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Optimization of Thermal Management for Cooling System of Power Electronics 

Modules Consisting Insulated-Gate Bipolar Transistor Using Neuro-Regression 

Analysis and Non-Traditional Algorithms 
 

Melih SAVRAN1,*, Ece Nur YÜNCÜ2 , Levent AYDIN3 

Abstract 

Thermal management and extreme temperatures critically influence the performance of power electronics 

systems, especially those utilizing Insulated-Gate Bipolar Transistors (IGBTs) and diode components. Various 

parameters govern the cooling efficiency of these systems. In this study, the IGBT temperature was selected 

as the objective function. To achieve temperature minimization, optimum values of design variables: coolant 

flow rate (L/min), distance from the vortex generator (mm), height (μmm), and width of the first pin-fin (μmm), 

and distance of the vortex generator from the surface (μmm) were determined. The mathematical modeling 

process employed Neuro-Regression analysis. The prediction performance of proposed 14 different regression 

models was evaluated using R2Training, R2Testing, R2Validation indexes and boundedness check criteria. 

Differential Evolution, Nelder Mead, Simulated Annealing, and Random Search algorithms were applied to 

minimize IGBT temperature. The First Order Logarithmic Nonlinear (FOLN) model emerged as the most 

successful, achieving a minimum temperature lower than the experimental dataset given in literature. The 

results indicate a 12 % reduction in the minimum IGBT temperature. 

Keywords: Optimization, neuro-regression analysis, thermal management, IGBT, cooling system 

1. Introduction 

Effective thermal management systems are essential for the practical use of lithium-ion battery packs. Air 

cooling alone is insufficient to maintain battery pack temperatures within a safe operating range under high-stress 

conditions without substantial fan power consumption [1, 2]. Insulated gate bipolar transistor (IGBT) modules 

have recently become prevalent in various industries, notably in high-power converters for wind turbines, trains, 

and HVDC systems [3]. Thermal management, encompassing battery temperature regulation and air conditioning 

cabinet, poses a significant challenge for electric vehicles (EVs), where traditional engines and oil tanks are 

replaced by electric motors and battery assemblies [4]. Optimizing thermal management is critical for the 

performance of IGBT-based power modules in hybrid electric vehicles [5]. Jun He et al. have studied the thermal 

design and assessment of IGBT power modules under both transient and steady-state conditions, suggesting that 

optimizing wire bond configurations and bonding pad positions can significantly reduce temperature gradients 

and peak temperatures on the IGBT surface [6]. Thermal resistance (Rth), defined as the ratio of the temperature 

difference between the heat output and input ends to the power, is a crucial parameter for IGBT modules and an 

important measure of their heat dissipation efficiency [7].   

Efficient thermal management not only enhances performance but also enables the miniaturization of power 

electronics equipment [8]. In the application of IGBTs, particularly in high-voltage heater systems, the challenge 

lies in managing the additional heat generated by the heating elements applied via plasma deposition technology. 

This makes the thermal management requirements even more stringent. In the application of an IGBT, it is crucial 

to analyze the heat generation and transfer behavior to minimize chip temperature. Within a high voltage heater 

system, the IGBT is secured to the heat exchanger using bolts, while the heating element is directly applied to the 

heat exchanger using plasma deposition technology. As a result, during IGBT operation, in addition to the heat 
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produced by the chip itself, heat is also transferred from the heating elements, leading to more stringent thermal 

management requirements for the IGBT in the high voltage heater system. Current cooling methods for IGBTs 

are inadequate for maintaining a safe temperature range under the high-power heating conditions of the high 

voltage heater system, posing a significant risk to system reliability. So far, many studies on IGBT cooling have 

concentrated on designing cooling structures to solve the problem of effective heat dissipation for IGBTs [9].  

Rao et al. optimized a plate-fin heat exchanger by minimizing the total number of entropy generation units for a 

specific heat duty requirement within given space constraints, reducing the total volume, and lowering the total 

annual cost [10]. Lee et al. utilized a multi-objective genetic algorithm combined with surrogate modeling 

techniques to maximize heat transfer and minimize pressure drop in a heat exchanger [11]. Mishra et al. used GA 

for optimal design of plate-fin heat exchangers [12, 13]. Some authors used particle swarm optimization for rolling 

fin-tube heat exchanger optimization [14]. 

The main goal of this study is to optimize the cooling of a power electronic system that consists of an IGBT 

and a diode, along with the associated connections and joints, by leveraging the data from Pourfattah Farzad et al. 

[15]. This study introduces a novel approach to address the shortcomings in the design, modeling, and 

optimization of the thermal management for cooling systems of power electronics modules. The proposed method 

employs multiple nonlinear neuro-regression analyses, integrating artificial neural networks (ANN), regression 

analysis, and stochastic optimization techniques to achieve suitable designs that meet desired specifications. This 

approach allows for diverse alternative mathematical models, transcending traditional limitations to specific 

polynomial forms or activation functions such as sigmoid, unit step, and hyperbolic tangent. 

Furthermore, model assessment incorporates both the R² value and a boundedness check criterion, which provides 

a more holistic evaluation of model reliability. The boundedness check is vital for developing dependable 

mathematical models, as all engineering parameters must be finite. Realistic modeling in engineering systems 

necessitates that models are bounded within specified parameter intervals; thus, verifying this boundedness prior 

to optimization is essential. In contrast to modeling techniques reliant on artificial neural networks, this method 

circumvents the need for fine-tuning parameters such as the number of neurons and hidden layers, which are often 

adjusted to enhance ANN-based models. This modeling approach significantly enhances the thermal management 

for cooling systems of power electronics module in the existing literature.  Algorithms; Differential Evolution, 

Nelder Mead, Simulated Annealing, and Random Search  are employed to identify the optimal design parameters 

and IGBT temperature for efficient thermal management. 

2. Materials and Methods  

2.1 Mathematical modelling  

In the modeling stage, a combined method of regression analysis and artificial neural networks are utilized to 

enhance the accuracy of predictions. The dataset is divided into three parts: 80% for training, 15% for testing, and 

5% for validation. During training, various regression models outlined in Table 1 were employed to minimize the 

disparity between experimental and predicted values. In the testing and validation phase, the objective was to 

generate prediction outcomes while mitigating inconsistencies among regression models. Evaluating the 

boundedness of the models was crucial for assessing their realism. Following the selection of suitable models 

based on R2 index for training, testing, and validation, the maximum and minimum values for each design 

parameter were computed. In q. (1), R2 is coefficient of determination that indicates how well the data fit a 

regression model. R2 value range from 0 to 1. As R2 value is closer to 1 it indicates that there is a good fit with 

that model. SSE stands for ‘Sum of Squared Errors’ and measures the total deviation of the observed values from 

the predicted values produced by the regression model. SST stands for ‘sum of squares total’ and measures the 

total deviation of the observed values from their mean. 

 

            𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
                                                                                (1) 
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Table 1. Multiple regression model types including  

linear, quadratic, trigonometric, logarithmic, and their rational forms [16] 

Model Name Nomenclature Formula 

Multiple Linear L (a0 +  a1 x1 +  a2 x2 +  a3 x3 +  a4 x4 +  a5 x5) 

Multiple Linear Rational LR 
(a0 +  a1 x1 +  a2 x2 +  a3 x3 +  a4 x4 +  a5 x5) / (b0 +  b1 x1 +  b2 x2 +  b3 x3 

+  b4 x4 +  b5 x5) 

Second-Order Multiple 
Nonlinear 

SON 

(a0 +  a1 x1 +  a2 x2 +  a3 x3 +  a4 x4 +  a5 x5 +  a6 x1 x1 +  a7 x2 x2 +  a8 x3 x3 
+  a9 x4 x4 +  a10 x5 x5 +  a11 x1 x2 +  a12 x1 x3 +  a13 x1 x4 
+  a14 x1 x5 +  a15 x2 x3 +  a16 x2 x4 +  a17 x2 x5 +  a18 x3 x4 
+  a19 x3 x5 +  a20 x4 x5) 

Second-Order Multiple 

Nonlinear Rational 
SONR 

(a0 +  a1 x1 +  a2 x2 +  a3 x3 +  a4 x4 +  a5 x5 +  a6 x1 x1 +  a7 x2 x2 +  a8 x3 x3 
+  a9 x4 x4 +  a10 x5 x5 +  a11 x1 x2 +  a12 x1 x3 +  a13 x1 x4 
+  a14 x1 x5 +  a15 x2 x3 +  a16 x2 x4 +  a17 x2 x5 +  a18 x3 x4 
+  a19 x3 x5 +  a20 x4 x5) / (b0 +  b1 x1 +  b2 x2 +  b3 x3 +  b4 x4 
+  b5 x5 +  b6 x1 x1 +  b7 x2 x2 +  b8 x3 x3 +  b9 x4 x4 +  b10 x5 x5 
+  b11 x1 x2 +  b12 x1 x3 +  b13 x1 x4 +  b14 x1 x5 +  b15 x2 x3 
+  b16 x2 x4 +  b17 x2 x5 +  b18 x3 x4 +  b19 x3 x5 +  b20 x4 x5) 

First-Order Trigonometric 
Multiple Nonlinear 

FOTN 
(a0 +  a1 Sin[x1]  +  a2 Sin[x2]  +  a3 Sin[x3]  +  a4 Sin[x4]  +  a5 Sin[x5]  +  a6 Cos[x1]  

+  a7 Cos[x2]  +  a8 Cos[x3]  +  a9 Cos [x4]  +  a10 Cos[x5]) 

First-Order Trigonometric 

Multiple Nonlinear Rational 
FOTNR 

(a0 +  a1 Sin[x1]  +  a2 Sin[x2]  +  a3 Sin[x3]  +  a4 Sin[x4]  +  a5 Sin[x5]  +  a6 Cos[x1]  
+  a7 Cos[x2]  +  a8 Cos[x3]  +  a9 Cos [x4]  +  a10 Cos[x5]) / (b0 
+  b1 Sin[x1]  +  b2 Sin[x2]  +  b3 Sin[x3]  +  b4 Sin[x4]  +  b5 Sin[x5]  
+  b6 Cos[x1]  +  b7 Cos[x2]  +  b8 Cos[x3]  +  b9 Cos [x4]  +  b10 Cos[x5]) 

Second-Order Trigonometric 
Multiple Nonlinear 

SOTN 

(a0 +  a1 Sin[x1]  +  a2 Sin[x2]  +  a3 Sin[x3]  +  a4 Sin[x4]  +  a5 Sin[x5]  +  a6 Cos[x1]  
+  a7 Cos[x2]  +  a8 Cos[x3]  +  a9 Cos [x4]  +  a10 Cos[x5]  
+  a11 Sin[x1] Sin[x1]  +  a12 Sin[x2] Sin[x2]  +  a13 Sin[x3] Sin[x3]  
+  a12 Sin[x4] Sin[x4]  +  a15 Sin[x5] Sin[x5]  +  a16 Cos[x1] Cos[x1]  
+  a17 Cos[x2] Cos[x2]  +  a18 Cos[x3] Cos[x3]  +  a19 Cos[x4] Cos[x4]  
+  a20 Cos[x5] Cos[x5]) 

Second-Order Trigonometric 

Multiple Nonlinear Rational 
SOTNR 

(a0 +  a1 Sin[x1]  +  a2 Sin[x2]  +  a3 Sin[x3]  +  a4 Sin[x4]  + a5 Sin[x5]  +  a6 Cos[x1]  
+  a7 Cos[x2]  +  a8 Cos[x3]  +  a9 Cos [x4]  +  a10 Cos[x5]  
+  a11 Sin[x1] Sin[x1]  +  a12 Sin[x2] Sin[x2]  +  a13 Sin[x3] Sin[x3]  
+  a12 Sin[x4] Sin[x4]  +  a15 Sin[x5] Sin[x5]  +  a16 Cos[x1] Cos[x1]  
+  a17 Cos[x2] Cos[x2]  +  a18 Cos[x3] Cos[x3]  +  a19 Cos[x4] Cos[x4]  
+  a20 Cos[x5] Cos[x5]) / (b0 +  b1 Sin[x1]  +  b2 Sin[x2]  +  b3 Sin[x3]  
+  b4 Sin[x4]  +  b5 Sin[x5]  +  b6 Cos[x1]  +  b7 Cos[x2]  +  b8 Cos[x3]  
+  b9 Cos [x4]  +  b10 Cos[x5]  +  b11 Sin[x1] Sin[x1]  
+  b12 Sin[x2] Sin[x2]  +  b13 Sin[x3] Sin[x3]  +  b12 Sin[x4] Sin[x4]  
+  b15 Sin[x5] Sin[x5]  +  b16 Cos[x1] Cos[x1]  +  b17 Cos[x2] Cos[x2]  
+  b18 Cos[x3] Cos[x3]  +  b19 Cos[x4] Cos[x4]  +   b20 Cos[x5] Cos[x5]) 

First-Order Logarithmic 
Multiple Nonlinear 

FOLN (a0 +  a1 Log[x1]  +  a2 Log[x2]  +  a3 Log[x3]  +  a4 Log[x4]  +  a5 Log[x5]) 

First-Order Logarithmic 
Multiple Nonlinear Rational 

FOLNR 
(a0 +  a1 Log[x1]  +  a2 Log[x2]  +  a3 Log[x3]  +  a4 Log[x4]  +  a5 Log[x5]) / (b0 

+  b1 Log[x1]  +  b2 Log[x2]  +  b3 Log[x3]  +  b4 Log[x4]  +  b5 Log[x5]) 

Second-Order  Logarithmic 
Multiple Nonlinear 

SOLN 

(a0 +  a1 Log[x1]  +  a2 Log[x2]  +  a3 Log[x3]  +  a4 Log[x4]  +  a5 Log[x5]  
+ a6 Log[x1] Log[x1]  +  a7 Log[x2] Log[x2]  +  a8 Log[x3] Log[x3]  
+  a9 Log[x4] Log[x4]  +  a10 Log[x5] Log[x5]  +  a11 Log[x1] Log[x2]  
+  a12 Log[x1] Log[x3]  +  a13 Log[x1] Log[x4]  +  a14 Log[x1] Log[x5]  
+  a15 Log[x2] Log[x3]  +  a16 Log[x2] Log[x4]  +  a17 Log[x2] Log[x5]  
+  a18 Log[x3] Log[x4]  +  a19 Log[x3] Log[x5]  +  a20 Log[x4] Log[x5]) 

Second-Order  Logarithmic 

Multiple Nonlinear 
SOLNR 

(a0 +  a1 Log[x1]  +  a2 Log[x2]  +  a3 Log[x3]  +  a4 Log[x4]  +  a5 Log[x5]  
+ a6 Log[x1] Log[x1]  +  a7 Log[x2] Log[x2]  +  a8 Log[x3] Log[x3]  
+  a9 Log[x4] Log[x4]  +  a10 Log[x5] Log[x5]  +  a11 Log[x1] Log[x2]  
+  a12 Log[x1] Log[x3]  +  a13 Log[x1] Log[x4]  +  a14 Log[x1] Log[x5]  
+  a15 Log[x2] Log[x3]  +  a16 Log[x2] Log[x4]  +  a17 Log[x2] Log[x5]  
+   a18 Log[x3] Log[x4]  +  a19 Log[x3] Log[x5]  
+   a20 Log[x4] Log[x5]) / (b0 +  b1 Log[x1]  +  b2 Log[x2]  
+  b3 Log[x3]  +   b4 Log[x4]  +  b5 Log[x5]  +  b6 Log[x1] Log[x1]  
+  b7 Log[x2] Log[x2]  + b8 Log[x3] Log[x3]  +  b9 Log[x4] Log[x4]  
+  b10 Log[x5] Log[x5]  +  b11 Log[x1] Log[x2]  +  b12 Log[x1] Log[x3]  
+  b13 Log[x1] Log[x4]  +  b14 Log[x1] Log[x5]  +  b15 Log[x2] Log[x3]  
+  b16 Log[x2] Log[x4]  +  b17 Log[x2] Log[x5]  +  b18 Log[x3] Log[x4]  
+  b19 Log[x3] Log[x5]  +  b20 Log[x4] Log[x5]) 
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Two new hybrid regression models are also proposed in this study. These regression model formulas are given 

in Table 2.  

 
Table 2. Hybrid regression model types  

 

Model Name 

 

Nomenclature 

 

Formula 

Hybrid H(FOLN+SON) 

(a0 +  a1 Log[x1]  +  a2 Log[x2]  +  a3 Log[x3]  +  a4 Log[x4]  + a5 Log[x5]  
+  a6 +  a7 x1 +  a8 x2 +  a9 x3 +  a10 x4 +  a11 x5 
+  a12 x1 x1 +  a13 x2 x2 +  a14 x3 x3 +  a15 x4 x4 
+  a16 x5 x5 +  a17 x1 x2 +  a18 x1 x3 +  a19 x1 x4 
+  a20 x1 x5 +  a21 x2 x3 + a22 x2 x4 +  a23 x2 x5 
+  a24 x3 x4 +  a25 x3 x5 +  a26 x4 x5) 

Hybrid H(FOLN*L) 
(a0 +  a1 Log[x1]  +  a2 Log[x2]  +  a3 Log[x3]  +  a4 Log[x4]  +  a5 Log[x5])  

∗  (a6 +  a7 x1 +  a8 x2 +  a9 x3 +  a10 x4 +  a11 x5) 

2.2 Optimization 

Optimization involves refining a system or process to achieve the best possible outcome. This process entails 

adjusting input variables to minimize or maximize the output of a function, often referred to as the cost function, 

objective function, or fitness function. The goal is to optimize these inputs to achieve the best possible 

performance of the system [17]. 

2.2.1. Differential evolution 

Differential Evolution (DE) is a population-based optimization algorithm particularly effective for solving 

complex, high-dimensional optimization problems. DE begins by initializing a population of candidate solutions, 

iteratively refining them across generations by exploiting differences (differentials) between solutions within the 

population. In each generation, new candidate solutions are generated through a mutation process, which typically 

involves selecting three random individuals to create differential vectors. These vectors are then combined with 

an existing solution to propose a new candidate. A crossover operation further enhances solution diversity, while 

a selection process ensures that only improved solutions are retained. One of DE’s key strengths is its ability to 

reach globally optimal solutions without requiring gradient information, making it highly suitable for applications 

in engineering and scientific research. Its relatively low sensitivity to parameter settings also contributes to its 

widespread use in various optimization tasks [18]. 

2.2.2. Nelder-mead 

The Nelder-Mead algorithm is a widely used direct search optimization technique that operates without the 

need for gradient information, making it suitable for optimizing non-differentiable or complex objective functions. 

The algorithm maintains a simplex—a geometric shape formed by n+1n+1n+1 vertices in an nnn-dimensional 

space—and iteratively refines it using four main operations: reflection, expansion, contraction, and shrinkage. 

Through these operations, the simplex adjusts its shape, size, and orientation dynamically, allowing it to navigate 

the objective function landscape effectively and converge towards a local optimum. By adapting to the contours 

of the objective function, the Nelder-Mead algorithm demonstrates flexibility and robustness, making it 

particularly valuable for challenging optimization tasks where traditional gradient-based methods may be 

infeasible or ineffective [19].  

 

2.2.3. Random search 

The Random Search algorithm is a stochastic optimization technique that contrasts with deterministic methods, 

such as Branch and Bound or Interval Analysis, by relying on random sampling rather than systematic exploration 

of the search space. Unlike gradient-based or small-step methods that risk converging to local optima, Random 

Search samples candidate solutions across the entire search domain, thereby increasing its likelihood of 

identifying a global optimum, especially in multimodal objective functions. This characteristic makes Random 

Search particularly advantageous for problems where the objective function contains multiple peaks or valleys. 

The algorithm’s simplicity and adaptability allow it to explore complex search landscapes without gradient 

information, though its efficiency can be enhanced by combining it with local refinement strategies to ensure both 

global exploration and local exploitation of high-potential regions [20]. 
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2.2.4. Simulated annealing 

Simulated Annealing (SA) is a widely adopted optimization technique within random search methods, inspired 

by the physical annealing process. In this process, a metal is heated to a high temperature and then gradually 

cooled, allowing its atomic structure to settle into a state of lower energy, resulting in a tougher and more stable 

material. In the context of optimization, the SA algorithm mimics this annealing process to enable solutions to 

escape local minima and explore the search space more broadly in pursuit of a global optimum. Initially, the 

algorithm accepts a wide range of solutions, including those that may increase the objective function, which helps 

it to traverse diverse regions of the search landscape. As the "temperature" parameter decreases, the acceptance 

of higher-energy solutions becomes less likely, guiding the algorithm towards a stable and optimal solution. This 

dynamic makes SA particularly effective for solving complex, multimodal optimization problems, as it balances 

global exploration and local refinement [21]. 

2.3. Problem definition 

The main aim of this study is to identify the optimal design parameters to minimize the temperature of the 

IGBT. The study involves several steps: 

i) Data Selection and determination of design variables and output parameters: Data was taken from the reference 

study conducted by Pourfattah Farzad et al. [15].  The design variables included the coolant flow rate, the 

height and width of the first pin-fin attached to the heatsink, the distance from the vortex generator, the distance 

from the coolant path surface to the vortex generator. The output parameter is selected as IGBT temperature.  

ii) Model Selection: Fourteen regression models were utilized, and their validity was assessed by checking the R² 

values and boundedness criteria. Models are considered successful when they achieve R² values greater than 

0.85 and have realistic maximum and minimum outputs for engineering applications. 

iii) Optimization: The model, which successfully met the model assessment and boundedness control criteria, was 

optimized using four optimization methods (DE, NM, RS, SA) to obtain optimal results, which were then 

compared with one another. 

The flow chart in Figure 1 provides a detailed description of the steps taken in the mathematical modeling and 

optimization processes. 

 
Figure 1. The flowchart regarding mathematical modeling and optimization process 
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2.3.1 Optimization scenarios 

Three scenarios with varying constraints on the design parameters were established to determine the optimal 

solution. 

Scenario 1 

In the first scenario, the search space was continuous. The intervals for the design variables are as follows:1.203 

≤ x1 (L/min) ≤ 4.497, 505.56 ≤ x2 (μmm) ≤ 783.33, 2.215 ≤ x3 (mm) ≤ 2.985, 512.96 ≤ x4 (μmm) ≤ 1187.04, 

0.46 ≤ x5 (μmm) ≤ 251.91 

Scenario 2 

For this scenario, the search space of some design variables (x1, x2, x4, x5) was considered as integer. The 

intervals for the design variables are as follows: 1.203 ≤ x1 (L/min) ≤ 4.497, 505.56 ≤ x2 (μmm) ≤ 783.33, 2.215 

≤ x3 (mm) ≤ 2.985, 512.96 ≤ x4 (μmm) ≤ 1187.04, 0.46 ≤ x5 (μmm) ≤ 251.91{x1, x2, x4, x5} ∈ Integers 

Scenario 3 

In the third scenario, all design parameters were taken as only certain specific values determined in the 

experimental set. For this study, each design variable had 24 different levels. Due to implementing regression 

models for 24 different levels taking time regarding optimization, each design parameter's level is chosen as four 

specified values: minimum, maximum, middle, and the design parameters that performed the best results in the 

experimental study. The design parameters and their level values are; coolant flow rate (x1) ∈ {1.203, 2.850, 

3.103, 4.497}, height of the first pin-fin (x2) ∈ {650.00, 772.22, 783.33, 1505.56}, distance from the vortex 

generator (x3) ∈ {2.215, 2.600, 2.659, 2.985}, width of the first pin-fin (x4) ∈ {512.96, 850.00, 1005.56, 

1187.04}, distance of the vortex generator from surface (x5) ∈ {0.46, 113.89, 134.26, 251.91}.  

 

 
 

Table 3. Design points regarding with input and output parameters [15] 

Run Order 

coolant flow 

rate (x1) 

(L/min) 

height of the 

first pin-fin (x2) 

(μmm) 

distance from 

the vortex 

generator (x3) 

(mm) 

width of the first 

pin-fin  

(x4) (μmm) 

distance of the 

vortex generator 

from surface  

(x5) (μmm) 

IGBT 

temperature  

(°C) 

1 2.723 650.00 2.748 642.6 81.67 82.68 

2 1.203 527.78 2.748 979.63 47.22 106.65  

3 2.977 683.33 2.778 953.70 80.93 80.42 

4 1.457 672.22 2.896 746.30 40.06 98.18 

5 4.370 605.56 2.215 1109.26 83.27 75.3 

6 2.850 738.89 2.837 512.96 147.96 76.73 

7 4.243 594.44 2.393 824.07 220.80 74.6 

8 2.090 516.67 2.274 850.00 134.26 92.22 

9 1.837 750.00 2.926 1187.04 119.44 85.66 

10 2.343 761.11 2.511 668.52 76.98 80.65 

11 1.710 583.33 2.867 1057.41 217.59 95.13 

12 2.597 783.33 2.363 927.78 0.46 78.9 

13 3.483 627.78 2.452 1083.33 161.30 78.28 

14 2.217 572.22 2.481 798.15 251.91 88.34 

15 3.863 550.00 2.719 875.93 35.00 77.77 

16 3.230 727.78 2.600 564.81 99.81 76.03 

17 1.583 638.89 2.689 1161.11 164.51 95.71 

18 1.330 705.56 2.630 590.74 55.62 97.9 

19 4.117 561.11 2.807 772.22 180.43 76.16 

20 4.497 538.89 2.333 616.67 158.83 74.88 

21 1.963 505.56 2.956 538.89 82.41 80.72 

22 3.610 716.67 2.244 720.37 110.19 74.58 

23 3.103 772.22 2.659 1005.56 113.89 74.36 

24 3.737 694.44 2.985 1031.48 91.67 76 

 

 



Savran et. al. / JAIDA vol (2024) 68-78 

 

 74 

3. Results and Discussion 

This study established a mathematical relationship between design parameters (coolant flow rate (x1), height 

of the first pin-fin (x2), distance from the vortex generator (x3),  width of the first pin-fin (x4) and distance of the 

vortex generator from surface (x5)), and output parameter (IGBT temperature). The goal was to identify the values 

of these design parameters that minimize the IGBT temperature using the most effective model. 

Table 4 presents the performance of various neuro-regression models in terms of their R2 values (for training, 

testing, and validation phases) and their boundedness check (maximum and minimum values). The R2 values 

during training are notably high across all models, with some achieving values close to 1.0. This suggests that the 

models exhibit a strong fit to the training data. However, such high values may indicate potential overfitting, 

where the model may not generalize well to unseen data.  

In the testing and validation phase, several models yield negative R2 values (e.g., LR: -0.541896, SOTNR: -

8.17925), implying poor performance and possibly inverse predictions relative to the data trend. Particularly in 

the SOTNR model, this discrepancy may indicate substantial overfitting.  

The maximum and minimum values across the models reveal that some models produce extreme bounds (e.g., 

the minimum value for SOTNR: 1.78333×1010), indicating that these models may generate highly varied or 

extreme outputs. This wide prediction range points to a tendency toward volatility in some models. 

The FOLN model demonstrates commendable performance across multiple evaluation criteria, particularly in 

terms of its R2 values and boundedness. The model achieves high R2 values in the training (0.99805), testing 

(0.996986), and validation phases (0.99921), indicating a consistently strong fit and predictive capability across 

different data subsets. Such uniformly high R2 values suggest that the FOLN model not only learns the training 

data effectively but also generalizes well to unseen data, avoiding overfitting issues commonly observed in other 

models. 

Regarding boundedness, the FOLN model maintains a prediction range with maximum and minimum values 

of 105.094 and 65.7673, respectively. This bounded range suggests a stable prediction behavior. The FOLN 

model’s boundedness further supports its robustness, as it operates within a controlled range, contrasting with 

models that exhibit high variance in output values. 

Among the models in Table 4,the FOLN model only demonstrates a balance between model fitness and prediction 

stability. For this reason, it is selected as an objective function in the optimization process to minimize IGBT 

temperature. 
Table 4. Result of the Neuro-Regression Models in Terms of R2 and Boundedness 

Model R2Training R2Testing R2Validation Max Min 

L 0.997574 0.880102 0.952265 105.559 60.8362 

LR 0.999749 -0.541896 0.903765 ∞ ∞ 

SON 1. 0.384109 -1.01635 125.852 36.4097 

SONR 0.999493 0.83447 0.45114 182.503 -3.5922*10^9 

FOTN 0.999301 0.519079 0. .91273 110.303 58.3124 

FOTNR 0.999854 -1.0012 0.83765 4.64839*10^6 3.82897*10^6 

SOTN 0.999845 -0.268708 -0.0235936 108.566 44.027 

SOTNR 0.999936 -8.17925 -16.0617 1.70706*10^15 1.78333*10^10 

FOLN 0.99805 0.996986 0.99921 105.094 65.7673 

FOLNR 0.999662 -1.85905 -2.08456 1.95554*10^7 2.77389*10^6 

SOLN 1. -1.39353 -1.38238 339.14 154.896 

SOLNR 0.999875 -0.192595 -0.355909 4.01139*10^7 33.6077 

H (FOLN+SON) 1. -0.305234 0.314625 118.633 30.6786 

H (FOLN*L) 0.999701 0.446418 0.937696 112.363 50.9868 

 

Table 5 presents the results of optimization scenarios for the FOLN model, with a focus on achieving minimum 

Insulated-Gate Bipolar Transistor (IGBT) temperatures across various optimization algorithms: DE, SA, RS, and 

NM. The findings indicate the effectiveness and stability of the FOLN model in identifying optimal designs under 

diverse conditions. 

In scenario 1, across all algorithms (MDE, MSA, MRS, MNM), the minimum IGBT temperature achieved is 

consistent at 65.7673°C, with the suggested design values for parameters x1 to x5 remaining identical. This 

outcome indicates a convergence across optimization methods toward a common design that minimizes 

temperature. 
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When the search space of some design variables (x1, x2, x4, x5) is considered an integer in scenario 2, slight 

variations appear between algorithms. For instance, MDE and MSA yield a minimum temperature of 68.4517°C, 

while MRS and MNM result in slightly higher temperatures of 68.7299°C and 71.365°C, respectively. The 

recommended parameter values exhibit minor differences by algorithms, suggesting some sensitivity in the 

model’s design variable recommendations depending on the optimization technique. 

In Scenario 3, under all design parameters are taken as only certain specific values determined in the experimental 

set, four algorithms consistently converge to the minimum IGBT temperature of 65.7673°C with same design 

parameters. This convergence among the algorithms suggests that the optimal result has been attained. A 

comparison with the experimental results from the reference study supports this inference. While the 

experimentally obtained minimum temperature was 74.36°C, the present study achieves a significantly lower 

minimum temperature of 65.7673°C through modeling and optimization. 

In conclusion, this consistency reinforces the FOLN model’s suitability for applications requiring precise thermal 

management within defined parameter boundaries. 

 
Table 5. Results of optimization problems for FOLN model considering minimum IGBT temperature. 

Objective Function Scenario Number Constrains 
Optimization 

Algorithm 

Minimum IGBT 

Temperature (°C) 
Suggested Design 

FOLN 

1 

1.203 ≤ x1 ≤ 4.497, 
5 505.56≤ x2 ≤

783.33 

2.215 ≤ x3 ≤ 2.985 

512.96 ≤ x4
≤ 1187.04 

0.46 ≤ x4 ≤ 251.91 

DE 65.7673 

x1 -> 4.497, 

x2 -> 783.33, 
x3 -> 2.985, 

x4 -> 512.96, 

x5 -> 0.46 

SA 65.7673 

x1 -> 4.497, 

x2 -> 783.33, 

x3 -> 2.985, 
x4 -> 512.96, 

x5 -> 0.46 

RS 65.7673 

x1 -> 4.497, 

x2 -> 783.33, 
x3 -> 2.985, 

x4 -> 512.96, 

x5 -> 0.46 

NM 65.7673 

x1 -> 4.497, 

x2 -> 783.33, 

x3 -> 2.985, 

x4 -> 512.96, 

x5 -> 0.46 

2 

1.203 ≤ x1 ≤ 4.497, 
5 505.56≤ x2 ≤

783.33 

2.215 ≤ x3 ≤ 2.985 

512.96 ≤ x4
≤ 1187.04 

0.46 ≤ x4 ≤ 251.91 
{x1, x2, x4, x5}  
∈ Integers 

DE 68.4517 

x1 -> 4, x2 -> 783, x3 

-> 2.985, 
x4 -> 513, x5 -> 1 

SA 68.4517 

x1 -> 4, x2 -> 783, x3 

-> 2.985, 
x4 -> 513 x5 -> 1 

RS 68.7299 

x1 -> 4, x2 -> 778, x3 

-> 2.92473, 

x4 -> 513, x5 -> 1 

NM 71.365 

x1 -> 4, x2 -> 707, x3 

-> 2.985, 

x4 -> 826, 
x5 -> 211 

3 

x1 = 1.203 || 

x1 = 2.850 || 

x1 = 3.103 || 
x1 = 4.497, 

x2 =505.56 || 

x2 = 650.00 || 
x2 = 772.22 || 

x2 = 783.33, 

x3 = 2.215 || 
x3 = 2.600 || 

x3 = 2.659 || 

x3 = 2.985, 
x4 = 512.96 || 

x4 = 850.00 || 

x4 = 1005.56 || 
x4 = 1187.04, 

x5 = 0.46 || 

x5 = 113.89 || 
x5 = 134.26 || 

x5 = 251.91 

DE 65.7673 

x1 -> 4.497, 

x2 -> 783.33, 
x3 -> 2.985, 

x4 -> 512.96, 

x5 -> 0.46 

SA 65.7673 

x1 -> 4.497, 
x2 -> 783.33, 

x3 -> 2.985, 

x4 -> 512.96, 
x5 -> 0.46 

RS 65.7673 

x1 -> 4.497, 

x2 -> 783.33, 
x3 -> 2.985, 

x4 -> 512.96, 

x5 -> 0.46 

NM 65.7673 

x1 -> 4.497, 
x2 -> 783.33, 

x3 -> 2.985, 

x4 -> 512.96, 
x5 -> 0.46 
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4. Conclusion 

This study highlights the critical role of thermal management in optimizing power electronics systems, 

specifically those employing IGBT components. By focusing on minimizing the IGBT temperature as the 

objective function, the optimization framework employed key design variables such as coolant flow rate (x1), 

height of the first pin-fin (x2), distance from the vortex generator (x3),  width of the first pin-fin (x4) and distance 

of the vortex generator from surface (x5). Standard methods that use limited regression models often ignore 

nonlinear effects and are ineffective for optimizing thermal management for cooling systems of power electronics 

modules. This study introduces a new way to model the relation between cooling system design parameters and 

IGBT temperature by combining artificial neural networks (ANN) with regression techniques. This approach, 

called neuro-regression, selects the best models from linear, rational, logarithmic, polynomial, trigonometric, and 

hybrid types based on criteria R² and boundedness check. The FOLN neuro-regression model emerged as the most 

effective in achieving a balance between high predictive accuracy and model boundedness across training, testing 

and validation datasets. 

The results indicate that when the FOLN model was selected as the objective function, the Differential 

Evolution, Simulated Annealing, Random Search, and Nelder-Mead algorithms found the minimum IGBT 

temperature to be 65.7673°C. This temperature is significantly lower than the minimum temperature of 74.36°C 

reported in experimental studies.  

This outcome suggests that the FOLN model is particularly well-suited for applications necessitating precise and 

robust thermal control. Moreover, the consistency observed across different optimization algorithms emphasizes 

the result's robustness, as each algorithm converged to the same minimum temperature. This convergence 

validates the model’s efficacy for thermal management in power electronics. 

Future studies may further explore applying the FOLN model across a broader range of conditions to enhance 

predictive performance and thermal management strategies in advanced electronics systems. 
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Appendix 

 
Table 6. Full form of fitted models given in Table 4 for IGBT temperature minimization 

L 
𝑌 = 134.038 −  7.87285 𝑥1 −  0.0350987 𝑥2 −  3.84166 𝑥3 +  0.0052639 𝑥4 −   0.00609842 𝑥5 

 

LR 

Y = (−56968.1 +  9808.6 x1 −  1.10747 x2 +  13287.9 x3 +  13.2699 x4 − 
61.2884 x5) / (−701.641 +  127.019 x1 −  0.0295636 x2 +  160.471 x3 + 

0.169625 x4 −  0.731965 x5) 

SON 

Y = 143.16 −  26.1213 x1 −  0.266133 x12 +  0.205037 x2 +  0.0164272 x1 x2 − 
0.000215368 x22 −  18.958 x3 +  3.16074 x1 x3 +  0.0316068 x2 x3 − 

6.10672 x32 −  0.0526772 x4 −  0.00426426 x1 x4 −  0.000106816 x2 x4 + 
0.0345683 x3 x4 +  6.44028 ∗ 10−6x42 −  0.272179 x5 + 

0.0666481 x1 x5 −  0.000173512 x2 x5 −  0.118958 x3 x5 + 
0.000406931 x4 x5 +  0.000532985 x52 

SONR 

𝑌 = (0.999998 +  1.00097 𝑥1 +  1.01073 𝑥12  +  1.18699 𝑥2 +  1.59093 𝑥1 𝑥2 + 
8.07745 𝑥22 +  0.998744 𝑥3 +  0.999468 𝑥1 𝑥3 +  1.09109 𝑥2 𝑥3 + 
0.992578 𝑥32 +  1.41276 𝑥4 +  2.01127 𝑥1 𝑥4 +  0.653814 𝑥2 𝑥4 + 
1.19341 𝑥3 𝑥4 −  2.6552 𝑥42 +  0.973255 𝑥5 +  0.983887 𝑥1 𝑥5 + 

https://doi.org/10.1080/15376494.2021.1875390
https://doi.org/10.1177/09544089241272909
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26.9875 𝑥2 𝑥5 +  0.545355 𝑥3 𝑥5 +  32.2588 𝑥4 𝑥5 + 
8.93178 𝑥52) / (1.0129 +  1.03098 𝑥1 +  0.564842 𝑥12  −  10.509 𝑥2 + 

16.1285 𝑥1 𝑥2 −  0.0135889 𝑥22 +  1.13578 𝑥3 +  1.33672 𝑥1 𝑥3 + 
0.959568 𝑥2 𝑥3 +  1.6953 𝑥32 −  28.6864 𝑥4 −  7.66247 𝑥1 𝑥4 + 

0.141888 𝑥2 𝑥4 −  3.19273 𝑥3 𝑥4 −  0.034077 𝑥42 +  7.05449 𝑥5 + 
15.0197 𝑥1 𝑥5 +  0.586826 𝑥2 𝑥5 +  50.0506 𝑥3 𝑥5 +  0.032533 𝑥4 𝑥5 − 

0.0767997 𝑥52) 

FOTN 

Y = −15.9216 +  7.46982 Cos[x1]  −  0.53304 Cos[x2]  −  87.6255 Cos[x3]  + 
3.45563 Cos[x4]  −  5.72392 Cos[x5]  +  8.78887 Sin[x1]  − 

2.18344 Sin[x2]  +  55.7862 Sin[x3]  +  0.443394 Sin[x4]  −   0.265043 Sin[x5] 

FOTNR 

Y = (−0.730588 +  3.91013 Cos[x1]  +  1.92254 Cos[x2]  +  2.31712 Cos[x3]  + 
0.309367 Cos[x4]  +  1.69828 Cos[x5]  +  4.18388 Sin[x1]  + 
2.25224 Sin[x2]  +  0.0157777 Sin[x3]  +  4.34981 Sin[x4]  + 

3.5477 Sin[x5]) / (−0.0652036 +  0.0572789 Cos[x1]  + 
0.0230747 Cos[x2]  −  0.0244729 Cos[x3]  −  0.000143375 Cos[x4]  + 

0.0243629 Cos[x5]  +  0.0523375 Sin[x1]  +  0.0282922 Sin[x2]  + 
0.0261709 Sin[x3]  +  0.0541034 Sin[x4]  +  0.0437403 Sin[x5]) 

SOTN 

𝑌 = −47.3662 + 13.0646Cos[x1] − 63.5034Cos[x1]2 + 2.56338Cos[x2] − 47.6764Cos[x2]2

− 436.355Cos[x3] − 85.6018Cos[x3]2 + 3.40693Cos[x4] − 57.3509Cos[x4]2

− 3.14863Cos[x5] − 63.4364Cos[x5]2 + 1.11839Sin[x1] − 60.9763Sin[x1]2

− 0.102909Sin[x2] − 45.5672Sin[x2]2 + 41.4972Sin[x3] + 139.775Sin[x3]2

+ 1.48926Sin[x4] − 45.5672Sin[x4]2 + 1.84843Sin[x5] − 72.5961Sin[x5]2 

SOTNR 

Y=(5.06164 + 0.909237Cos[x1] + 1.62149Cos[x1]2 + 4.89529Cos[x2] + 0.713049Cos[x2]2 −
3.13559Cos[x3] + 5.15071Cos[x3]2 + 7.27358Cos[x4] + 0.649242Cos[x4]2 + 8.37598Cos[x5] +

0.962236Cos[x5]2 + 9.14495Sin[x1] + 4.44015Sin[x1]2 − 1.426Sin[x2] + 9.76099Sin[x2]2 +
1.76466Sin[x3] + 0.910924Sin[x3]2 − 3.48212Sin[x4] + 9.76099Sin[x4]2 + 4.65247Sin[x5] +

5.0994Sin[x5]2)/(−0.470253 + 0.0554459Cos[x1] + 0.303031Cos[x1]2 + 0.0464251Cos[x2] −
0.0150328Cos[x2]2 − 0.831807Cos[x3] − 0.398776Cos[x3]2 + 0.0428974Cos[x4] + 0.0192471Cos[x4]2 +

0.145946Cos[x5] + 0.197603Cos[x5]2 + 0.127331Sin[x1] + 0.226716Sin[x1]2 − 0.00448057Sin[x2] +
0.0552804Sin[x2]2 − 0.834104Sin[x3] + 0.928524Sin[x3]2 − 0.0553128Sin[x4] + 0.0552804Sin[x4]2 −

0.0048026Sin[x5] + 0.332144Sin[x5]2) 

FOLN 
Y = 205.583 −  21.4628 Log[x1]  −  15.1221 Log[x2]  −  8.89083 Log[x3]  + 

0.497759 Log[x4]  +  0.21157 Log[x5] 

FOLNR 

Y = (−3235.77 +  668.333 Log[x1]  −  13.0274 Log[x2]  +  734.962 Log[x3]  + 
472.026 Log[x4]  −  211.339 Log[x5]) / (−38.355 +  8.63867 Log[x1]  − 

0.687913 Log[x2]  +  8.60961 Log[x3]  +  6.16418 Log[x4]  − 
2.65231 Log[x5]) 

SOLN 

𝑌 = 515.076 − 89.4979Log[x1] − 12.2692Log[x1]2 + 155.474Log[x2] + 40.8295Log[x1]Log[x2]
+ 10.3467Log[x2]2 − 1127.92Log[x3] + 35.5538Log[x1]Log[x3]
+ 119.958Log[x2]Log[x3] − 58.5787Log[x3]2 − 53.6643Log[x4]
− 37.03Log[x1]Log[x4] − 40.0015Log[x2]Log[x4] + 98.8895Log[x3]Log[x4]
+ 1.13931Log[x4]2 + 5.57893Log[x5] + 11.8181Log[x1]Log[x5]
− 50.2312Log[x2]Log[x5] − 55.7305Log[x3]Log[x5] + 53.933Log[x4]Log[x5]
− 1.0972Log[x5]2 

SOLNR 

𝑌 = (−0.335514 − 0.927137Log[x1] − 1.39658Log[x1]2 − 8.13074Log[x2] − 11.7381Log[x1]Log[x2]
− 61.8455Log[x2]2 − 0.248695Log[x3] − 0.482518Log[x1]Log[x3]
− 7.36435Log[x2]Log[x3] − 0.316384Log[x3]2 + 12.6517Log[x4]
+ 11.259Log[x1]Log[x4] + 75.8271Log[x2]Log[x4] + 12.8017Log[x3]Log[x4]
+ 97.142Log[x4]2 − 7.39312Log[x5] − 9.95039Log[x1]Log[x5]
− 56.4527Log[x2]Log[x5] − 7.26286Log[x3]Log[x5] + 42.0738Log[x4]Log[x5]
− 40.8657Log[x5]2)/ (−0.000139906 + 2.58557Log[x1] − 1.09347Log[x1]2

− 6.58669Log[x2] − 17.3051Log[x1]Log[x2] − 12.3961Log[x2]2 + 0.64661Log[x3]
− 25.9045Log[x1]Log[x3] − 18.4784Log[x2]Log[x3] + 14.4391Log[x3]2

− 8.55544Log[x4] + 23.5569Log[x1]Log[x4] + 17.504Log[x2]Log[x4]
− 6.39485Log[x3]Log[x4] + 0.668614Log[x4]2 − 2.53994Log[x5]
− 3.78552Log[x1]Log[x5] + 20.5227Log[x2]Log[x5] + 36.3018Log[x3]Log[x5]
− 23.9271Log[x4]Log[x5] − 0.375019Log[x5]2) 

H (FOLN+SON) 

𝑌 = 90.1139 + 0.442761x1 − 2.29539x12 + 0.0746876x2 + 0.0156922x1x2 − 0.000131892x22

− 3.71033x3 + 6.16279x1x3 + 0.0250583x2x3 − 4.80624x32 + 0.0418714x4
− 0.0109804x1x4 − 0.0000555408x2x4 + 0.0225954x3x4 − 0.0000395405x42

− 0.11773x5 + 0.0438845x1x5 − 0.000164884x2x5 − 0.139816x3x5
+ 0.000415728x4x5 + 0.000370671x52 − 39.8574Log[x1] + 8.66859Log[x2]
− 26.899Log[x3] − 5.74012Log[x4] − 0.201207Log[x5] 

H (FOLN*L) 

Y = (37.0467 +  2.02402 x1 −  0.0444288 x2 −  6.24084 x3 −  0.0585529 x4 
− 0.000602118 x5) (−19.2654 +  0.230805 Log[x1]  +  1.18382 Log[x2]  + 
0.215925 Log[x3]  +  1.41784 Log[x4]  +  0.000906653 Log[x5]) 

 


