing SLAM research. 
The SLAM algorithm operates in an iterative fashion, 
where the robot continuously updates its position 
estimate and refines the map based on new sensor 
readings and previously acquired information. The 
overall architecture of the SLAM algorithm is shown in 
Figure 1, Tourani et al (2022). Building upon the 
foundational concepts of SLAM, we now move to the 
specific algorithmic procedures that enable simultaneous 
localization and mapping. 
2.1. SLAM Specific Algorithmic Procedures 
Initialization 
Sensor Data Acquisition: The robot gathers sensory 
information from its surroundings using sensors such as 
cameras, LiDAR, or sonar. 
Initial Pose Estimation: The robot's initial position and 
orientation are estimated based on sensor data and prior 
knowledge. 
2.1.1. Motion Prediction 
Odometry: The robot estimates its current position and 
orientation based on its previous position and the 
movement commands it has executed. 
Motion Model: A mathematical model is used to predict 
the robot's motion and account for potential errors in its 
movement. 
2.1.2. Observation Update 
Feature Extraction: Distinctive features are extracted 
from the sensor data, such as edges, corners, or planes. 
Feature Matching: Corresponding features are identified 
between consecutive sensor readings to track changes in 
the environment. 
Map Update: The robot updates its map of the 
environment based on the observed features and their 
locations relative to the robot's estimated position. 
2.1.3. Data Association 
Feature Tracking: The robot tracks the features it has 
previously observed to maintain consistency in the map. 
Loop Closure Detection: If the robot revisits a previously 
mapped area, it detects and corrects accumulated errors 
in its position estimates. 
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2.1.4. Map Optimization 
Pose Graph Optimization: The robot refines its position 
estimates and the map using optimization techniques to 
minimize errors and inconsistencies. 
Bundle Adjustment: A more advanced optimization 
technique that jointly refines the robot's poses and the 
positions of landmarks in the map. 

2.1.5. Output 
Localization: The robot's current position and orientation 
are determined. 
Mapping: A map of the environment is generated, which 
can be used for navigation, path planning, and other 
tasks. 
 

 

 
 

Figure 1. The flowchart of a standard visual SLAM approach, Tourani et al (2022). 
 
3. Thermal SLAM 
Thermal SLAM is an extension of traditional SLAM that 
uses thermal images or infrared sensors for both 
localization and mapping as shown in Figure 2, by Shin 
and Kim (2019) making it especially effective in 
environments where visibility is poor, such as smoke-
filled areas, complete darkness, or obstacles that block 
traditional optical sensors. While Thermal SLAM 
leverages different sensor modalities, it is fundamentally 
based on the same core principles as conventional SLAM 
as we mentioned before: 
Localization: This refers to determining the robot's 
position and orientation in the environment. In SLAM, 
localization is achieved by comparing the sensor data (in 
this case, thermal data) with the evolving map being 
built. The robot's location is continuously updated as it 
moves through the environment, helping it maintain an 
accurate representation of its surroundings. 
Feature Mapping: In both traditional and thermal SLAM, 
the process of mapping involves detecting and tracking 
key features in the environment, such as temperature 
gradients, heat sources, or other thermal signatures. 
These features—often distinct in thermal images—are 
used to create and refine a 2D or 3D map, allowing the 
robot to both understand and navigate the environment. 
Pose Estimation: Pose estimation involves calculating the 
robot’s position and orientation within the map. This is 
critical for localization as it enables the robot to track its 
movements in space, updating its pose in real time as it 
encounters new thermal features. Accurate pose 
estimation ensures that the robot can navigate and 
maintain awareness of its surroundings, even in 
challenging conditions where optical data may be 
insufficient. 
By relying on thermal data, Thermal SLAM overcomes 
the limitations of conventional SLAM in low-visibility 

environments while still maintaining the essential 
framework of localization, mapping, and pose estimation. 
Thermal SLAM is a recently developed field of research, 
with most discoveries published in the past ten years. 

 
 

Figure 2. Set of Thermal-infrared (firstly) and RGB 
images (secondly), in contrast, RGB images, thermal 
images can capture overlook the time of captured (day or 
night) Shin and Kim (2019). 
 
Thermal SLAM Research primarily concentrates on 
thermal Odometry, which involves using thermal 
cameras to calculate vehicle Odometry. However, 
thermal mapping, specifically the representation of 
thermal data in three dimensions, often requires 
overlaying thermal images onto point clouds created 
from other depth sources. A thermal-infrared SLAM 
system was first presented by Shin and Kim (2019) in 
Figure 3 who used full radiometric 14-bit raw data and 
LIDAR observations to estimate motion in six Degrees of 
Freedom (DoF). The experimental results demonstrated 
the advantages of the 14-bit system, overcoming 
restrictions related to the re-scaling procedure and 
showing increased resistance to data loss. Later, Khattak 
et al. (2020) suggested a thermal/inertial system that 
uses complete radiometric data to estimate Odometry. 
They emphasized that this system is resistant to data 
loss caused by sudden changes resulting from Automatic 
Gain Control (AGC) re- scaling. Although previous 
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research has shown positive outcomes, SLAM methods 
still require significant processing resources and often 
necessitate the use of high-resolution thermal images. 
Several of the previously mentioned studies depend on 
high-resolution thermal cameras like the FLIR Tau2, 
which involve significant expenses. Additionally, the 
incorporation of a small yet robust onboard computer 
system contributes to the financial costs, as well as the 
need to take into account factors like space, weight, and 
power usage. 
 

 
 

Figure 3. Thermal-Infrared SLAM Using Sparse Depth 
Information, Shin and Kim (2019). 
 
3.1. Thermal Feature Extraction and Matching 
Johansson et al. (2016) assessed how well several visual-
based feature detectors and descriptors performed on 
thermal images using a dataset of image pairs taken in 
various textural and structural contexts. The dataset 
included pairs of images captured in different structural 
and textured environments. The images were initially 
resized using an 8-bit method, followed by histogram 
equalization prior to evaluation. The methods were 
tested under various image deformations, including 
changes in viewpoint and noise. The evaluation criteria 
were determined by considering recall, which measures 
the proportion of correct feature matches identified by 
RANSAC out of the total number of matches. The 
combination of the Hessian-affine extractor with the 
LIOP descriptor consistently demonstrated robust 
performance in various image deformations among 
floating-point descriptors. The SURF extractor and 
descriptor exhibited excellent performance, particularly 
in terms of their robustness against Gaussian blur and 
Gaussian white noise. Binary descriptors, when used in 
thermal imaging, provided performance comparable to 
floating-point descriptors, albeit with reduced 
computational expense. Combining binary descriptors 
like ORB with FREAK or BRISK produced competitive 
outcomes. Mouats et al. (2018) conducted another 
benchmark that specifically examined feature extraction 
and description algorithms for thermal features. This 
benchmark considered processing time, as it aimed at 
predicting UAV Odometry using thermal images. The 

datasets included video sequences captured in safe 
indoor and outdoor environments with a FLIR Tau2 
LWIR camera. Overall, blob detectors like SIFT and SURF 
showed lower repeatability than corner detectors such as 
FAST and GFTT. Nevertheless, the characteristics of the 
blob displayed a more pronounced uniqueness, leading 
to elevated matching scores. The performance of SIFT 
feature extraction was subpar in various aspects. 
Surprisingly, the presence of motion blur had only a 
modest impact on feature extractors, and the SURF blob 
extractor had the highest performance. Although 
descriptors were relatively unaffected by Non-Uniformity 
Correction (NUC) as expected, it was observed that noise 
visibility was amplified in indoor situations with uniform 
temperatures. The authors suggested employing the 
SURF feature extraction technique in conjunction with 
the FREAK binary descriptor for thermal navigation 
applications. This combination provides a well-balanced 
compromise between match ability, repeatability, and 
real-time computing. The benchmarks were performed 
using datasets collected in controlled situations with 
consistent temperatures. However, environments with 
smoke or severe heat sources might have a major impact 
on the processes of extracting and describing features. 
Moreover, achieving a homogeneous dispersion of 
characteristics is essential for precise Odometry 
estimation. It is worth mentioning that the benchmark 
developed by Mouats et al. (2018) does not include a 
measurement for assessing the distribution of features 
across frames, which is crucial for accurately estimating 
thermal Odometry. 
3.2. Thermal Image Processing 
Over the past few years, techniques in image processing 
have been developed to address pattern noise in thermal 
imagery (Lu, 2020; Chen et al., 2021). Nevertheless, 
several conventional methods for reducing noise in 
thermal images fail to acknowledge the significant 
amount of time required for processing and encounter 
difficulties in successfully addressing the fundamental 
issues related to the measurement of light intensity in 
resized thermal images. To reduce the effects of 
Automatic Gain Control (AGC) operations on photometric 
changes, Mouats et al. (2015) suggested modifying the 
AGC threshold to minimize fluctuations in illumination. 
However, the core problem of photometric change 
remains unresolved, as this strategy merely postpones 
the eventual alteration in illumination. Brunner and 
Peynot (2010) and Vidas and Sridharan (2012) proposed 
a technique for histogram normalization of 14-bit 
thermal images to provide consistent illumination. In 
contrast, Papachristos et al. (2018) applied fixed interval 
re-scaling in familiar settings. Nevertheless, both 
approaches strongly depend on temperature priors that 
are peculiar to specific conditions, which restricts their 
practical usefulness. Recently, the use of deep neural 
networks in thermal image processing approaches has 
demonstrated potential. However, there is a lack of 
typical image processing methods specifically designed 
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to handle noise and AGC concerns simultaneously in 
rescaled low-contrast thermal images. 
3.3. Feature Association on Thermal Images 
Traditional feature-matching techniques, such as BRIEF  
(Calonder et al., 2010; Zhao et al., 2020), have proven 
useful in odometry and SLAM (Simultaneous Localization 
and Mapping) studies. Lucas and Kanade (1981) assessed 
various feature descriptors on rescaled images using 
thermal properties, which showed inferior matching 
ability compared to visible images. The difference in 
results might be ascribed to intrinsic challenges in 
thermal image quality, such as noise. Learning-based 
feature association methods have become increasingly 
popular in certain SLAM systems, demonstrating 
comparable performance to traditional techniques and 
often surpassing them in difficult circumstances. GCNv2 
and DXS (Mouats et al, 2018; Tang et al., 2019) employ 
deep neural networks (DNNs) to identify features, extract 
them, and generate descriptors, with trials 
demonstrating improved resilience in environments with 
less texture. Zhao et al. (2020) created a method for 
monocular visual odometry by utilizing deep optical flow 
to compare consecutive frames. It is important to 
emphasize that the methods stated above are mostly 
intended for images visible to the naked eye and may not 
be directly suitable for infrared photographs. In the 
context of Super Thermal, Lu and Lu (2021) introduced a 
DNN that can find characteristics and calculate 
descriptors simultaneously. This study showcased the 
benefits of using a deep model for matching thermal 
features. However, this network has not been 
investigated within a comprehensive SLAM system, and 
its computational expense has not been discussed. 
3.4. Thermal Odometry 
The process of obtaining a high-accuracy estimate of 
rotational speed in SLAM systems that rely on thermal 
imaging is challenging because these cameras collect heat 
distribution instead of visual appearance and geometry. 
However, there have been attempts to create thermal 
Odometry, though these have mainly focused on short 
distances or have not achieved the same level of 
performance as RGB-based Odometry. Mouats et al. 
(2015) employed a Fast-Hessian feature extractor to 
compute the distance for thermal Odometry in UAV 
tracking, while Borges and Vidas (2016) developed a 
practical thermal Odometry system that includes an 
automated technique for scheduling the Nonuniformity 
Correction (NUC) operation. However, this system is 
limited to outdoor situations because it relies on road 
lane estimation to calculate scale. Recent progress in 
thermal Odometry has been made by combining it with 
other types of sensors. Delaune et al. (2019) used 
thermal and inertial sensors to track UAVs employing an 
Extended Kalman Filter (EKF) algorithm. They showed 
that this approach was effective in different illumination 
conditions by using FAST and KLT trackers. Similarly, 
Khattak et al. (2019a) devised a thermal-inertial 
Odometry system for monitoring UAVs. They utilized a 

direct technique based on key-frames to reduce 
radiometric errors between consecutive frames using 
raw radiometric data. Although there have been 
advancements in thermal-inertial Odometry, there is 
currently no published research on thermal-inertial 
SLAM. Vidas and Sridharan (2012) developed a portable 
thermal SLAM system that uses FAST-based feature 
tracking and bundle adjustment-based optimization. 
Nevertheless, it lacks a loop closure module, which is 
crucial in modern SLAM frameworks for producing 
coherent trajectories and maps. Moreover, the absence of 
a sensor not influenced by the environment, such as an 
Inertial Measurement Unit (IMU), complicates accurate 
estimation in diverse contexts. Shin and Kim (2019) 
introduced a feature-based LIDAR-thermal SLAM method 
that combines thermal data with sparse range 
measurements from LIDAR to enhance scale estimates. 
However, using their system in an autonomous driving 
environment, which often involves greater temperature 
variations than indoor settings, raises questions about its 
universal applicability. 
3.5. Thermal Mapping 
Vidas and Sridharan (2012) created a monocular SLAM 
system specifically designed for thermal cameras that are 
carried by hand. The program identifies corner features 
using the GFTT and FAST detectors and then tracks them 
using sparse Lucas-Kanade optical flow. To analyze the 
images with thermal properties, the original 14-bit 
thermal data is transformed into 8-bit data within a 
predetermined range centered on the average value 
between the lowest and maximum 14-bit intensity. 
Homography motion estimation utilizes matched SURF 
features to continue tracking following a Flat Field 
Correction (FFC). Local path refinements are conducted 
on every frame between two key-frames, and a new 
metric is introduced based on five factors to determine 
the selection of a new key-frame. Nevertheless, the 
technique frequently falls short of achieving a re-
projection error below 1.5 for extended durations, 
especially during pure rotations. The authors did not 
disclose information about the accuracy of the resulting 
3D thermal map. Shin and Kim (2019) integrated depth 
data from LiDAR and thermal data from a LWIR camera 
to generate a thermal map. A limited number of LiDAR 
points are transformed and mapped onto the 14-bit 
thermal image. These points are then monitored and 
traced in the next frame using a direct method. The loop 
closure, extracted through the bag of visual words 
technique, involves obtaining ORB features from the 8-bit 
transformed image. However, this method may lead to 
incorrect detections in settings with limited intricate 
patterns. To address this problem, supplementary 
geometric verification is introduced. The authors assert 
that they have created a visual SLAM system capable of 
accurately calculating a trajectory and generating a 3D 
thermal map throughout the day, regardless of outdoor 
illumination conditions. (Van Manen et al., 2023) 
developed Chameleon, a stereo thermal-inertial SLAM 
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system based on EKF-SLAM. Pose estimation depends on 
tracking up to thirty landmarks retrieved via SIFT feature 
extraction and description. Experiments conducted in 
both cold and heated conditions showed that relying 
solely on thermal-inertial data for localization is not 
feasible due to the lack of distinct differences in thermal 
images, especially in cold environments. While no 
specific margin of error is provided, the algorithm claims 
to approximate location within a few meters of a 
firefighting training facility where an active fire is 
present. Nevertheless, the limited mapping method 
cannot generate a clear and understandable 
representation of the building, and moisture formation 
on the lens in hot conditions negatively impacts the 
accuracy of determining position, resulting in a high 
dependence on inertial data. When only a thermal map is 
needed, it is typically preferable to overlay thermal data 
onto a 3D map created by a SLAM technique utilizing 
more widely used sensors. This is accomplished by 
acquiring the position and depth information via sensors 
like LiDAR, RGB cameras, or depth cameras. 
Subsequently, thermal data is incorporated into the 3D 
map by projecting map points onto thermal images. 
However, in environments filled with smoke or under 
fire conditions, secondary sensors may lose effectiveness, 
negatively impacting the accuracy and reliability of 
thermal mapping algorithms. 
 
4. Thermal Inertial-SLAM Method 
Visual SLAM’s perform better in good weather 
conditions. However, in low visibility, foggy, stormy, 
blizzardy, or dark environments with poor visibility, such 
as darkness at night, enclosed environments, and tunnels, 
Visual SLAM’s have difficulty reading the surrounding 
data due to their equipment (usually LIDAR). 
TI-SLAM: Thermal-Inertial SLAM with Probabilistic 
Neural Networks for Adverse Conditions Saputra et al. 
(2021) introduced an approach called TI-SLAM that 
integrates neural network-based sensor abstraction with 
probabilistic pose graph optimization to improve pose 
accuracy in visibility-limited situations, such as darkness, 
smoke, or dust. 
Neural Sensor Abstraction: The front-end uses Mixture 
Density Networks (MDN) to convert raw thermal and 
inertial data into a probabilistic format, optimizing the 
interpretation process for more accurate mapping and 
localization. TI- SLAM’s neural network uses a ResNet 50 
model to transform raw thermal data into distinctive 
128-dimensional global descriptors. This structure is 
adapted for processing thermal images, which typically 
contain less feature variation than RGB images. For 
training, the network exploits triple loss with samples 
obtained from the Bag of Traced Words (BoTW) 
algorithm applied to RGB images. This method enables 
efficient training by focusing on generating high-quality 
outputs. 
Robust Pose Graph Optimization: TI-SLAM is designed to 
perform under difficult conditions. This is achieved with 

thermal imaging and guidance that captures infrared 
radiation, which is unaffected by visible light conditions, 
as explored in the research by Khattak et al. (2019a). 
Thermal-inertial SLAM offers advantages compared to 
traditional SLAM methods due to its use of thermal and 
inertial data, robustness to environmental changes, 
reduced dependency on feature subtraction, robust 
predictions using Probabilistic Neural Networks (PNNs), 
graph-based optimization for consistent matching, and 
adaptability to different sensor configurations. Thermal 
and inertial data complement visual information, 
providing robustness to illumination changes and 
accurate motion estimation. Unlike traditional SLAM, it 
relies less on feature extraction algorithms using 
differential thermal signatures for matching. PNNs 
provide robust predictions by accounting for 
uncertainties in sensor measurements and motion 
estimates. Graph-based optimization reduces variance by 
providing globally consistent maps and trajectories. 
Furthermore, its modular nature allows for easy 
integration of additional sensors or adjustments to the 
sensor setup, increasing adaptability to various robotic 
platforms and application requirements. 
Since the TI-SLAM algorithm is older compared to today’s 
algorithms, we had to use specific versions of the 
additional packages needed for this algorithm to 
function, or versions of the packages that are still in use 
today. When we updated some packages, we encountered 
different errors in the algorithm, making the process 
more challenging than anticipated. Once we managed to 
run the TI-SLAM algorithm, the second major issue was 
the large size of the datasets used. The algorithm was 
able to reduce this dataset from 14 bits to 8 bits, but even 
this was taking up too much space in our virtual machine. 
Moreover, the size of these datasets caused the SLAM 
algorithm to generate output for an extended period. 
Additionally, to place these datasets in the correct file 
locations and provide them as input to the algorithm, the 
configuration file had to be configured separately for 
each dataset. Constantly updating the contents of this 
configuration file for each dataset was also a time-
consuming problem for us. The last and biggest challenge 
we faced while running and testing this algorithm was 
that the machines we used were not equipped with 
sufficient hardware, such as RAM (Random Access 
Memory), required for large datasets. Although we ran 
this algorithm on our virtual machine with a high RAM 
size of 16 GB, we were unable to obtain output for many 
datasets. Due to the algorithm’s large number of 
requirements for these datasets, our virtual machines 
were unable to meet this need, resulting in a "Process 
Killed" response for most of the large datasets. Despite all 
these problems, we tested our TI-SLAM algorithm on 
some datasets and achieved successful results. Thermal 
and inertial data complement visual information, 
providing robustness to illumination changes and 
accurate motion estimation. Unlike traditional SLAM, it 
relies less on feature extraction algorithms, using 
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differential thermal signatures for matching. Probabilistic 
Neural Networks provide robust predictions by 
accounting for uncertainties in sensor measurements and 
motion estimates. Graph-based optimization reduces 
variance by providing globally consistent maps and 
trajectories. Furthermore, its modular nature allows for 
easy integration of additional sensors or adjustments to 
the sensor setup, increasing adaptability to various 
robotic platforms and application requirements. 
In summary, Thermal Inertial SLAM stands out for its 
ability to use thermal and inertial data, robust prediction 
using PNNs, and graph-based optimization, providing a 
robust and adaptable solution for mapping and 
positioning tasks in harsh environments. 
 
5. Conclusion 
Thermal SLAM, a new field, may improve object detection 
and tracking in challenging situations (Taketomi et al., 
2017). Thermal SLAM leverages temperature fluctuations 
for robust operation in low light, adverse weather, and 
occlusions (Brunner and Peynot, 2014). Although 
Thermal SLAM seems promising, the low resolution of 
thermal cameras, signal-to-noise ratio deterioration, and 
low contrast in thermal images present distinct obstacles 
(Delaune et al., 2019). To overcome these constraints, the 
implementation of Thermal SLAM requires specialized 
feature extraction, matching, and image processing 
(Wang et al., 2017). For short-range applications, thermal 
Odometry has seen improvements (Lucas and Kanade, 

1981; Lu and Lu, 2021). Thermal-inertial Odometry 
enhances performance (Borges and Vidas, 2016; Delaune 
et al., 2019), however, a complete thermal-inertial SLAM 
system with robust loop closure is still not achievable. 
Fusing thermal data with 3D maps from LiDAR is 
common in thermal mapping. While effective, this 
strategy may be limited in scenarios involving smoke or 
fire damage to secondary sensors (Maddern and Vidas, 
2012). 
Future studies should focus on developing processing 
methods for low-resolution, low-contrast thermal 
imagery, including feature extraction and matching 
techniques. Deep learning methods for Thermal SLAM 
are promising, potential for robust and dependable 
object recognition and tracking in complicated 
circumstances. In conclusion, Thermal SLAM could 
transform autonomous systems in visually challenged 
contexts (Papachristos et al., 2018). Additionally, 
approaches for thermal mapping that are independent of 
secondary sensors for smoke-filled environments should 
be investigated (Taketomi et al., 2017). Thermal SLAM 
has the potential to revolutionize autonomous 
navigation, search and rescue, and environmental 
monitoring by overcoming existing challenges and 
exploring new research areas. The future of Thermal 
SLAM is bright, and continuous research will unveil its 
full potential. Finally, Table 1 shows a summary of the 
works reviewed in this article. 

 

Table 1. A summary of the works (methods)reviewed in this article 
Method Year Authors Limitations Key Features 

Thermal-Infrared SLAM 2019 (Shin and Kim, 2019) Computationally expensive Requires high-resolution thermal cameras and 
powerful computers. 

Thermal/Inertial SLAM 2019 (Khattak et al., 2019a) Computationally expensive Uses full radiometric data for odometry. 

Monocular thermal SLAM 2020 (Bijelic et al., 2020) 
Lacks loop closure for consistent 

trajectories 
Not suitable for large-scale environments 

or globally consistent maps. 

Feature-based LiDAR- 
thermal SLAM. 

2019 (Shin and Kim, 2019) 
Requires additional LiDAR sensor, which 
may not be suitable for all environments. 

Enhances thermal data with sparse range 
measurements from LiDAR for scale 

estimation. 
Chameleon (Stereo thermal-
inertial SLAM). 

2023 
(van Manen et al., 

2023) 
Limited effectiveness in low- contrast 

environments. 
Relies heavily on inertial data, and potentially 

inaccurate thermal maps. 
Visual and thermal Sensor 
Fusion (VSLAM+Thermal). 

2012 
(Maddern and Vidas, 

2012) 
Requires robust image fusion algorithms, 
and may be computationally expensive. 

Combines visual and thermal spectra for 
navigation. 

Multi-spectral Stereo 
Odometry. 

2016 
(Borges and Vidas, 

2016) 
Integrates optical and thermal sensors 

for ground vehicles. 
Requires stereo camera setup (thermal and 

visual). 
Thermal Radiometric SLAM 
with NUC. 

2020 (Khattak et al., 2020) 
Requires high-resolution thermal camera 

and powerful computer. 
Integrates high-resolution thermal camera, 

powerful computer, and radiometric sensors. 

Super thermal (Deep 
Learning). 2018 (Mouats et al., 2018) 

Limited research on integration within a 
complete SLAM system, and 

computational cost needs evaluation. 

Deep neural network for thermal feature 
matching. 

Graph-Based Thermal- Inertial 
SLAM with Probabilistic 
Neural Networks. 

2020 (Saputra et al., 2020) 
May require significant computational 

resources for neural network operations. 

Combines graph- based SLAM with 
probabilistic neural networks for 

enhancement. thermal-inertial navigation. 

Graph-based SLAM. 2010 Grisetti et al., 2010) 
Tutorial nature may limit depth in 

specific applications like thermal-inertial 
SLAM. 

Provides a comprehensive overview of graph-
based SLAM, a foundational technique in 

robotics 
Only Look Once, Mining 
Distinctive Landmarks from 
ConvNet for Visual Place 
Recognition. 

2017 (Chen et al., 2017) 
Focused on visual place recognition, may 

not directly address thermal-inertial 
SLAM challenges. 

Introduces a method extract distinctive 
landmarks from Convolutional Neural 

Networks for place recognition. 

SubT-MRS Dataset: Pushing 
SLAM Towards All weather 
Environments. 

2023 (Zhao et al., 2023) 
Dataset-focused, may not provide a 

complete SLAM system. 

Presents a dataset designed to challenge and 
improve SLAM systems in all-weather 

environments, potentially including thermal 
data. 
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