i

f

!

-\\.
A\

-lANATDLIAN
SCIENCE Volume: 2, No: 2, 2017 © Anatolian Scien ce

pp: 9-16 ISSN:2548-1304

A Anatolian Journal of Computer Sciences

/
>

S

Limit Multiplication Conditions for Existence of Re al
Roots of Continuous Functions and Possible
Implications for Numerical Computation
Baris Baykant Alagdz

! Inonu University, Department of Computer EnginegriMalatya, Turkey
(baykant.alagoz@inonu.edy.tr

Gonderim Tarihi: 26.12.2017
Yayin Tarihi: 31.12.2017

Ozetce— In engineering and applied science, conditiomsefastence of real roots of a function have
useful implications. Solution of many problems sashoptimization problems, stability analyses are
based on finding roots of a characteristic polyradrar an objective function. This theoretical study
presents some limit conditions for existence ofledst one real root of a continuous and
differentiable functions. These conditions are #mberation of intermediate value theorem and
Rolle’s theorem on the bases of limit theorem. Presented conditions can be useful to numerically
check or ensure the existence of real root solatiorengineering and science problems. Computer
based design and analysis tools may benefit frasetitonditions.
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1.Introduction

In science and engineering problems, solution @fl reroblems involves very complicated
equations that are not easy to solve. Sometimdstims of these equations may not yield
meaningful results for practice because of givingiplex roots. In many cases, in design or analysis
problems, instead of solving these complicated &ojs, just ensuring of existing of real roots of
solution may be adequate for application. For exapip optimization problems, it is very useful to
constrain optimization process to yield real rostsch are meaningful for engineering applications.
Real roots refers to solution of refil satisfying the equation of (x) = 0.

Two fundamental theorems has useful implicatiomsdfgtermination of existence a real root of a
continuous and differentiable real value functib(x) in a range of independent paramexerThese

are intermediate value theorem (IVT) (Hewitt, 20R;ss, 1980Stewart J, 2006) and Rolle’s
theorem (RT) (Hewitt, 2012; Conkwright, 1957; Mang985). These theorem allows evaluation of
value of a function in a finite interval of paramegiven byx [[a, b]. In practice, these theorems

are widely utilized for numerically checking whetree continuous and differentiable function has a
real root in a closed interval of independent pat@ns. IVT and RT suggest:

Intermediate Value Theorem (Hewitt, 2012; Russ, 0198tewart, 2006): Letf(x) be a
continuous function on the closed interval ®&fil[a,b] and a real numbery is between
f(a)<y< f(b) or f(b)<y< f(a). In this case, one can find at least @R in the closed
interval[a, b] such thatf(c) =y.




Rolle's Theorem (Conkwright, 1957; Marden, 1985t if (x) =0 be an algebraic equation with

real coefficients. Between two consecutive reats@oand b of this equation, there is an odd number
of roots of the equatiorf '(x) =0.

In other words, RT suggests that fif(x) is a continuous function on the closed interval of
x[[a,b] , differentiable function orx[J(a,b) and f(a) = f(b) =0, one can find at least a

CUR in the interval(a, b) such thatf'(c) = 0.

Figure 1 depicts a graphical description of utliiza of IVT and RT for checking the existence of
real roots. According to IVT, the conditioh(a). f (b) < O infers that there is at least one real root in

the closed intervala, b] . According to RT, when the conditioh(a).f (b) <0 is satisfied in a
closed interval[a,b] and f'(c) #0 for [cl(a,b), there is one real root of (X) in interval
[a,b] . Otherwise, it may contain more than one real bemtause eaclfi'(c) =0 can lead to a zero
crossing of f (X) and produces another real root.

(a) y A (b)
y f'(c)=0
f(a) f(©) //\
a ¢ b x‘
f (b)

Figure 1. Checking existence of real roots accgrtiinlVT in (a) and RT in (b)

In the literature, there are various methods tceligyto obtain approximate solution of root of
polynomials such as method of bisection, lineaerimblation, Horner's method, Newton's method,
Continued fraction (Lagrange's method of approxiomyt(Chapra at al., 2015; Barbeau,1989). For
the testing of real roots of polynomial, there segeral fundamental methods that can tell whether o
not real roots exist and lie inside a given intertde fundamental methods are Descartes’ Rule of
Signs, Fourier-Budan Method and Sturm’s Method Ban,1989; Collins et al.,, 1983). The
computational complexity of these methods increfisea former method to newer method. Several
test methods addressing multiple root case of pohyals were explained and compared in (Rump,
2003). Their analyses were limited for constantfficients polynomials. There are some works
addresses real or complex root condition for spetype polynomial structures (Yambao et al., 2012;
Carstensen et al.,1993). Efficient root finding noets were also proposed (Petkovic, 2008; Petkovic,
2009). An interesting approach is based on usitifjcéal neural networks to determining number of
real roots of polynomials (Mourrain et al., 200&y&ntonis et al.,1998).

The current study aims to state real root exist@ocglitions that are generalized to all continuous
and differentiable functions. For this purpose, ilimmultiplication conditions for real roots are
investigated. In the paper, we elaborate the limittiplication conditions that ensure real solutiaf
a continuous and differentiable function on basiB/d and RT. Fundamental theorems are proposed
and illustrative example analyses are presentedsd&ltonditions may have useful implication for
numerical analysis (discrete analysis) and optitiiagoroblems.

2. Theoretical Foundations:
Definition 1 (Limit Multiplication Value)For a continuous, differentiable and real valuaction
f(X): R > R, the limit multiplications off (X) are defined for a central limit multiplication as
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Igingf(x—s)f(x+£), (1)

for backward limit multiplication as

Iirrg)f(x—g)f(x), (2)
for forward limit multiplication as

Iirrcl)f(x)f(x+£). 3)

In this paper, we derive real root existence camakt according to central limit multiplication.

Definition 2 (Zero-crossing RootslFor a continuous, differentiable and real valuaction f (X),
xR is a zero-crossing real root df(x), if f(x) =0 and f'(x) #0. This refers the case that
glirg f(x—-&)f(x+&)<0.

Definition 3 (Zero-touching Rootsfor a continuous, differentiable and real valuaction f (X),
xR is a zero-crossing real root df(x), if f(x) =0 and f'(x) =0. This refers the case that
Elirg f(x—-&)f(x+&)>0.

Figure 2 depicts a zero-crossing root and zeroHimgcroot cases of continuous, differentiable and
real value functions, graphically.

(a) A (b) A
y y

£(Q) 20 £ (%)

fm 10=0_ ‘

C > c\. X
\ ” f(c)=0

f'(c)=0

Figure 2. (a) A graphical representation of a z@assing root, (b) a graphical representation of a
zero-touching root.

Lemma 1(Bounded Central Limit Multiplicationfror a continuous, differentiable and real value
function f(x), if one can find ax(JR that satisfies the conditiof(x—¢&)f(x+¢&) <0, where

e0R, f(X) function has at one zero-crossing root.
Proof: To satisfy the condition off (x) f (x+&) <0, there should be exist(JR and¢ R, of

which,
(i) f(x—¢€)<0 and f(x+¢&)>0. For these cases, IVT suggests that there isaat &root because

an interval value providindg (x) =0 exists inxO[x—&,X+&].
(i) f(x—&)>0 and f(x+&)<0. For these cases, IVT also suggests that thea¢ lisast a root
because interval value df(x) = 0 exists inX[x—&,x+&].

Theorem 1 (Limit Multiplication Condition}or a continuous, differentiable and real valuection
f(X), if one can find ax[J R that satisfies the conditiollirr(lj f(x—&)f(x+&)<0, wherec R,
£

f (X) function has one real zero-crossing root.

Proof: Lemma 1 proof that conditiorfs(x — &) f (x+ &) <0 ensures at least one root in the range of
xO[x—&,x+ &]. While £ goes to zero£ — 0), length of interval x — &, X + £] goes to value of
zero because the length of interval 25 . Therefore, [X—&,X+&] - X . In this case,
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f(X) f (x) =0 and hence one can arithmetically state théx) =0 and thereforex is a root of the
function f (X) . Figure 3 depicts an implication of IVT for thenit condition of zero crossing roots.

y?t
y, = f(x+¢€)

xtelx \x-¢
/ylzf(x—g)

f(X+£)<O f(X)

Figure 3. An application of IVT for limit multipliation condition

Theorem 2 (Discriminative Limit Multiplication Comidn): For a continuous, differentiable and real
value functionf (X) , if one can find ax [0 R that satisfies,

(i) The conditionslirrg) f(x-&)f(x+&)<0 andling f'(x=&)f'(x+¢&) >0, wherec OR, f(X)

function has a real-zero crossing root.
(i) The conditionslirr(lj f(x—&)f(x+&)=0 and Iirrg) f'(x=&)f'(x+&)<0,wheres R, f(X)
£ £

function has real-zero touching roots.
Proof: The conditionlirrg) f(x—&)f(x+&) <0 in Theorem 1 ensures the existence of a real zero-
£

crossing root of f(X) . In the case of a single zero-crossing root, wHefix—¢&)>0 ,
f'(x+&)>0 should be valid and wherf'(x—¢)<0 , f'(x+¢&)<0 should be valid. The

multiplication of these two inequalities yieldﬁrrcl) f'(x—¢&)f'(x+&)>0 because both of them
£
have the same sign. Thereforbng f'(x=¢&)f'(x+¢&) >0 condition is also hold for a single zero-
£
crossing of f (X) . When these conditions are combined, conditildrmosf (x=&)f(x+&)<0 and
£

Iirr(1) f'(x=¢&)f'(x+¢&) >0 infer the existence of a real zero-crossing rddunction f (X) . Figure
£

4(a) and (b) depicts two zero crossing cases \wilr televant conditions.
For the zero-touching root case, one can writecthedition Iirrg) f(x—¢&)f(x+¢&)=0 because
£

IVT does not suggest the case bfx) =0. However, to avoid a zero-crossing 6{x), when
f'(x-€)=20, f'(x+¢&) <0 should be valid, or wherf'(x—¢)<0, f'(x+¢&)=0 should be
valid. Therefore, a combination of these two ca’eelﬂceslin?) f'(x—¢&)f'(x+¢) <0 for a zero-

touching case. Figure 4(c) depicts these relations.
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(@ a (b) 4 (c) A
Y| f'(x-&)f'(x+£)>0 y f'(x—&)f'(x+£) >0 y f'(x=&)f'(x+£)<0

f'(x-¢€)<0 o .
/ f'(x 5);}) £(x)=0 f'(x—€) >0\\jf (x)
> > — f'(x+£)>0

X
£(0=0 \~ F(x+)<0 % X
f'(x+£)>0 Lin;f(x—e)f(x+£)=0

Figure 4. (a) and (b) two possible zero-crossirggsaf f(x) =0, (c) a zero-touching root case and
the related conditions

3. An Application to Numerical Analysis:

Computers and digital systems mainly perform armayia discrete domain. Therefore, numerical
analysis based on limit multiplication condition$ real roots requires discrete evaluation of a
continuous and differentiabld (x) function. Let's assume thdt(x) function is sampled by unit

length of AX . In this case, a series of sampled value of thistion is expressed in the form of,

f,=1(x), x =iAx andi = 123,..... 4)
The discretization off (x) function with a unit increment aix causes an uncertainty range of
AX in determination of real root location. For a eahtimit multiplication, a minimum value of
with respect to consequent two samples of the fomctwhich aref, andf,,,, is determined by
taking 26 = AX and hences = Ax/2. Decrease of the unit lengthx leads to the decrease of
minimum value of¢ and it increases the resolution in finding thel me@t position. Figure 5(a)
depicts the uncertainty range in locating of a #@ossing root because of discretization with
Ax sampling period. In figure, the root can be locatg point inAX range or roots of two different
functions, which are indicated by a solid curve arghsh curve in the figure, cannot be discrimuhate
in AX range because discretization d&f(x) with sampling lengthAx causes the loose of

information within AX range. However, tanks to IVT that still ensuresstexice of a root in this
range.

Due to IVT, Theorem 1, written for limit conditicasf zero-crossing root, is valid for the discrete
series f, . Limit multiplication condition for f; can be written as,

fi fi+1 <0. (5)
This condition has been widely utilized in numeri@aalyses (Chapra et al., 2015; Barbeau, 1989).
For zero-torching real root analysis, by considgiitem (ii) in Theorem 2 and finite difference

h isdf (n) ~ fi B fi—l
dn AX
(fi _ fi—l) (fi+l_ fi) <0

O<ff, < d <0, 6
i i+l y an AX AX ()

formulas for derivative, whic , one can write,

where y is the maximum discrete differentiation &f, that is,y=max{%} for 0< f <1
X

and0< f,_, <1. It brings an imprecision for the detection of ®éwuching within an uncertainty

range of lengthAx . Since Ax® > 0, equation (6) can be expressed as,

O<fifi,sy and (fi-f)(f,-f)=<0. (7)
Figure 5(b) depicts the uncertainty box in detectid zero-touching roots. The size of uncertainly
box depends of\Xx and y. So, due to two dimensional uncertainty box, tbedition given by
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equation (7) does not guarantee the existenceefatouching root, nevertheless it suggests tret t
value of function approximates to zero within aentainty box ofAX and y parameters.

@ (b)
y r y ‘T

Uncertainly
Range

»
|

X

Uncertainly
Box

Figure 5. (a) The uncertainty range in locatingaotero-crossing root, (b) the uncertainty box in
detection of zero-touching roots

4. lllustrative Examples
This section presents illustrative examples for dkibzation of these conditions in computation
applications.

Example 1 Lets apply limit multiplication condition (Theare 1) to a simple polynomial
f(X) = x* -11x® + 41x* - 61x + 30 for a discrete calculation system to detect pdssibcation
zero-crossing roots in a sampled valuefdix). This polynomials have four zero crossing-roots at
X =1,%=2,%=3andXx, =5.

The f (X) function was sampled by the unit step/of = 001 and series of data was composed in
the form of f, = f(x), x =iAx andi = 123,..... For this sampled data set, zero-crossing roots
can lie between two consecutive sampled.oénd f,,,. Therefore, for this series, a minimum value
of £ in limit multiplication condition can considered as = Ax = 001 and & = 0005. Figure 6(a)
illustrates zero-crossing root regions, which $atise condition f, f,,, <0, by red circles. Here, one
can observe that IVT ensures existing of zero-engs&hen enough lowAXx is used in calculations.
Figure 6(b) indicates the computed zero crossiogsrof f; .
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Figure 6. (a) Zero-crossing root regions, (b) Thmputed zero-crossing roots @f
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Example 2 Lets apply condition given by equation (7) to snge polynomial given by
f(x)=x%—-24x" +252x° -1512° +567k* -13608¢ + 2041%* 17496+ 6561 in order to
detect possible location zero-touching roots iram@ed value off (X). This polynomials have 8
zeros that are located &t= 3 by zero touching.

The f (x) function was sampled by an unit step/of = 001 and series of data is composed in
the form of f, = f(x), x =iAx andi = 1,23,..... For calculationsy was set to 0.01. Figure 7(a)
shows zero-touching root regions df(x) and values of(f, - f,)(f,, —f) . The term
(f, - f.)(f,, — f,) takes negative values at the around of zero-togchoot placed ak =3.
Figure 7(b) shows the computed zero crossing rafotf .
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Figure 7. (a) Zero-touching root regions, (b) tbenputed zero-touching roots df

6. Conclusions

This study presents limit multiplication conditiofar real root of the continuous and differentiable
real valued functions. The zero-crossing and zewching cases can be detectable by these
conditions. An implication of limit multiplicatioronditions are discussed for numerical analysis of

sampled functionsf, in series form. Such a discrete form of continudusction comes out

uncertainty in numerical solutions, which dependste unit sampling length ofAX and they .

The presented limit conditions can be utilized fioding and classification of real roots(zero-
crossing and zero-touching roots), constrainindydical or numerical convex optimization problems
to ensure real solutions. Real root solutions ageiired for engineering problems and the condition,
given by equation (7), can be used to constraintienls to have real root solutions. The real root
solutions of objective functions, particularly ydelg zero-touching real root case, ensure global
optimality and therefore these solutions are phasianeaningful solutions that have importance for
engineering applications. This study is devoteddtablish a theoretical foundation for the limialre
root conditions. Future studies can address thdicagipn of the limit real root conditions to
optimization and engineering problems.

15



References

Hewitt C (2012) Real Roots of Univariate Polynomiatith Real Coefficients. Lecture Note in
Department of Mathematics, North Carolina Stateversity, pp.1-17

Russ SB (1980) A Translation of Bolzano's Papertten Intermediate Value Theoreristoria
Mathematics/: 156-185

Stewart J (2006) Calculus: Concepts and ContexistiBon Brooks/Cole™3edition, Belmont, CA
Conkwright (1957) Introduction to the Theory of Efjons. Ginn and Company, Boston, MA

Marden M. (1985) The Search for a Rolle's Theorenmthe Complex DomainThe American
Mathematical Monthl¥2(9): 643-650

Chapra SC, Canale RP (2015) Numerical Methods fgirieers. 7 Edition McGraw-Hill Education,
New York

Barbeau EJ (1989) Polynomials: Edited by P.R. HalmdProblem Books in Mathematics, Springer-
Verlag, New York

Collins GE, Loos R (1983) Real Zeros of Polynomidts Buchberger B., Collins G.E., Loos R.,
Albrecht R. (eds) Computer Algebra. Computing Sepmnta, vol 4. Springer, Vienna

Rump SM, (2003) Ten methods to bound multiple ragtpolynomials.Journal of Computational
and Applied Mathematicks6: 403-432

Yambao EM, Carlota MB, Decena (2012) On sufficieondition for the existence of imaginary roots
of a cubic polynomial equatiorActa Manilana6: 15-18

Carstensen C, Petkovic M (1993) On iteration methadthout derivatives for the simultaneous
determination of polynomial zero3ournal of Computational and Applied Mathema#és 251-66
Petkovic MS (2008) A highly efficient root-solverf wery fast convergencépplied Mathematics and
Computatiorn205: 298-302

Petkovic MS (2009) The self-validated method fotypomial zeros of high efficiencylournal of
Computational and Applied Mathemat233(4):1175-86

Mourrain B, Pavlidis NG, Tasoulis DK, Vrahatis MIRO06) Determining the Number of Real Roots
of Polynomials through Neural NetworkGomputers and Mathematics with Applicatiphsl 0
Perantonis SJ, Ampazis N, Varoufakis S, Antonio(1@08) Constrained learning in neural networks:
Application to stable factorization of 2-D polynats.Neural Processing Lettefg 5-14

16



