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Abstract – In this study, we present the process and research for finding the best machine learning methodology and innovative 

approach to evaluate the image quality in Computed Tomography (CT) scanners by predicting Signal-to-Noise Ratio (SNR) and 

Contrast-to-Noise Ratio (CNR) from low-resolution CT images of a series of phantoms. Traditional methods of Image Quality 

Assessment (IQA), reliant on subjective evaluation by radiologists, often suffer from variability and inefficiency. To address 

these limitations, we explored both interpretable models like the Adaptive Neuro-Fuzzy Inference System (ANFIS) and other 

advanced deep learning architectures. Initially, ANFIS combined with Gray Level Co-occurrence Matrix (GLCM) features 

yielded suboptimal results, with an R-squared value of 0.634. Experimenting with various deep learning methodologies for 

improving the performance, directed us to develop a hybrid model integrating DenseNet, Vision Transformers, and 

reparameterization techniques, which showed that can achieve superior results with an R-squared value of 0.8892. This research 

paper focuses on searching for the optimal machine learning model and lays the groundwork for an automated tool that can 

optimize imaging protocols by providing a comprehensive quality assessment of CT images in CT calibration. 
Keywords – Machine learning, Deep learning, Vision Transformer, CT calibration, IQA.  
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I. INTRODUCTION 

Machine learning and artificial intelligence methodologies 

have been applied increasingly in various medical fields such 

as medical imaging and pathogen identifications in recent 

years, started in 3 decades ago [1 and 2], when very few 

methodologies existed. The computed tomography machines 

provide pictorial anatomical information about the 

physiological state of internal organs by using X- rays and 

gives sensitive discrimination between healthy and diseased 

tissue. Ensuring the quality of CT images is essential for 

accurate medical diagnosis. Naturally calibration is a critical 

step in this process. In CT imaging, calibration is the first and 

most crucial step to ensure the reliability and accuracy of 

images used for diagnosis using an object called "Phantom" to 

simulate the organ. This includes adjusting the CT scanning 

equipment to correct any errors that might negatively affect 

image quality. Such calibration should be conducted regularly 

to maintain accuracy without distorting the images or reducing 

their value. Any distortion or lack of proper contrast in CT 

images can lead to diagnostic errors. To support accurate 

image analysis and the gathering of diagnostic information, 

producing high-quality CT images is essential. 

There are two main methods in IQA, subjective and 

objective evaluation [3]. While subjective assessment is 

conducted by experts, such as diagnostic radiologists, 

objective assessment, is based on using various logical and 

mathematical algorithms. The subjective evaluation which has 

been formed by manual qualitative assessment of CT images 

by radiologists, usually involves identifying and measuring 

phantom image features. This process is often considered the 

gold standard but is limited by poor inter-observer agreement 

and the risk of fatigue and perceptual biases. At the same time, 

manual assessment by radiologists, is indeed time-consuming 

and prone to inconsistencies despite it requires significant 

expertise. These factors can lead to variations in diagnosis and 

inefficiencies in the workflow. Especially in CT calibration, to 

evaluate the quality of a phantom image, radiologists are 

traditionally required to manually indicate the location of the 

holes in each square in the phantom image [4]. Such challenges 

underscore the need for automated methods that can 

consistently and accurately assess CT image quality, 

particularly during the calibration process. They particularly 

highlight the need for developing automated methods based on 

machine learning and artificial intelligence that can reliably 

evaluate image quality metrics like SNR and CNR, improving 

efficiency and reducing variability in CT imaging. 

 This research focuses on the process of finding an 

innovative optimal machine learning methodology, which can 

evaluate SNR and CNR in CT images in the most efficient 

manner and at the same time can be transparent and 

interpretable. In contrary to 3 decades ago, a vast number of 

various machine/deep learning methodologies are available, 
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which makes it difficult to find an optimal model by using each 

individual one or by combining them together. We tried to 

cover a wide range of them to solve the problem of automated 

measurement of SNR and CNR values in the phantoms’ hole 

images. The data consists of 45,500 holes images cropped 

from phantom CT images, with labels representing the SNR 

and CNR values of the images, which were manually assigned. 

We started our research with a simple model called ANFIS, a 

learning model commonly used in medical imaging due to its 

ability to integrate fuzzy systems with neural networks and its 

transparency and interpretability. Evaluating and recognizing 

the limitations of traditional methods such as ANFIS, we 

developed many robust solutions and transitioned to more 

complex wider deep learning models including ResNet, RNN, 

SE-ResNet, Fast-ViT, SE-ResNet, Unet-NILM and 

SqueezeNet in order to assess their performance in predicting 

SNR and CNR values from CT images. These directed us to 

introduce a hybrid architecture called SynQ-ViT (Synthetic 

Quality assessment for computed tomography calibration with 

Vision Transformer), which leverages a hybrid architecture 

combining DenseNet, Vision Transformers, and 

reparameterization techniques. This modification enables the 

model to effectively learn both local and global features. We 

reported the success of SynQ-ViT for this application with a 

view from medical imaging separately [5]. Here in the rest of 

this paper, after portraying related works, searching for an 

optimal machine learning model, which fit this application 

best, will be highlighted by presenting above methodologies in 

some details with their evaluations and experimental results.  

II. RELATED WORKS 

Valdes et al. [6] developed a Virtual IMRT QA framework 

using a machine learning algorithm that accurately predicted 

gamma passing rates within 3% across different institutions 

and measurement techniques. In the studies on using ANFIS 

in medical imaging, Sharma and Mukharjee [7] utilized 

ANFIS to classify MR images. The integration of ANFIS 

using GLCM fuzzy rules in medical imaging provided superior 

classification accuracy when compared to traditional methods 

like Fuzzy C-Means (FCM) and K-Nearest Neighbor (K-NN). 

In early detection of COVID-19 through CT image analysis, 

with the ANFIS-based model achieving superior performance 

with an accuracy of 98.63% and rapid testing time [8]. In the 

study of Bahonar et al. [9] ANFIS model significantly 

outperforms multiple linear regression (MLR) in predicting 

breast dose during chest CT scans, with a correlation 

coefficient R of 0.93 and a Root Mean Square Error (RMSE) 

of 0.172. These findings suggest that ANFIS offers an accurate 

and efficient approach to medical imaging, especially in CT 

images. 

In recent advancements within CT imaging quality 

assurance, a deep learning approach using convolutional 

neural networks (CNN) has been explored to predict whether 

CT scans meet the minimal diagnostic image quality threshold. 

Lee et al. [10] introduce a pre-trained VGG19 network was 

fine-tuned to analyze a dataset consisting of 74 high-resolution 

axial CT scans, with image quality rated by a radiologist. The 

network achieved an accuracy of 0.76 and an AUC of 0.78, 

highlighting the potential of deep learning methods in 

assessing and ensuring diagnostic quality in CT imaging, 

despite challenges posed by the relatively small number of 

cases. Study of a novel Blind Image Quality Assessment 

(BIQA) method for low-dose CT images [11], utilized a 

Denoising Diffusion Probabilistic Model (DDPM) and a 

transformer-based evaluator. The DDPM is employed to 

generate high-quality primary content from distorted images, 

mimicking the human visual system's active inference process, 

while a transformer-based evaluator predicts image quality by 

integrating this content with a dissimilarity map. Jensen et al. 

[12] evaluated the performance of a Deep Learning Image 

Reconstruction (DLIR) algorithm in contrast-enhanced 

oncologic abdominal CT, comparing it to the standard 30% 

Adaptive Statistical Iterative Reconstruction V (ASIR-V). The 

results demonstrated that DLIR significantly improved image 

quality, particularly at higher strengths, with a notable 4% 

reduction in noise and a 92-94% increase in contrast-to-noise 

ratio compared to 30% ASIR-V. 

These studies emphasize the role of machine learning 

models, particularly deep learning models, in medical imaging 

and CT quality assurance. However, these studies focus on 

image evaluation during diagnosis rather than during the CT 

calibration process. In this paper, we address that gap by using 

a dataset collected during CT calibration. We aim to develop 

an objective method based on an optimal machine learning 

methodology to evaluate the quality of CT images during the 

preparation phase of a CT machine before it is put into use. 

III.  AI AND MACHINE LEARNING METHODOLOGIES 

A. In search of the optimal model 

The optimal model, which will be used as the most 

effective method for automated CT image quality assessment 

and calibration, not only should produce optimal accuracy 

among all other candidate models but also must have optimal 

number of parameters, easy and quick to train and implement 

in real medical working environment. The primary means to 

evaluate the accuracy of each model, is the Mean Squared 

Error (MSE) for the error of SNR and CNR, and the coefficient 

of determination, 𝑅2 (R-squared) as an additional performance 

metric, which are defined in the next section. The optimal 

model must also be transparent and interpretable while 

capturing both local and global image features effectively. In 

search of such model, first ANFIS was considered. 

 

B. Basic model 

The main advantage of ANFIS [13] is in its transparent and 

interpretable architecture (Fig. 1) in the form of fuzzy “if-then” 

rules, which made it our first choice for this application. 

 

 
Fig 1. A typical structure of Adaptive Neuro-Fuzzy Inference System with n 

inputs (𝑋1 … 𝑋𝑛) and one output (𝑣′) as bock diagram. 
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ANFIS is a hybrid intelligent system that integrates the 

benefits of both artificial neural networks from machine 

learning and fuzzy logic from artificial intelligence, allowing 

it to model complex, nonlinear relationships effectively. In this 

study, ANFIS was employed to predict SNR and CNR from 

phantom hole images, following steps below: 

 

1) Feature Extraction: Before applying the ANFIS model, 

we first extract features from the CT images using GLCM. 

GLCM is a statistical method that analyzes the spatial 

relationships of pixels in an image. It is particularly useful for 

capturing texture information and is widely used in medical 

imaging, especially in CT [14]. The GLCM computes how 

frequently pairs of pixels with specific values and in a 

specified spatial relationship occur in an image, generating a 

matrix from which various texture features can be derived. The 

formula for GCLM feature extraction [15] included: 

 

• Contrast: Measures the intensity contrast between a 

pixel and its neighbor over the whole image. 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑|𝑖 − 𝑗|2

𝑖,𝑗

𝑃(𝑖, 𝑗) (1)  

 

• Dissimilarity: Similar to contrast but provides a more 

direct measure of the difference between pairs of 

pixels. 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑|𝑖 − 𝑗|

𝑖,𝑗

𝑃(𝑖, 𝑗) (2) 

 

• Homogeneity: Measures the closeness of the 

distribution of elements in the GLCM to the GLCM 

diagonal. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

(3) 

 

• Energy: Provides the sum of squared elements in the 

GLCM, reflecting image uniformity. 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑃(𝑖, 𝑗)2

𝑖,𝑗

(4) 

 

• Correlation: Measures how correlated a pixel is to its 

neighbor over the whole image. 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑃(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗

(5) 

 

In above formulations, 𝑃(𝑖, 𝑗) represents the probability of 

the co-occurrence of pixel pairs separated by a specific 

distance and angle, 𝜇𝑖, 𝜇𝑗 and 𝜎𝑖 , 𝜎𝑗 are the means and standard 

deviations of the marginal distributions of 𝑖 and 𝑗 respectively. 

 

2) Rule Generation and Fuzzy Inference: Once the features 

are extracted, the ANFIS model processes these features as 

input data. Each input variable is associated with a fuzzy 

membership function. ANFIS generates a set of fuzzy if-then 

rules based on all possible combinations of membership 

functions across the input variables. For instance, a typical rule 

might state that “if the contrast is high and the homogeneity is 

low, then the SNR will be high”. The firing strength of each 

rule is calculated as the product of the membership values for 

the input variables involved in the rule: 

 

𝑤𝑗 = ∏ 𝜇𝐴𝑖,𝑗

𝑛

𝑖=1

(𝑥𝑖 (6) 

 

where 𝜇𝐴𝑖,𝑗 is the membership value of input 𝑥𝑖 in a fuzzy set 

𝐴𝑖,𝑗. 

 

3) Normalization and output: The final output of the ANFIS 

model is a weighted sum of the normalized firing strengths and 

the corresponding linear functions of the inputs: 

 

𝑦 = ∑ �̅�𝑗𝑓𝑗

𝑀

𝑗=1

(𝑥) (7) 

 

4) Evaluation: Let �̂�𝑖  = (�̂�𝑖1, �̂�𝑖2) denote the predicted 

values for SNR and CNR, and 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2) denote the true 

values. The overall MSE loss function measures the average 

squared difference between the predicted and true values: 

 

𝑀𝑆𝐸 =
1

𝑛
∑[(

𝑛

𝑖=1

𝑦𝑖1 − �̂�𝑖1)2 + (𝑦𝑖2 − �̂�𝑖2)2 (8) 

 

where 𝑛 is the number of samples. The overall 𝑅2 metric 

assesses the proportion of variance in the dependent variables 

that is predictable from the independent variables, i.e.: 

 

𝑅2 = 1 −
∑ [(𝑦𝑖1 − �̂�𝑖1)2 + (𝑦𝑖2 − �̂�𝑖2)2)]𝑛

𝑖=1

∑ [(𝑦𝑖1 − �̅�1)2 + (𝑦𝑖2 − �̅�2)2)]𝑛
𝑖=1

(9) 

 

where �̅�1 and �̅�2 are the mean values of the true SNR and CNR, 

respectively. 

 

5) Result: After training, ANFIS achieved an MSE of 39.9, 

indicating a large deviation between the predicted and actual 

values of the image quality metrics. Additionally, obtained R2        

of 0.634, suggests that the model could only explain 63.4% of 

the variance in the overall SNR and CNR values, leaving a 

considerable portion of the variability unaccounted for. While 

ANFIS provides a valuable framework for clear understanding 

and transparent modeling relationships in data, its application 

to the prediction of SNR and CNR in this study has not yielded 

satisfactory results.  

 

C. Other Advanced Machine and Deep Learning Models 

It’s possible to improve the ANFIS performance by some 

clustering methods [16] however, it is anticipated that trying 

more complex and sophisticated models from a wide range of 

machine and deep learning approaches would increase the 

likelihood of achieving a better predictive performance and 

accuracy in terms of MSE and R2 metrics, guiding us toward 

obtaining an optimal model as necessary condition. Although 

other metrics such as having minimum number of parameters, 

the ease and speed of training and implementation in real 
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medical working environments are important and will also be 

considered for finding the optimal model, the main drawbacks 

of machine and deep learning models are their lack of 

transparency and interpretability. To address these issues, a 

method is employed to visualize and interpret a model’s 

decision-making process without changing its parameters and 

will be discussed later. A model with optimal MSE, R2 and 

other metrics, which fails to highlight important areas such as 

the Region Of Interest (ROI) in the CT images, will not be 

considered as the optimal model. 

Apart from ANFIS, for the same dataset, seven other 

models from a wide range of machine and deep learning 

methodologies were developed, which are explained in next 

subsections. For successful training and to optimize the 

performance of our models, we conducted an extensive hyper-

parameter optimisation for each model training. The tuning 

process involved using a Random Search strategy, where 20 

trials were executed to explore the hyperparameter space. 

Early stopping was implemented to monitor the validation 

loss, with a patience of 10 epochs. If the validation loss did not 

improve for 5 consecutive epochs, a callback was employed to 

decrease the Adam optimiser learning rate logarithmically. 

Further details are presented in the experimental section.  

 

D. ResNet [17] 

Residual Networks (ResNet), is a highly influential deep 

learning architecture that uses skip connections, allowing for 

the training of very deep networks without the issues of 

vanishing or exploding gradients. The architecture consists of 

a series of stacked residual blocks, where each block includes 

identity mappings and convolutional layers.  It is widely used 

in various medical image tasks [18]. Figure 2 is the idea of 

ResNet with 1 residual result at each layer. After training, 

ResNet achieved an overall MSE of 22.01, indicating a much 

smaller deviation between the predicted and actual values of 

the image quality metrics with a good overall R2 of 0.85.   

 

 
Figure 2. ResNet with 1 residual result at each layer [18] 

 

E. RNN [19]  

Recurrent Neural Networks (RNN) are a class of artificial 

neural networks where connections between nodes form a 

directed graph along a temporal sequence. The ability of RNN 

to maintain a memory of previous inputs is due to their 

feedback loops, which allow information to persist over time, 

thus enabling the network to capture patterns and 

dependencies that unfold across long sequences. In tasks 

related to medical imaging, particularly CT scanners, the RNN 

have been used as benchmarks for both GANs and deep 

learning networks [20]. After training, RNN achieved an MSE 

of 28.40 and a R2 of 0.81. Figure 3 presents, the results of RNN 

performance during training for predicting SNR and CNR 

values from CT images of phantom holes in terms of overall 

R2 for both training and validation datasets.  

 

 
Figure 3. Performance of RNN during training 

 

F. SE-ResNet [21] 

This model enhances the traditional ResNet model by 

incorporating Squeeze-and-Excitation (SE) blocks, hence it is 

called SE-ResNet. The SE block operates by first applying 

global average pooling to squeeze global spatial information 

into a channel descriptor. This descriptor is then passed 

through a pair of fully connected layers to capture channel-

wise dependencies, followed by a sigmoid activation to 

generate channel weights. It was used in various task of 

diagnosis from CT images [22]. After training, it achieved an 

MSE of 17.32 and a R2 of 0.88.  The results of SE-ResNet 

performance during training are presents in Figure 4 for both 

training and validation datasets.   

 

 
Figure 4. Performance of SE-ResNet during training 

 

G. UNET-NILM [23] 

This model leverages a one-dimensional U-NET-based 

Convolution Neural Networks (CNN) architecture for Non-

Intrusive Load Monitoring (NILM), hence called UNET-

NILM. It enables simultaneous appliance state detection and 

power consumption estimation [23]. By combining down-

sampling and up-sampling blocks, it captures both local and 

global features of power signals effectively [24]. Figure 5 

illustrating the structure of UNET-NILM with the idea of 

utilizing a U-Net architecture, originally designed for image 

segmentation, to effectively separate and identify individual 

electrical appliances' power usage from aggregated energy 

consumption data. By leveraging the encoder-decoder 

structure of U-Net, the model learns both local and global 

features, making it well-suited for accurately disaggregating 

energy signals at various levels of granularity. After training, 

UNET-NILM achieved an MSE of 20.24 and a R2 of 0.86.   
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Figure 5. Architecture of UNetNILM [24] 

 

H. SqueezeNet [25]  

The model designed to achieve AlexNet-level accuracy on 

ImageNet with 50 times fewer parameters, reducing the model 

size to less than 0.5MB. The architecture accomplishes this 

through the use of "Fire modules," which combine 1x1 and 3x3 

filters and late down-sampling to maximize accuracy while 

minimizing parameter count. This makes processing low-

resolution images efficient. The efficiency of SqueezeNet for 

low-resolution medical images proved by Zhang et al. [26]. 

After training, SqueezeNet achieved an MSE of 17.55 and a 

R2 of 0.88. Figure 6 presents, the results of SqueezeNet 

performance during training for both training and validation 

datasets. 

  

 
Figure 6. Performance of SqueeNet during training. 

 

I. FastViT [27]  

Fast Vision Transformer (FastViT) is a hybrid vision 

transformer architecture that combines the efficiency of CNN 

with the global context modeling capabilities of transformers. 

The key innovation of FastViT lies in its use of the RepMixer 

block, a novel token-mixing operator that employs structural 

parameterization and capacity to learn complex patterns. After 

training, FastViT achieved an MSE of 18.51 and a R2 of 0.87.   

 

J. The optimal model 

The above developments for ample number of the CT input 

images with small sizes (6 to 9 pixels), imposed a model 

architecture that performs well with a low number of input 

parameters. It means the model must be able to capture both 

global and local features in large volume of datasets, which 

was also suggested by Talab et al. [28] for low-resolution 

images. As a result, we proposed SynQ-ViT, as optimal model 

that focuses on learning both local and global features linearly. 

For local features, we employed dense blocks from DenseNet 

[29] in it due to their ability to effectively learn through feature 

reuse. Adding attention mechanism from Vision Transformers 

(ViT) aids the model to capture long-range dependencies and 

contextual information across the entire images [30] or global 

features. RepMixer [27] was also introduced in our model for 

achieving efficient token mixing, reducing computational 

overhead through structural reparameterization, and enhancing 

the model’s capacity to learn complex patterns. These are 

illustrated in Figure 7 showing SynQ-ViT model in train-

inference phases with the dense block (Fig. 7a), transition 

block (Fig. 7b), RepMixer block (Fig 7c.1 in training mode 

and Fig 7c.2 in inference mode) and attention block (Fig 7d). 

These have also been explained in our other study [5] in some 

details. The model learns its parameters from data by passing 

outputs sequentially through its layers during training. During 

inference, by structural reparameterization the Batch Norm 

and skip connections are removed for simplifying RepMixer 

structure. This reduces computational overhead and memory 

access costs as shown by Weng et al. [31] that removing skip 

connections can improve computational efficiency and reduce 

resource requirements without significantly compromising 

accuracy. These are important for real-time applications and 

hardware deployments, especially when processing large 

volumes of CT images. The output layer is designed to predict 

SNR and CNR values by using a dense layer to transform the 

final feature representations into them. After training, it 

achieved an MSE of 16.03 and a R2 of 0.89.  Figure 8 presents, 

the results of SynQ-ViT performance during training for both 

training and validation datasets. 

 

 
Fig 7. The optimal model architecture SynQ-ViT in training and inference 

phases: a) dense block, designed to maximize feature reuse by directly 

connecting each layer using H functions, which improves information flow 
and supports efficient learning with fewer parameters. b) transition block, 

reduces dimensionality, aiming to cut down computational overhead while 

retaining essential features for further processing. c) RepMixer block, plays a 
crucial role in optimizing the model’s structure; during training, it incorporates 

skip connections for performance, but in the inference phase it removes both 

batch normalization and skip connections to reduce memory and 
computational costs. This structural reparameterization makes the model more 

efficient in real-time applications. d) attention block is used for token mixing, 

focusing on the most relevant parts of the input datasets and ensuring that the 
model captures key dependencies and patterns across the entire image.  

 

 
Fig 8. Performance of SynQ-ViT during training [5] 
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IV. EVALUATION AND EXPERIMENTAL RESULTS 

A. The Datasets  

As stated earlier, the data acquired in this study consists of 

45,500 holes images cropped from specifically designed 

Perspex phantom 500 CT images, with labels representing the 

SNR and CNR values that were manually calculated. The 

phantom was injected with AuNPs (0.005mg/ml) and scanned 

using a CT scanner (Biograph Vision 600 Siemens Definition 

Edge 128) under a variety of exposure settings to rigorously 

evaluate image quality metrics [5]. Figure 9 shows three 

randomly selected images from the dataset, which resized to 

9x9 pixels to standardize the input dimensions. The presence 

of negative values in the SNR and CNR during data 

acquisition, led to implementing a filtering process to ensure 

their removal and consequence normalization to preserve the 

accuracy and reliability of the datasets.  

 

 
Fig 9. Three random sample images from the dataset in TIFF format. Each of 

these images represents a hole in phantom images [5]. 

 

B. The experiment design 

After data acquisition and obtaining accurate and reliable 

datasets and exploring them, many models from a wide range 

of machine and deep learning methodologies were exploited to 

cover all possible models that satisfy the success criteria 

established in the sections III.A and III.C and to guide us 

toward an optimal model. The training and hyperparameter 

optimisation performed as mentioned in the section III.C If 

required in some models, the number of blocks within each 

stage was tuned between 1 and 4 with a growth rate between 

12 and 48, the layer scale parameter was also adjusted 

logarithmically between 10−6 to10−4, and both dropout and 

drop connect rates were varied between 0.0 and 0.5. After 

training, the performance of each model for predicting SNR 

and CNR values from CT images of phantom holes in terms of 

overall MSE and R2 metrics were calculated and discussed in 

sections III.D to III.J, which are summarized in figure 10.   

 

a)  

b)  
Fig 10. The comparison of a) R2 and b) MSE performance across all models. 

Considering only overall MSE and R2 metrics, SynQ-ViT 

was suggested as the optimal model in section III.J. However, 

other success criteria and metrics are also important for 

evaluating each model in other to confirm the optimal one for 

this application as presented in the next section. 

 

C. Models Evaluation  

This section discusses also other success criteria and 

optimality conditions such as having highest speed, minimum 

number of parameters, the ease in development and 

implementation in real medical working environments. These 

can collectively be considered as working experience with 

each model and are shown in Table 1, including metrics such 

as epochs, and training time.  Please note that one can roughly 

state that the number of parameters is inversely proportional to 

the speed of model in inference phase, i.e., a smaller number 

of parameters is a metric of desired implementation and ease 

of use in real medical working environments. 

Table 1. Experience of working with each model. 

Architecture Epochs 
number of 

Parameters 

Training 

time 

ANFIS 10 - 1 hour 

SynQ-ViT 61 145,902 ~ 1 hours 

RNN 64 334,082 ~ 1 hour 

Resnet 87 118,002 ~ 20 mins 

Fast-ViT 36 3,210,530 ~ 8 hours 

SE-ResNet 44 8,672,624 ~ 1 day 

Unet-NILM 25 2,032,578 ~ 6 hours 

SqueezeNet 32 113,026 20 mins 

 

• Comparative Analysis for Predicative Performance: 

To validate that SynQ-ViT offers an optimal solution 

among the other AI and machine/deep learning models 

developed in this study, we conducted a thorough comparative 

analysis. For this purpose, each model is considered to serve 

as a benchmark to evaluate the effectiveness of SynQ-ViT in 

predicting image quality metrics, ensuring it delivers superior 

and reliable results. Figures 10 already showed SynQ-ViT 

achieved an impressive R2 value of 0.89 and an MSE of 16.03 

after 61 epochs on the validation set, with a convergence 

occurring after the 5th epoch (Figure 8). While complex models 

like SE-ResNet, FastViT and Unet-NILM also demonstrated 

robust performance, they did not surpass SynQ-ViT in terms 

of R2 and MSE. On the other hand, among simpler models only 

SqueezeNet showed a close predictive power to SynQ-ViT 

while Resnet and RNN were found to be less suitable for this 

task, exhibiting notably lower performance metrics.   

 

• Comparative Analysis for Working Experience: 

From working experience with each model point of view, 

while models like FastViT and SE-ResNet performed well 

indicate strong predictive performance, these models require 

significant computational resources, with largest parameter 

counts of 3,210,530 and 8,672,624, and longest training time 

of approximately 8 hours and one day respectively. This could 

be inefficient, challenging and disadvantageous when 

developing and implementing a system that needs to handle 

large input volumes and operate in real time in medical 

working environments. On the other hand, models with 

smaller parameter counts, such as ResNet and RNN (with 
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118,002 and 334,082 parameters and training time of 

approximately 20 minutes and 1hour respectively), did not 

perform well. UNET-NILM demonstrated average 

performance, with neither parameter count nor efficiency 

standing out significantly.  

Among the models compared, only SqueezeNet approached 

the performance of SynQ-ViT, with much lower parameter 

size (113,026) and 3 times faster training time (approximately 

20 minutes) than SynQ-ViT, could claim the optimal model 

title. This required further detailed analysis of the performance 

during training and validation results. Notably, SynQ-ViT, 

converged around the 5th epoch (blue line in Figure 8) 

producing a stable validation result quickly (orange line in 

Figure 8) while that is not the case with SqueezeNet (orange 

line in Figure 6). Indeed, compared to the training results of all 

models, SynQ-ViT has achieved the highest stability and 

convergence, offering top working experience performance 

among the best predictive models, yet it requires to pass the 

last evaluation below before establishing itself as the optimal 

model for this application.   

 

• Transparency and Interpretability:  

As mentioned earlier, any candidate model that fails 

transparency and interpretability criteria, will not be 

considered as the optimal model.  The transparency and 

interpretability will be evaluated by the model’s ability to 

highlight important areas such as the ROI for the CT images 

in this application. For this purpose, a method called Gradient-

weighted Class Activation Mapping (Grad-CAM) by 

Selvaraju et al. [32] has been utilized to visualize and interpret 

a model’s decision-making process without changing its 

parameters. The Grad-CAM addresses the lack of transparency 

and interpretability by producing heatmaps and highlighting 

the regions in the heatmaps that the model relied on for its 

predictions. In order to do so, Grad-CAM uses randomly 

selected images and the corresponding final layers of the 

model.  

We applied Grad-CAM to the final convolutional layers of 

SynQ-ViT as shown in Figure 11, to verify and visualize the 

areas of focus when SynQ-ViT making its decision. Figure 12 

illustrates the heatmaps generated by Grad-CAM from 

randomly selected images and the corresponding final layers 

of SynQ-ViT, highlighting the regions that SynQ-ViT relied 

on for its predictions. Analysis of these heatmaps determine 

whether SynQ-ViT has been focusing on important areas such 

as the ROI or not. The red areas in the heatmap correspond to 

the ROI in the CT images. These visualizations confirm that 

this model accurately focuses on the critical areas of the input 

images, thereby validating its effectiveness and reliability in 

predicting SNR and CNR values as the optimal model. 

V. CONCLUSION, DISCUSSION AND FURTHER WORK 

In this paper we presented our research journey for finding 

an innovative optimal machine/deep learning methodology, 

which can evaluate SNR and CNR in CT images in the most 

efficient manner and at the same time can be transparent and 

interpretable. After acquiring the required datasets and 

defining the domain challenge in some details, main success 

criteria and metrics for achieving optimal predictive 

performance and working experience were defined. 

Considering the importance of acquired datasets in the training  

and evaluation phases, a rigorous preprocessing phase was 

implemented for ensuring the uniformity, fidelity, accuracy 

and reliability of the datasets by applying appropriate filtering, 

normalization, standardization and other procedures for image 

data in TIFF format, along with the associated SNR and CNR 

target values.  

 

 
Fig 11. Showing how Grad-CAM was applied to the final convolutional 

layers in Figure 7 just before the model makes its prediction. 
 

Based on the acquired datasets and the nature of the domain 

dynamics, eight models from a wide range of AI, machine and 

deep learning methodologies were consider as optimal 

candidate models. For successful training and to optimize the 

performance of our models, we conducted extensive 

hyperparameter optimisation experiments for each model 

training. The first choice in choosing an optimal model was the 

ANFIS model due to its inherent transparency interpretability 

and explainability properties. The ANFIS model also proved 

the optimal choice for working experience metrics because of 

its fast training (10 epochs in an hour with a rapider 

convergence) and smaller parameter set but underperformed 

predictively with an R-squared value of just 0.63, indicating 

its inadequacy for this application. These experiments revealed 

that each model has its own advantages and limitations when 

applied to CT image quality assessment. For instance, models 

like SE-ResNet and FastViT, despite their competitive R-

squared values, require high computational resources, making 

them less feasible for real-time applications. On the other 

hand, simpler models such as RNN showed limited predicative 

performance, as reflected by their lower R-squared values. 

While models with smaller parameter counts like SqueezeNet 

and Unet-NILM came close to SynQ-ViT's predictive 

performance, they did not achieve the same level of stability 

and efficiency. This highlights the importance of balancing 

model complexity and efficiency, and SynQ-ViT demonstrates 

an optimal combination, achieving highest accuracy and 

stability with lower computational demands. Please note that 

although the model converged quite early at the 5th epoch, it 

was able to further reduce the error and that is why training 

continued until epoch 61. Finally, analyzing heatmaps created 

by Grad-CAM validated the interpretability of the SynQ-ViT’s 

predications.  

 

 
Fig 12. Example of Grad-CAM created heatmaps from a randomly selected 

original image (left). The middle heatmap indicating the red areas that the 
model focuses on to predict SNR and CNR, and the right image is the 

heatmap superimposed on the original image. highlighting the regions the 

model relied on for its predictions. 

 

There is a discussion about how the optimal model obtained 

its predictive power and if it is possible to achieve higher 
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predictive performance while keeping other metrics at optimal. 

We introduced SynQ-ViT, as a model that combines 

DenseNet, attention mechanisms, and reparameterization 

techniques to efficiently learn both local and global features 

from CT images of phantom holes. The predictive 

performance and early convergence with low-resolution input 

images can be attributed to SynQ-ViT’s architecture, which 

effectively reuses learned features from previous layers, 

allowing for effective feature extraction and model 

optimization. However, the question on the possibility of 

increasing its predictive performance, say a R2 value of above 

0.95, is an open research challenge. When compared to other 

advanced models, SynQ-ViT consistently achieved superior 

accuracy while maintaining a lower parameter count, 

demonstrating its efficiency, particularly in real-time 

applications involving large datasets. Its rapid convergence 

and ability to handle resource constraints make it an ideal 

candidate for clinical deployment, where timely processing is 

critical.  

Predicting SNR and CNR for each hole in the phantom 

image is a crucial first step toward creating a robust quality 

assessment tool for CT calibration. Moving forward, our goal 

is to expand this model into a comprehensive system that 

aggregates these predictions to provide a holistic quality 

evaluation of the entire phantom image. This tool would help 

automate imaging protocol optimization in clinical settings, 

advancing medical imaging and improving patient care. 
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