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Özetçe— In engineering and applied science, conditions for existence of real roots of a function have 
useful implications. Solution of many problems such as optimization problems, stability analyses are 
based on finding roots of a characteristic polynomial or an objective function. This theoretical study 
presents some limit conditions for existence of at least one real root of a continuous and 
differentiable functions. These conditions are an elaboration of intermediate value theorem and 
Rolle’s theorem on the bases of limit theorem. The presented conditions can be useful to numerically 
check or ensure the existence of real root solutions in engineering and science problems. Computer 
based design and analysis tools may benefit from these conditions. 
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1.Introduction 
In science and engineering problems, solution of real problems involves very complicated 

equations that are not easy to solve. Sometimes, solutions of these equations may not yield 
meaningful results for practice because of giving complex roots. In many cases, in design or analysis 
problems, instead of solving these complicated equations, just ensuring of existing of real roots of 
solution may be adequate for application. For example, in optimization problems, it is very useful to 
constrain optimization process to yield real roots which are meaningful for engineering applications. 
Real roots refers to solution of real x  satisfying the equation of 0)( =xf . 

Two fundamental theorems has useful implications for determination of existence a real root of a 
continuous and differentiable real value function )(xf  in a range of independent parameter x . These 
are intermediate value theorem (IVT) (Hewitt, 2012; Russ, 1980; Stewart J, 2006) and Rolle’s 
theorem (RT) (Hewitt, 2012; Conkwright, 1957; Marden,1985). These theorem allows evaluation of 
value of a function in a finite interval of parameter given by ],[ bax∈ . In practice, these theorems 
are widely utilized for numerically checking whether a continuous and differentiable function has a 
real root in a closed interval of independent parameters. IVT and RT suggest: 

Intermediate Value Theorem (Hewitt, 2012; Russ, 1980; Stewart, 2006): Let )(xf  be a 

continuous function on the closed interval of ],[ bax∈  and a real number y  is between 

)()( bfyaf <<  or )()( afybf << . In this case, one can find at least a Rc∈  in the closed 

interval ],[ ba  such that ycf =)( . 
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Rolle's Theorem (Conkwright, 1957; Marden, 1985): Let 0)( =xf  be an algebraic equation with 

real coefficients. Between two consecutive real roots aand b of this equation, there is an odd number 
of roots of the equation 0)( =′ xf .  

In other words, RT suggests that if )(xf  is a continuous function on the closed interval of 

],[ bax ∈  , differentiable function on ),( bax ∈  and 0)()( == bfaf , one can find at least a 
Rc∈  in the interval ),( ba  such that 0)( =′ cf . 

Figure 1 depicts a graphical description of utilization of IVT and RT for checking the existence of 
real roots. According to IVT, the condition 0)().( ≤bfaf  infers that there is at least one real root in 

the closed interval ],[ ba . According to RT, when the condition 0)().( ≤bfaf  is satisfied in a 

closed interval ],[ ba  and 0)( ≠′ cf  for  ),( bac∈∀ , there is one real root of )(xf  in interval 

],[ ba . Otherwise, it may contain more than one real root because each 0)( =′ cf  can lead to a zero 

crossing of )(xf  and produces another real root.  

 
 
 
 
 
 
 
 
 
 

Figure 1. Checking existence of real roots according to IVT in (a) and RT in (b) 
 

In the literature, there are various methods to develop to obtain approximate solution of root of 
polynomials such as method of bisection, linear interpolation, Horner's method, Newton's method, 
Continued fraction (Lagrange's method of approximation) (Chapra at al., 2015; Barbeau,1989). For 
the testing of real roots of polynomial, there are several fundamental methods that can tell whether or 
not real roots exist and lie inside a given interval. The fundamental methods are Descartes’ Rule of 
Signs, Fourier-Budan Method and Sturm’s Method (Barbeau,1989; Collins et al., 1983). The 
computational complexity of these methods increases from former method to newer method. Several 
test methods addressing multiple root case of polynomials were explained and compared in (Rump, 
2003). Their analyses were limited for constant coefficients polynomials. There are some works 
addresses real or complex root condition for specific type polynomial structures (Yambao et al., 2012; 
Carstensen et al.,1993). Efficient root finding methods were also proposed (Petkovic, 2008; Petkovic, 
2009). An interesting approach is based on using artificial neural networks to determining number of 
real roots of polynomials (Mourrain et al., 2006; Perantonis et al.,1998).  

The current study aims to state real root existence conditions that are generalized to all continuous 
and differentiable functions. For this purpose, limit multiplication conditions for real roots are 
investigated. In the paper, we elaborate the limit multiplication conditions that ensure real solutions of 
a continuous and differentiable function on basis of IVT and RT. Fundamental theorems are proposed 
and illustrative example analyses are presented. These conditions may have useful implication for 
numerical analysis (discrete analysis) and optimization problems. 

 

2. Theoretical Foundations: 
Definition 1 (Limit Multiplication Value): For a continuous, differentiable and real value function 

RRxf →:)( , the limit multiplications of )(xf  are defined for a central limit multiplication as 

x

)(xf

a b

)(af

)(bf

0)( =cf

c

y
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)(cf
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y
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)()(lim
0

εε
ε

+−
→

xfxf ,     (1) 

for backward limit multiplication as 
)()(lim

0
xfxf ε

ε
−

→
,      (2) 

for forward limit multiplication as 
)()(lim

0
ε

ε
+

→
xfxf .      (3) 

In this paper, we derive real root existence conditions according to central limit multiplication. 
 
Definition 2 (Zero-crossing Roots): For a continuous, differentiable and real value function )(xf , 

Rx∈  is a zero-crossing real root of )(xf , if 0)( =xf  and 0)( ≠′ xf . This refers the case that 

0)()(lim
0

<+−
+→

εε
ε

xfxf . 

Definition 3 (Zero-touching Roots): For a continuous, differentiable and real value function )(xf , 

Rx∈  is a zero-crossing real root of )(xf , if  0)( =xf  and 0)( =′ xf . This refers the case that 

0)()(lim
0

>+−
+→

εε
ε

xfxf . 

Figure 2 depicts a zero-crossing root and zero-touching root cases of continuous, differentiable and 
real value functions, graphically.  

 

 

 

 

 

 

 

 

Figure 2. (a) A graphical representation of a zero-crossing root, (b) a graphical representation of a 
zero-touching root.  

 

Lemma 1(Bounded Central Limit Multiplication): For a continuous, differentiable and real value 
function )(xf , if one can find a Rx∈  that satisfies the condition 0)()( ≤+− εε xfxf , where 

R∈ε , )(xf  function has at one zero-crossing root. 

Proof: To satisfy the condition of 0)()( ≤+ εxfxf , there should be exist Rx∈  and R∈ε , of  
which, 
(i) 0)( <− εxf  and 0)( >+ εxf . For these cases, IVT suggests that there is at least a root because 

an interval value providing 0)( =xf  exists in ],[ εε +−∈ xxx . 

(ii)  0)( >− εxf  and 0)( <+ εxf . For these cases, IVT also suggests that there is at least a root 

because interval value of 0)( =xf  exists in ],[ εε +−∈ xxx . 
 
Theorem 1 (Limit Multiplication Condition): For a continuous, differentiable and real value function 

)(xf , if one can find a Rx∈  that satisfies the condition 0)()(lim
0

≤+−
→

εε
ε

xfxf , where R∈ε , 

)(xf  function has one real zero-crossing root. 

Proof: Lemma 1 proof that conditions 0)()( ≤+− εε xfxf  ensures at least one root in the range of 

],[ εε +−∈ xxx . While ε  goes to zero ( 0→ε ), length of interval ],[ εε +− xx  goes to value of 

zero because the length of interval is ε2 . Therefore,  xxx →+− ],[ εε . In this case,  

(b) 

x
0)( =cf

c

y

0)( =′ cf

)(xf

(a) 

x

)(xf 0)( =cf

c
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0)()( =xfxf  and hence one can arithmetically state that 0)( =xf  and therefore x  is a root of the 

function )(xf . Figure 3 depicts an implication of IVT for the limit condition of zero crossing roots. 
  

 

 

 

 

 

 

 

 
 
 

Figure 3. An application of IVT for limit multiplication condition 
 

Theorem 2 (Discriminative Limit Multiplication Condition): For a continuous, differentiable and real 
value function )(xf , if one can find a Rx∈  that satisfies,  

(i) The conditions 0)()(lim
0

≤+−
→

εε
ε

xfxf  and 0)()(lim
0

>+′−′
→

εε
ε

xfxf , where R∈ε , )(xf  

function has a real-zero crossing root. 
(ii) The conditions 0)()(lim

0
=+−

→
εε

ε
xfxf  and 0)()(lim

0
≤+′−′

→
εε

ε
xfxf , where R∈ε , )(xf  

function has real-zero touching roots. 
Proof: The condition 0)()(lim

0
≤+−

→
εε

ε
xfxf  in Theorem 1 ensures the existence of a real zero-

crossing root of )(xf .  In the case of a single zero-crossing root, when 0)( >−′ εxf  , 

0)( >+′ εxf  should be valid and when 0)( <−′ εxf  , 0)( <+′ εxf  should be valid. The 

multiplication of these two inequalities yields  0)()(lim
0

>+′−′
→

εε
ε

xfxf   because both of them 

have the same sign. Therefore,  0)()(lim
0

>+′−′
→

εε
ε

xfxf  condition is also hold for a single zero-

crossing of )(xf . When these conditions are combined, conditions 0)()(lim
0

≤+−
→

εε
ε

xfxf  and 

0)()(lim
0

>+′−′
→

εε
ε

xfxf  infer the existence of a real zero-crossing root of function )(xf . Figure 

4(a) and (b) depicts two zero crossing cases with their relevant conditions.  
For the zero-touching root case, one can write the condition 0)()(lim

0
=+−

→
εε

ε
xfxf  because 

IVT does not suggest the case of 0)( =xf . However, to avoid a zero-crossing of )(xf , when 

0)( ≥−′ εxf  , 0)( ≤+′ εxf  should be valid, or when 0)( ≤−′ εxf  , 0)( ≥+′ εxf  should be 

valid. Therefore, a combination of these two cases induces 0)()(lim
0

≤+′−′
→

εε
ε

xfxf  for a zero-

touching case. Figure 4(c) depicts these relations. 
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Figure 4. (a) and (b) two possible zero-crossing cases of  0)( =xf , (c) a zero-touching root case and 
the related conditions 
 
3. An Application to Numerical Analysis: 

Computers and digital systems mainly perform analyses in discrete domain. Therefore, numerical 
analysis based on limit multiplication conditions of real roots requires discrete evaluation of a 
continuous and differentiable )(xf  function. Let's assume that )(xf  function is sampled by unit 

length of x∆ . In this case, a series of sampled value of this function is expressed in the form of, 

)( ii xff = , xixi ∆=  and ,....3,2,1=i .    (4) 

The discretization of )(xf  function with a unit increment of x∆  causes an uncertainty range of 

x∆  in determination of real root location. For a central limit multiplication, a minimum value of ε  
with respect to consequent two samples of the function, which are if  and 1+if , is determined by 

taking x∆=ε2  and hence 2/x∆=ε . Decrease of the unit length x∆  leads to the decrease of 
minimum value of ε  and it increases the resolution in finding the real root position. Figure 5(a) 
depicts the uncertainty range in locating of a zero-crossing root because of discretization with 

x∆ sampling period. In figure, the root can be locate any point in x∆  range or roots of two different 
functions, which are indicated by a solid curve and a dash curve in the figure, cannot be discriminated 
in x∆  range because discretization of )(xf  with sampling length x∆  causes the loose of 

information within x∆  range. However, tanks to IVT that still ensures existence of a root in this 
range.  

Due to IVT, Theorem 1, written for limit condition of zero-crossing root, is valid for the discrete 
series if . Limit multiplication condition for if  can be written as, 

01 ≤+ii ff .     (5) 

This condition has been widely utilized in numerical analyses (Chapra et al., 2015; Barbeau, 1989). 
For zero-torching real root analysis, by considering item (ii) in Theorem 2 and finite difference 

formulas for derivative, which is 
x

ff

dn

ndf ii

∆
−≈ −1)(

 , one can write, 

 γ≤≤ +10 ii ff   and  0
)()( 11 ≤

∆
−

∆
− +−

x

ff

x

ff iiii ,    (6) 

where γ  is the maximum discrete differentiation of if , that is, }max{ 1

x

ff ii

∆
−= −γ  for 10 <≤ if  

and 10 1 <≤ −if . It brings an imprecision for the detection of zero-touching within an uncertainty 

range of length x∆ . Since 02 >∆x , equation (6) can be expressed as, 
γ≤≤ +10 ii ff   and  0))(( 11 ≤−− +− iiii ffff .   (7) 

Figure 5(b) depicts the uncertainty box in detection of zero-touching roots. The size of uncertainly 
box depends on x∆  and γ . So, due to two dimensional uncertainty box, the condition given by 

(a) 

0)( =xf
x

y

0)( <−′ εxf

0)( <+′ εxf

0)()( >+′−′ εε xfxf
(b) 

y

x

0)( >−′ εxf

0)( >+′ εxf

0)()( >+′−′ εε xfxf

0)( =xf

(c) 

x

y

)(xf

0)()( ≤+′−′ εε xfxf

0)()(lim
0

=+−
→

εε
ε

xfxf

0)( >−′ εxf

0)( >+′ εxf
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equation (7) does not guarantee the existence of a zero-touching root, nevertheless it suggests that the 
value of function approximates to zero within a uncertainty box of x∆  and γ  parameters. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. (a) The uncertainty range in locating of a zero-crossing root, (b) the uncertainty box in 
detection of zero-touching roots 
 
4. Illustrative Examples 

This section presents illustrative examples for the utilization of these conditions in computation 
applications. 

Example 1: Lets apply limit multiplication condition (Theorem 1) to a simple polynomial 

30614111)( 234 +−+−= xxxxxf  for a discrete calculation system to detect possible location 

zero-crossing roots in a sampled value of )(xf . This polynomials have four zero crossing-roots at 

11 =x  , 22 =x , 33 =x  and 54 =x . 

The )(xf  function was sampled by the unit step of 01.0=∆x  and series of data was composed in 

the form of  )( ii xff = , xixi ∆=  and ,....3,2,1=i . For this sampled data set, zero-crossing roots 

can lie between two consecutive samples of if  and 1+if .  Therefore, for this series, a minimum value 

of ε  in limit multiplication condition can considered as 01.02 =∆= xε   and 005.0=ε . Figure 6(a) 
illustrates zero-crossing root regions, which satisfy the condition 01 ≤+ii ff , by red circles. Here, one 

can observe that IVT ensures existing of zero-crossing when enough low x∆  is used in calculations. 
Figure 6(b) indicates the computed zero crossing roots of if  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. (a) Zero-crossing root regions, (b) The computed zero-crossing roots of if  
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Example 2: Lets apply condition given by equation (7) to a simple polynomial given by 

65611749620412136085670151225224)( 2345678 +−+−+−+−= xxxxxxxxxf  in order to 

detect possible location zero-touching roots in a sampled value of )(xf . This polynomials have 8 

zeros that are located at 3=x  by zero touching. 

The )(xf  function was sampled by an unit step of 01.0=∆x  and series of data is composed in 

the form of )( ii xff = , xixi ∆=  and ,....3,2,1=i . For calculations, γ  was set to 0.01. Figure 7(a) 

shows zero-touching root regions of )(xf  and values of ))(( 11 iiii ffff −− ++ . The term 

))(( 11 iiii ffff −− ++  takes negative values at the around of zero-touching root placed at 3=x . 

Figure 7(b) shows the computed zero crossing roots of if  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. (a) Zero-touching root regions, (b) the computed zero-touching roots of if  

 
6. Conclusions 
This study presents limit multiplication conditions for real root of the continuous and differentiable 
real valued functions. The zero-crossing and zero-touching cases can be detectable by these 
conditions. An implication of limit multiplication conditions are discussed for numerical analysis of 
sampled functions if  in series form. Such a discrete form of continuous function comes out 

uncertainty in numerical solutions, which depends on the unit sampling length of  x∆  and the γ .  
The presented limit conditions can be utilized for finding and classification of real roots(zero-

crossing and zero-touching roots), constraining analytical or numerical convex optimization problems 
to ensure real solutions. Real root solutions are required for engineering problems and the condition, 
given by equation (7), can be used to constrain solutions to have real root solutions. The real root 
solutions of objective functions, particularly yielding zero-touching real root case, ensure global 
optimality and therefore these solutions are physically meaningful solutions that have importance for 
engineering applications. This study is devoted to establish a theoretical foundation for the limit real 
root conditions. Future studies can address the application of the limit real root conditions to 
optimization and engineering problems. 
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