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Introduction 

A sybil attack [1] involves an attacker using multiple 

identities simultaneously to gain an advantage in a 

distributed computing system, which can be encountered in 

many fields of computer science. These attacks are 

particularly effective in peer-to-peer communication 

environments where real-time authentication processes are 

absent. Many Vehicle-to-Everything (V2X) applications 

rely on the cooperation between vehicles on broadcast 

messaging namely, Cooperative Awareness Messages 

(CAMs) and Decentralized Environmental Notification 

Messages (DENMs). An attacker performing a sybil attack 

on VANET can manipulate traffic flow as desired or 

potentially create risky situations that threaten traffic safety. 

For example, fabricating accident reports or slow traffic 

situations can prevent other vehicles from using a particular 

route. Moreover, generating messages containing false 

position, speed, and acceleration information may endanger 

nearby vehicles. A sybil attack example of traffic 

manipulation is given in Figure 1. 

There are two main approaches for detecting sybil attacks 

in VANET, namely, proactive and reactive. Proactive 

methods mainly rely on the use of PKI-authorized 

certificates and preventing the use of multiple certificates 

simultaneously. The use of proactive methods is quite 

challenging due to the rapidly changing topology and real-

time requirements of safety applications VANET. For 

example, a PKI-based solution requires periodic certificate 

updates, rendering them unsuitable for environments where 

network access to a central authority is unavailable. 

Furthermore, the latency caused by certificate validation 

and update procedures may cause the received information 

to become obsolete for time-critical applications. 

On the other hand, reactive methods use the Misbehavior 

Detection System (MDS), similar to the Intrusion Detection 

Systems (IDS) used in traditional networks. MDS detects 

attackers by analyzing messages, vehicle status, and the 

properties obtained from the characteristics of the received 

packets. Depending on the capabilities of the used 

hardware, these properties include Time of Arrival (ToA), 

Angle of Arrival (AoA), Time Difference of Arrival 

(TDoA), and Received Signal Strength Indicator (RSSI). 

Properties such as ToA, AoA, and TDoA can only be 

obtained using special hardware, which results in higher 

costs in a large-scale deployment. Thus, the default 

hardware configuration for IVC systems only provides 

RSSI value for received packets. 
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RSSI readings can provide information about the sender’s 

position and identity [2],[3]. However, environmental 

features, such as buildings, street width, and other vehicles, 

can affect the RSSI values obtained. Moreover, attackers 

can manipulate the RSSI readings of ghost vehicles by 

changing the output power. Furthermore, packet losses due 

to collusion are possible in areas with heavy vehicle traffic. 

Therefore, these situations should be considered in methods 

where RSSI readings are used to detect sybil attacks. 

 

 

Figure 1. A sybil attack scenario in a VANET, where an 

attacker forges multiple identities to create a false traffic 

congestion. 

Our literature review and experiments have revealed that 

existing studies on sybil attack detection methods that use 

reactive approaches are quite limited for realistic vehicular 

traffic environments. The studies [4], [5] are mostly based 

on datasets generated via simulations with minimal traffic 

density or specific scenarios such as highways. A dataset or 

sybil attack detection method targeted for highway traffic 

scenarios may not reflect situations that occur in daily life. 

For example, vehicles stuck in traffic jams lead to packet 

collisions or losses. Also, differences in the road patterns in 

urban areas compared to highways cause vehicles to move 

in different directions, speeds, and angles, which creates 

extreme differences in mobility patterns compared to 

highway scenarios.  

In this work, we propose a fast sybil attack detection method 

that achieves high success in comprehensive sybil attack 

scenarios. Our sybil attack detection method works locally 

using a precomputed deep learning model on vehicles 

without requiring a consistent connection to the central 

authority. The model classifies messages by examining 

RSSI measurements. The main contributions of this paper 

are as follows: 

- We developed a deep learning model that detects sybil 

attacks using RSSI as a sequence. 

- We experimented with two deep learning models, namely 

Long Short-Term Memory (LSTM) and Convolutional 

Neural Network (CNN). 

- We compared our method with the methods in the 

literature over various mobility and distance situations in 

vehicle traffic. 

The rest of the paper is organized as follows. In the 

following section, previous work on sybil attack detection 

methods is summarized. Materials and methods section 

describes the dataset, and explains the implementation 

details of existing methods along with our proposed deep 

learning models. In result section, details of the experiment 

set and parameters are given, and the results are examined. 

Finally, conclusions and future work are outlined in the 

final section. 

Related work  

Sybil attacks present a significant challenge in VANETs. In 

sybil attack, a malicious node creates numerous false 

identities, aiming to disrupt communication or gain 

influence in the network. To counter this threat, diverse 

sybil attack detection approaches have been explored in 

literature, including techniques based on packet inspection 

[6],[7], location proofs with Road Side Units (RSUs) [8] or 

5G [9], and the analysis of physical signal attributes of 

DSRC [10]. This section specifically focuses on methods 

that leverage Received Signal Strength Indicator (RSSI). 

Yu et al. proposed a method [11] for detecting sybil attacks 

that relies on cooperative location verification among 

vehicles traveling in opposite directions. In this method, 

vehicles gather position certifications from roadside base 

stations and signal strength measurements from nearby 

vehicles to validate the positions of other vehicles. 

However, this method is primarily designed for highway 

traffic flow, where vehicles have consistent movement 

patterns in both directions. This requirement might 

significantly limit its effectiveness in urban traffic, where 

traffic flow is multidirectional. 

Garip et al. proposed INTERLOC[2], an RSSI-based 

method for both localization and sybil attack detection that 

dynamically adapts to interference levels. In this method, 

vehicles use RSSI values to estimate their distances, 

cooperatively share estimated distances for position 

validation, and exchange parameters for distance 

calculation to learn interference levels. However, the 

method's performance relies on the predefined radio 

propagation model accurately matching the environment. It 

has been shown that the method's performance decreases 

when there is a change in the propagation model [10]. 

Yao et al. proposed Voiceprint [3], a sybil attack detection 

method that analyzes the similarity of RSSI time series data 

obtained from V2V messages. It aims to match the sybil 

vehicles of the same attacker by comparing the similarity of 

the characteristic fluctuations in their RSSI time series, 

treating these patterns like unique fingerprints. However, 

this method is susceptible to manipulation by attackers who 

intentionally change their transmit power, leading to altered 

RSSI patterns and potentially compromising detection 

accuracy. In [4], the authors extended Voiceprint with a 

time-series change-point detection method and examined 

five potential power control patterns that could be used in 
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sybil attacks. They proposed a power control identification 

method [10] for sybil attack detection, which uses support 

vector machines (SVM) classification to distinguish sybil 

nodes from normal nodes. However, these methods were 

tested on a very sparse simulation area, and the method 

requires each vehicle to send 200 packets during the SCH 

period. Successful transmission of 200 messages in 50 ms 

in dense deployment will not be possible due to interference 

and collisions. 

Rakhi et al. proposed a sybil attack detection method [5] 

that leverages the Longest Common Subsequence (LCSS) 

algorithm to analyze the similarity of RSSI time series. This 

approach shares conceptual similarities with the work in 

[10], which also employs time series similarity analysis and 

change-point detection techniques. However, a key 

distinction is the use of LCSS instead of Dynamic Time 

Warping (DTW), aiming to lower computational cost. 

Additionally, the method utilizes a clustering technique 

where the Cluster Head (CH) executes the LCSS algorithm 

and calculates the similarity index. Furthermore, it 

leverages standard 10Hz CCH messages, rather than relying 

on custom 200 Hz test packages. However, an important 

consideration is that the LCSS algorithm requires 

categorical values. Therefore, a method is needed to 

quantize the floating-point RSSI to use as categorical values 

without lowering the method's accuracy. Additionally, time 

series similarity-based detection could produce false 

positives in multidirectional urban traffic since multiple 

legitimate vehicles exhibiting similar mobility patterns 

relative to the observer could be misclassified as sybil 

nodes. 

Ercan et al. [12] proposed a machine learning approach to 

detect position falsification attacks, leveraging two novel 

features: Angle of Arrival (AoA) and estimated RSSI 

distance extracted from the VeReMi dataset. However, a 

critical limitation is that the AoA calculations rely on exact 

position values from the dataset rather than simulating the 

inherent uncertainties and potential errors of real-world 

signal reception. 

The availability of publicly accessible datasets and 

frameworks for sybil attack detection is limited in the 

literature. The Vehicular Reference Misbehavior Dataset 

(VeReMi) [13] is the first public dataset for evaluating 

misbehavior detection mechanisms in VANET. VeReMi is 

created with the Veins simulation environment [14]. It 

contains message logs, RSSI values of captured messages 

and receiving vehicles' mobility information. In addition to 

the genuine messages, the dataset contains malicious 

messages that misbehavior detection methods aim to detect. 

Kamel et al. proposed the VeReMi Extension dataset [15] 

and extended VeReMi by adding realistic sensor error 

models [16] and a new set of attacks, including Sybil 

attacks. However, the VeReMi Extension dataset is quite 

limited in terms of both map area and traffic density, 

covering a 1.6 km2 area with 67.4 Veh/km2 peak traffic 

density. Additionally, it utilizes 1 Hz broadcast frequency, 

which may not suitable for existing methods that rely on 

time-series analysis techniques like those proposed by Yao 

et al.[3],[4]. 

While numerous approaches leverage RSSI measurements 

to address sybil attacks in VANETs, existing methods often 

lack applicability across diverse traffic scenarios, such as 

urban and highway environments. The scarcity of 

comprehensive, realistic datasets further hinders the 

development and evaluation of robust detection 

mechanisms. This underscores the need for an adaptable 

sybil attack detection method effective in real-world 

VANET deployments. A comparison of these existing 

RSSI-based approaches is provided in Table 1. 

Table 1. Summary of existing RSSI-based methods  

Paper Accuracy Limitations 

 [2] %87 
- Vulnerable to intelligent 

Sybil attacks 

[3] <%90 

- Accuracy decreases 

dramatically when the 

vehicle density increases 

- Vulnerable to intelligent 

Sybil attacks 

[4] 
%96.5 - 

%97.4 

- not suitable for dense 

networks 

- creates network overhead, 

since it requires transmission 

of 200 messages 

[5] %92 - %98 

- not suitable for dense 

networks 

- creates overhead in network 

[12] 
%93.02 - 

%95.04 

- requires extra hardware 

- uses synthetic AoA values 

which increases accuracy 

 

Material and methdos  

In VANET environments, vehicles rapidly exchange 

critical mobility data (position, speed, acceleration, lane 

information) under strict time constraints. Due to the 

maximum broadcast frequency of 10 Hz specified by both 

the European Telecommunications Standards Institute 

(ETSI) [17] and The Society of Automotive Engineers 

(SAE) [18], sybil attack detection algorithms must operate 

efficiently to analyze messages within this limited window. 

In order to address this challenge, our work explores 

leveraging RSSI for rapid sybil attack detection. We 

propose a sequential deep learning-based sybil attack 

detection method that utilizes RSSI time series analysis to 

identify suspicious message patterns indicative of attackers. 

The remainder of this chapter provides details of the key 

components of our sybil attack detection methodology, 

including the attacker model, dataset characteristics, feature 

engineering techniques, and implementation specifics. 

Attacker model 

There are various ways to carry out a sybil attack described 

in the literature [1], [4], [19]. In a sybil attack, an attacker 

can manipulate two properties: the content of the message 

and its transmission power. The forged message content can 

be generated with random values, as a grid pattern in a 

selected region, or replayed values of the captured messages 
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of the genuine vehicles. Power control schemes used in 

sybil attacks can be classified into three categories: no 

manipulation, where the attacker maintains a constant 

power level; random variations, where the attacker's power 

level changes unpredictably; and predefined patterns [4], 

where the attacker follows specific power patterns, such as 

rectangular, stairs, or sawtooth waves. To address these 

attack types, in this work, we used a dataset that contains 20 

distinct attack types, including four sybil attack methods 

and five power control methods. 

Dataset and input preparation 

To develop and evaluate our sybil attack detection method, 

we created a comprehensive VANET dataset using the 

SUMO [20] and Veins [21] simulators. We followed the 

dataset generation approach outlined in the VeReMi dataset 

[13], combined with the F2MD simulation model [6] to 

ensure consistency with established benchmarks. Our 

dataset presents significantly heavier traffic conditions than 

existing public datasets [6], [15], offering a more 

challenging and realistic environment for rigorously 

evaluating detection methods. Unlike VeReMi-Extension 

dataset [15], we have implemented RSSI recording in our 

simulation, which provides valuable data for sybil attack 

detection techniques. The source code of the simulation 

environment and the dataset is available on the GitHub 

repository [22]. Detailed statistics for the subsection of the 

dataset used in this study are given in Table 2. 

Table 2. Summary of dataset properties. 

Property Value 

Dataset size 820 GB 

Simulation area 11.2 km2 

Simulation time 25 minutes 

Beaconing rate 10 Hz 

Peak density 164.73 Veh/km2 

Genuine vehicle 7,876 

Ghost vehicles 652 

Received genuine messages 849,231,132 

Received attack messages 84,997,919 

Transmitted genuine messages 21,112,206 

Transmitted attack messages 2,003,527 

 

In VANETs, inspection of raw features like location, speed, 

and acceleartion within a single message is inadequate for 

robust sybil attack detection due to their susceptibility to 

manipulation. To overcome this limitation, examining 

vehicle behavior over time offers a more reliable approach. 

One method, proposed by Yao et al. [3], involves 

comparing message sequences between vehicles to identify 

abnormal similarities in patterns, suggesting potential sybil 

attacks where attackers forge multiple identities with 

identical behavior.  Alternatively, a behavioral profile can 

be established for each vehicle based on its individual 

message sequence, with deviations from this profile 

indicating potential attacks as a vehicle's behavior may 

change significantly due to malicious intent. 

The sequence learner we use in our study aims to detect 

RSSI patterns in consecutive message sequences. The 

formula of the extracted features is given in (1). 

𝑅𝑆𝑆𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = {𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑁} (1) 

The N parameter represents the processed message count. 

In our work, we used N as 20, which are captured within 2 

seconds of vehicle interaction at a 10 Hz messaging rate. 

Earlier works [3], [4] requires 200 RSSI samples, which 

corresponds to 20 seconds of vehicle interaction.  

Implementation of the methods  

This section describes the implementation details and 

changes on existing methods, namely, Voiceprint and 

Power Control Identification along with the propsed LSTM 

and CNN based methods. 

Voiceprint [3] and Power Control Identification [4] 

methods use the last N packets from vehicles to check 

whether messages belong to the same vehicle or use power 

control. However, it is not possible to compare these 

methods directly with our study because they require the 

use of the Service Channel (SCH) at 200 Hz frequency. For 

this reason, these methods were slightly modified to detect 

the individual attack packages to compare with our study. 

Voiceprint uses the similarity between two vehicles by 

comparing RSSI time series to detect sybil attacks. As in the 

original method [3], the implementation calculates 

distances of every 200 samples long RSSI series received 

from nearby vehicles in the 20s detection period with 

dynamic time warping (DTW). RSSI series whose 

similarity level is more than the threshold determined using 

Linear Discriminant Analysis (LDA) are marked as 

belonging to the sybil vehicle. Unlike the original study, we 

do not filter detected sybil nodes for the next detection 

period to detect messages belonging to the attackers instead 

of ghost vehicles. 

The primary purpose of the Power Control Identification 

method is to detect power level changes in attack messages, 

which are caused by output power changes made by the 

attacker to mislead Voiceprint. As in the original method 

[4], our implementation uses two features of the RSSI 

series, namely, the average number of change points and the 

cumulative average variation of segment means. The SVM 

classifier determines the decision boundary between the 

RSSI series belonging to the attackers and the genuine 

vehicles. While the original method proposes four schemes, 

our implementation only includes two schemes that use the 

Control Channel (CCH). The other two schemas require the 

SCH usage at 200 Hz frequency, which is not implemented 

in our dataset. 

LSTM networks are a special type of Recurrent Neural 

Network (RNN) designed to handle long-term 

dependencies in sequential data. Unlike traditional 

feedforward networks, LSTMs have the ability to use 

information from past inputs when processing current input. 

This makes LSTMs well-suited for analyzing temporal 

dependencies such as time series. In our study, we 
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leveraged this capability of LSTMs to analyze RSSI 

information obtained from individual vehicle messages, 

treating each vehicle's sequence of messages as a one-

dimensional time series. Figure 2 shows the LSTM model 

used in our study. 

 

Figure 2. The 3-layer LSTM model. 

Our LSTM model consists of three LSTM layers, each with 

32 units, followed by dropout layers with a probability of 

0.2 to prevent overfitting. The final layer is a fully 

connected dense layer with 256 units, which serves as the 

classifier for sybil attack detection. 

CNN is a special type of deep neural network that is talented 

at processing data with a grid-like structure, such as images. 

CNNs can adapt to process time series by using 1D 

convolutions instead of the typical 2D convolutions used in 

image processing. Using 1D filters slide along the temporal 

dimension allows the network to learn local patterns within 

the time series. CNNs can also learn broader patterns by 

reducing dimensions using multiple layers and downsample 

methods such as pooling. 

Like the LSTM model, our CNN based approach uses a 

one-dimensional time series of RSSI values as input. The 

architecture of our CNN model shown in Figure 3 

incorporates three 1D convolutional layers with increasing 

filter counts: 128, 256, and 512. Each convolutional layer 

uses a kernel size of 3. To reduce dimensionality and 

prevent overfitting, max pooling layers with a pool size of 

2 and dropout layers with a dropout probability of 0.2 are 

applied between each convolutional layer. A fully 

connected layer with ReLU activation precedes a sigmoid-

activated output layer, which performs binary classification 

for sybil attack detection. 

Results  

This section provides a comprehensive evaluation of our 

proposed RSSI sequence-based sybil attack detection 

method. 

Experimental setup  

The proposed method was evaluated using a continuous 

1000 second long segment extracted from the high-density 

partition of our custom dataset, as described in the previous 

section. To rigorously assess performance across the entire 

1000-second segment and mitigate potential biases 

introduced by a single dataset split, 5-fold cross-validation 

was employed. Due to the dataset's extensive size, model 

training was conducted on a randomly selected 2.5\% 

sample from each training fold within the cross-validation 

process. 

 

Figure 3. The 3-layer CNN model  

 

Given the broadcast nature of VANETs, where multiple 

vehicles capture the same message, we employed temporal 

partitioning within the cross-validation process, as shown in 

Figure 4. This approach ensured that identical messages did 

not appear in both training and test sets within each fold, 

thus reducing the risk of memoization. Specifically, the 

dataset was divided into 10-second partitions. Training and 

test segments were selected from these partitions to be as 

contiguous as possible, with 10-second buffers inserted 

between them to ensure strict separation. 

 

Figure 4. The dataset partitioning and 5-fold cross-

validation scheme which used for prevent overfitting. 

 

Metrics  

In the context of evaluating sybil attack detection at the 

individual message level, a true positive (TP) represents an 

attacker-generated message correctly classified as an attack. 

A false positive (FP) refers to a legitimate message from a 

genuine vehicle that is incorrectly classified as an attack. A 

false negative (FN) represents an attacker-generated 

message that the detection method fails to identify. 

To thoroughly evaluate our sybil attack detection method, 

we employed the widely accepted metrics of precision, 

recall, and F1 score, grounded in these TP, FP, and FN 

classifications. Precision quantifies the accuracy of the 
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model in identifying attacker-generated messages, 

measuring the proportion of correctly classified attacker 

messages out of all messages flagged as such. Recall 

(sensitivity) assesses the model's ability to detect all 

attacker-generated messages, representing the proportion of 

true attacker messages correctly identified. The F1 score, a 

harmonic mean of precision and recall, provides a balanced 

assessment of the model's overall performance in both 

accurately identifying attacker messages and minimizing 

false alarms. 

Performance evalutation  

Table 3 provides a comparative analysis of precision, recall, 

and F1 scores for our proposed LSTM and CNN models 

alongside the existing Voiceprint and modified PCI 

techniques. 

The results in Table 3 clearly shows our proposed LSTM 

and CNN models outperform Voiceprint and PCI methods. 

This is likely due to designs of the existing works originally 

targeting highway scenarios with sparser traffic conditions 

and less complex traffic pattern variations compared to our 

high-density urban dataset.  

Additionally, both the original Voiceprint [3] and PCI 

methods [4] uses 200 samples, which can only be collected 

through a 20 seconds interaction.  However, this is not 

always possible to due the dynamic nature of the network 

and packet lossses in dense deployments. In contrast, our 

work uses only 20 samples which is more likely in such 

environments.  These factors, including the potential impact 

of sample size on performance, highlight the strengths of 

our models in adapting to complex urban environments. 

Table 3. Sybil attack detection performance comparison 

of proposed LSTM and CNN models with modified 

Voiceprint [3] and PCI [4] methods, using a sequence 

length (N) of 20 for all models. 

Model Precision Recall F1-Score 

Voiceprint 0.00 0.00 0.00 

PCI 82.43 30.57 44.60 

LSTM 93.45 64.52 76.33 

CNN 94.28 64.66 76.71 

 

Conclusion  

Sybil attacks pose a significant threat to the integrity and 

functionality of VANET. Their ability to disrupt 

communication, manipulate traffic flow, and even create 

risky situations to threaten safety necessitates robust 

detection mechanisms. In this paper, we presented a sybil 

attack detection method based on sequential deep learning 

with RSSI readings, evaluated on a heavy traffic urban 

scenario and compared to existing RSSI sequence-based 

methods. 

Our findings demonstrate that existing RSSI sequence-

based methods offer limited accuracy in urban traffic, 

achieving only 82.43% precision when using message 

sequences with a length of 20. In contrast, our proposed 

LSTM and CNN-based deep learning models achieve a 

superior precision of 93.45% and 94.28%, respectively. 

This demonstrates that our models significantly outperform 

existing RSSI sequence-based methods even when utilizing 

a substantially smaller sequence length. 

For future work, we plan to expand our approach by 

exploring the usage of other features found in CAMs 

alongside RSSI. This may include information such as 

signal strength variations, packet timing patterns, or 

location data. Additionally, we will investigate the 

extraction of new, more discriminative features to further 

enhance the accuracy and robustness of our sybil attack 

detection mechanism. 
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