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Bu çalışmada, derin öğrenme algoritmalarından olan Uzun Kısa Süreli Bellek (LSTM) ve 

Geçitli Tekrarlayan Birim (GRU) ile GNSS istasyon verilerinin Kuzey, Doğu ve Düşey 
bileşenleri için ileriye dönük ayrı ayrı kestirimler yapılarak, istasyon bazında eğitilen 
modeller ve tüm istasyon verilerinin birlikte eğitildiği tek model performansları 
karşılaştırılarak model yönetiminin performanslar üzerine etkisi incelenmiştir. Her 
bir GNSS istasyonu için ayrı modellerin kullanıldığı Senaryo I ve toplu verilerle tek bir birleşik 
modelin kullanıldığı Senaryo II için model performansı, ortalama karekök hata (RMSE), 
ortalama mutlak hata (MAE) ve belirleme katsayısı (R²)  kullanılarak Doğu, Kuzey ve Düşey 
bileşenler için değerlendirilmiştir. GRU algoritmasıyla Doğu bileşen için ortalama RMSE 
değeri Senaryo I ve II için sırayla 1.68 ve 1.67 mm, MAE değeri 1.24 ve 1.27 mm; Kuzey bileşen 
için RMSE değeri 1.70 ve 1.72 ve MAE değeri 1.32 ve 1.33 mm, Düşey bileşen için RMSE  4.50 
ve 4.43 mm ve MAE 3.58 ve 3.50 mm’dir. Bulgular tek model yaklaşımının model yönetimini 
basitleştirilerek özellikle daha homojen veri özelliklerine sahip bölgelerde, ayrı ayrı eğitilmiş 
modellerle karşılaştırılabilir doğruluk elde edebileceğini göstermektedir.  
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 In this study, the effect of model management on performance is analysed by comparing the 
performance of station-based models and the single model trained with all station data using 
the Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning 
algorithms for the North, East and Vertical components of GNSS station data. For Scenario I, 
where separate models are used for each GNSS station, and Scenario II, where a single 
combined model is used with aggregated data, model performance is evaluated for the East, 
North and Vertical components using Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE) and Coefficient of Determination (R²). With the GRU algorithm, the average RMSE for 
the East component is 1.68 and 1.67 mm and the MAE is 1.24 and 1.27 mm for scenarios I and 
II respectively; for the North component the RMSE is 1.70 and 1.72 and the MAE is 1.32 and 
1.33 mm; for the Vertical component the RMSE is 4.50 and 4.43 mm and the MAE is 3.58 and 
3.50 mm. The results show that the single model approach can simplify model management 
and achieve comparable accuracy to separately trained models, especially in regions with 
more homogeneous data characteristics. 
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1. Giriş  
 
Küresel Navigasyon Uydu Sistemi (GNSS), modern 

dünyanın temel yapı taşlarından biri haline gelmiştir 
(Mutlu ve Kahveci, 2019). Son yıllarda, GNSS teknolojisi, 
sadece navigasyon ve konumlandırma alanlarında değil, 
aynı zamanda jeodezik ve jeofiziksel araştırmalar gibi 
daha geniş bir yelpazede kullanılmaya başlanmıştır (Li ve 
ark., 2021). Bu teknoloji, yer yüzeyinin ve yer kabuğunun 
hareketlerinin hassas ölçümlerini sağlayarak, deprem 
öncesi aktivite izleme, volkanik hareketlerin takibi ve 
iklim değişikliklerinin etkilerinin anlaşılması gibi kritik 
alanlarda önemli roller üstlenmektedir. GNSS verilerinin 
bu geniş spektrumda kullanımı, doğal afetlerin erken 
tespiti ve zararlarının azaltılması açısından büyük önem 
taşımaktadır. GNSS, yer hareketini çok yüksek frekansta 
ve mekansal hassasiyetle gerçek zamanlı olarak ölçer (Li 
ve ark., 2015, Mufundirwa ve ark., 2010). Uzun dönem 
veri toplanmış GNSS koordinat zaman serileri jeodezi ve 
jeodinamik araştırmalar için değerli bilgiler  
sağlamaktadır (Ohta ve ark., 2012; Deng ve ark., 2017). 
Bu veriler yalnızca uzun vadeli değişim eğilimini 
yansıtmakla kalmaz, aynı zamanda jeofiziksel etkilerin 
neden olduğu doğrusal olmayan değişiklikleri de temsil 
etmektedir. GNSS koordinat zaman serileri, levha 
hareketlerinin izlenmesinde (Bevis ve ark., 2005; Şimşek 
ve ark., 2019), baraj veya köprü deformasyonunun 
izlenmesinde (Meng ve ark., 2004; Yi ve ark.., 2013; Yu ve 
ark., 2014; Xi ve ark., 2018; Chen ve ark., 2018) ve küresel 
veya bölgesel referans sistemlerinin oluşturulmasında 
önemli bir rol oynamaktadır (Altamimi ve ark., 2016; 
Yurdakul ve Kalaycı, 2022).  

Jeodezi ve jeofizik alanlarında, GNSS verilerinin 
analizi Dünya'nın dinamiklerini anlamak için hayati 
öneme sahiptir. Bu sistemlerin performansını daha da 
iyileştirmek ve daha derinlemesine analizler yapabilmek 
için Makine Öğrenimi (ML) ve Derin Öğrenme (DL) 
tekniklerinin kullanılması giderek daha fazla önem 
kazanmaktadır. Bu teknikler, geleneksel analiz 
yöntemlerinin ötesine geçerek, verilerin dağılımı için 
açık bir formül üretmek yerine, veri özellikleri arasındaki 
karmaşık ilişkileri öğrenmeye ve bu bilgileri tahmin, 
sınıflandırma, kümeleme ve anomali tespiti gibi çeşitli 
uygulamalarda kullanmaya olanak tanımaktadır. 
Özellikle, Derin Öğrenme ve yapay sinir ağları, büyük ve 
karmaşık GNSS veri kümelerindeki gizli örüntüleri ve 
ilişkileri ortaya çıkarmak için idealdir ( Mogaraju, 2024 ). 
Bu teknolojiler, zaman serilerinin yapısal özelliklerini ve 
uzun vadeli eğilimlerini anlamakta son derece etkilidir. 

Makine öğrenmesi ve derin öğrenme gibi veri odaklı 
öğrenme tekniklerin  zaman serilerini modellediği ve 
tahmin ettiği çalışmalar yapılmıştır.  Yapay sinir ağı 
(YSA) (Lian ve ark., 2015; Serwa ve ark., 2024 ), rastgele 
orman (Hu ve ark., 2021), destek vektör makinesi (SVM) 
(Miao ve ark., 2018), aşırı öğrenme makinesi (ELM)  (Liao 
ve ark., 2020) ve LSTM ağları (Yang ve ark., 2019) zaman  
serisi tahmininde geniş çapta çalışılmıştır. Xing ve 
arkadaşları, heyelan deformasyonunun izlenmesinde, 
Dashuitian'da yapılan deneylerde varyasyonel mod 
ayrışımına (VMD) ve LSTM ve EMD-LSTM ağından daha 
yüksek tahmin doğruluğuna sahip bir yığın LSTM'e 
dayanan bir model önermiştir (Xing ve ark., 2019a). Xing 
ve arkadaşları heyelan yer değiştirmesini tahmin etmek 

için çift hareketli ortalama (DMA) yöntemi ile LSTM'yi 
birleştirmiş ve yüksek kaliteli güven aralıkları elde 
etmiştir (Xing ve ark., 2019b). Wang ve arkadaşları, 
Uyarlanabilir Gürültülü Komple Topluluk Ampirik Mod 
Ayrışımına (CEEMDAN-AMLSTM) dayalı bir dikkat 
mekanizması LSTM modeli geliştirmiş ve heyelan yer 
değiştirme tahmini için geçerliliğini doğrulamıştır (Wang 
ve ark., 2021). Yang ve arkadaşları, Three Gorges 
Rezervuar Alanındaki heyelanların periyodik yer 
değiştirmesini tahmin etmek için bir LSTM modeli 
kullanmış ve LSTM yönteminin, tarihsel bilgilerin tam 
olarak kullanılması nedeniyle heyelanların dinamik 
özelliklerini statik bir modelden daha iyi simüle 
edebildiğini bulmuşlardır (Yang ve ark., 2019).   

Zhu ve arkadaşları (2022), heyelan yer 
değiştirmesini tahmin etmek için hibrit bir makine 
öğrenme yaklaşımı sunmaktadır. Değişken Modal 
Ayrıştırma (VMD) ile yer değiştirme eğilim ve periyodik 
bileşenlere ayrılmıştır. Periyodik bileşen için ise Aşırı 
Öğrenme Makinesi (ELM) kullanılmıştır. ELM modelini 
optimize etmek için Parçacık Sürü Optimizasyonu (PSO) 
uygulanmıştır. Üç Boğaz Barajı alanında test edilen 
model, LSSVM ve CNN-GRU gibi diğer yöntemlerle 
karşılaştırıldığında RMSE, MAE, MAPE ve R² değerleri 
açısından üstün performans göstermiştir. DES-PSO-ELM 
modelinin RMSE, MAE, MAPE ve R² değerleri sırasıyla 
1.295 mm, 0.998 mm, %0.008 ve 0.999 olarak 
bulunmuştur. 

Jiang ve arkadaşları (2023), baraj gölü yer 
kaymalarını tahmin etmek için Çoklu Ölçekli Tepki 
Analizi (JTFA) ve GRU tabanlı bir derin öğrenme modeli 
önermektedir. GNSS verileri, yıllık yağış miktarı ve 
rezervuar su seviyesi verilerini kullanarak, yer 
kaymasının doğrusal olmayan doğasını modellemeyi 
amaçlamışlardır. Çalışmanın bulguları, yer kaymalarının 
belirgin bir 12 aylık döngüsü olduğunu ve GRU modelinin 
yüksek bir başarı oranı (RMSE: 12.301 mm, R²: 0.979) 
elde ettiğini göstermektedir. 

Huang ve arkadaşları (2022), Muyubao heyelanının 
yer değiştirmesini tahmin etmek için Temporal 
Convolutional Network (TCN) ve Salp Swarm Algorithm 
(SSA) algoritmasını birleştiren bir hibrit model 
önermektedir. Trend bileşeni için polinom fonksiyonları, 
periyodik bileşenin tahmininde ise SSA ile optimize 
edilmiş TCN modeli kullanılmıştır. TCN modelinin RMSE 
değeri 6.37 mm, MAPE değeri %1.49  olarak ölçülmüştür. 
SVM modeliyle karşılaştırıldığında, ortalama iyileşme 
oranı %8.99 ile %66.69 arasında değişmektedir. Bu 
sonuçlar, TCN'nin RNN ve CNN özelliklerini birleştirerek 
yüksek performans sağladığını göstermektedir.    

Yang ve arkadaşlarının 2024'te yaptığı çalışma, 
Çin'in Zhejiang Eyaleti'ndeki Wenzhou Belt 
Otoyolu'ndaki bir heyelana odaklanmakta ve grafik derin 
öğrenme ile GNSS konumlandırmasına dayalı yeni çok 
değişkenli heyelan yer değiştirme tahmin yöntemi 
önermektedir. Bu yöntem, GNSS yer değiştirme verileri, 
yağış, yeraltı su seviyesi ve toprak nem içeriği gibi zaman 
serisi verilerini birleştirerek yer kayması tahminlerinde 
üstün sonuçlar göstermiştir. GTS modeli, SVM, XGBoost 
ve LSTM gibi mevcut yöntemlerden daha iyi performans 
sergilemiş ve mekansal ve zamansal bağımlılıkları bir 
araya getirerek tahmin yeteneğini artırmıştır.  
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Port Kembla ve Milner Bay lokasyonları için deniz 
seviyesi yükselmesini tahmin etmek amacıyla karma bir 
derin öğrenme modeli olan SVMD-CNN-BiLSTM'yi 
kullanmışlardır.  Port Kembla için yıllık ortalama deniz 
seviyesi yükselmesinin yaklaşık olarak 4,5 mm/yıl, 
Milner Bay için ise yaklaşık 2,75 mm/yıl olacağı tahmin 
edilmiştir. Bu projeksiyonlar, gelecekte alınacak 
önlemler ve politikalar için kritik öneme sahiptir. Sonuç 
olarak, Raj ve Brown'un (2023) çalışması, deniz seviyesi 
yükselmesi tahminleri için oldukça karmaşık bir derin 
öğrenme modeli kullanarak yüksek derecede doğru ve 
güvenilir sonuçlar elde etmeyi başarmıştır (Raj, N. ve 
Brown, J., 2023). 

Jiang ve ark. (2024), GNSS koordinat zaman 
serilerinin tahmini için Transformer çerçevesine 
dayanan yeni bir derin kendine dikkat sinir ağı (DSANN) 
önermişlerdir. Yaptıkları deneylerde, DSANN modelinin 
LSTM ve En Küçük Kareler (LS) yöntemlerine göre daha 
düşük RMSE ve MAE değerleri elde ettiğini ve eksik veri 
oranı %20'ye kadar olan durumlarda bile yüksek tahmin 
doğruluğunu koruduğunu göstermişlerdir. Benzer 
şekilde,  Xie ve ark. (2024), GNSS verileriyle deformasyon 
izleme için CNN ve GRU modellerini birleştiren bir 
yöntem sunmuşlardır. Önerilen CNN-GRU modeli, 
geleneksel Genişletilmiş Kalman Filtresi (EKF) 
yöntemine göre yaklaşık %45 daha iyi performans 
sergilemiş ve deformasyon tahmininde daha yüksek 
doğruluk ve güvenilirlik sağlamıştır. Bu çalışmalar, derin 
öğrenme modellerinin GNSS zaman serilerinin 
tahmininde etkin bir şekilde kullanılabileceğini 
göstermektedir. 

Bu çalışmada da derin öğrenme algoritmalarından 
olan GRU ve LSTM ile Türkiye’nin İç Anadolu Bölgesinde 
bulunan TUSAGA-Aktif ağına ait 6 GNSS istasyon 
verilerinin Kuzey, Doğu ve Düşey bileşenleri  için ileriye 
dönük ayrı ayrı kestirimler yapılmıştır. İstasyon bazında 
eğitilen modeller ve tüm istasyon verilerinin birlikte 
eğitildiği tek model performansları karşılaştırılarak 
model yönetimin performanslar  üzerine etkisi analiz 
edilmiştir. 

İlerleyen bölümlerde; Bölüm 2'de kullanılan veriler, 
yöntemlerin ve işlem adımlarının, model 
algoritmalarının açıklaması verilmiştir. Bölüm 3'te, 
bulgular verilmiş ve karşılaştırmalı analizleri yapılmış; 
Bölüm 4'te sonuçlar tartışılmış ve öneriler sunulmuştur. 
 

 
 

2. Yöntem 
 

Bu araştırmanın verisi Nevada Jeodezi Laboratuvarı 
tarafından sağlanan günlük Hassas Nokta 
Konumlandırma (PPP) çözümlerinden elde edilmiştir. Bu 
çalışmada kullanılan GNSS istasyonları, bölgenin önemli 
bir bölümünü kapsayan coğrafi dağılımları ve yıllar 
boyunca sağladıkları verilerin kalitesi ve sürekliliği de 
dahil olmak üzere belirli kriterlere göre seçilmiştir(Şekil 
1). Verilerin zaman aralığı 16 Ocak 2009'dan 31 Ekim 
2015'e kadar uzanmakta ve yaklaşık yedi yıllık 
gözlemleri kapsamaktadır.   Her bir istasyon için Doğu, 

Kuzey ve Düşey bileşenlerine ait veriler ayrı ayrı 
değerlendirilmiştir.  

 

 
Şekil 1. GNSS İstasyonlarının Konumu 
 
Gerçekleştirilen çalışma ile ilgili adımları gösteren 

blok diyagram Şekil 2’de gösterilmiştir. Analiz amacıyla, 
veri kümesi zaman sırasına göre bölümlendirilmiş, 
verilerin ilk %80'i yani daha eski tarihli veriler modelin 
eğitimi için ayrılmış ve kalan %20'si test kümesi olarak 
değerlendirilmiştir. Bu oranlar zaman serisi analizinde 
yaygın olarak kullanılan oranlar olduğu için seçilmiştir. 
Eğitim ve test  setleri üzerinde; T-test ve Kolmogorov-
Smirnov (KS) testi ile yapılan istatistiksel 
karşılaştırmalarda, tüm bileşenler için p-değerleri 
0.05'in üzerinde bulunmuştur. Bu sonuçlar, eğitim ve test 
setleri arasında istatistiksel olarak anlamlı bir fark 
olmadığını ve her iki setin de aynı dağılımdan geldiğini 
dolayısıyla homojen olduklarını göstermektedir. Bu 
bölümleme yaklaşımı, kapsamlı bir eğitim sürecini 
kolaylaştırırken, modelin tahmin doğruluğunun 
görünmeyen veriler üzerinde sağlam bir şekilde test 
edilmesi ve doğrulanması için yeterli bir veri kümesinin 
mevcut olmasını sağlamıştır. Bu altı farklı istasyon 
üzerinde yinelemeli sinir ağlarından olan LSTM ve GRU 
modelleri kullanılarak kestirimler gerçekleştirilmiştir. 
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Şekil 2.  Akış şeması 
 

 
Çalışma iki farklı senaryo kapsamında 

yürütülmüştür: 
Senaryo I: Her bir istasyonun verilerinin ayrı ayrı 

eğitim ve test edilmesi. 
Senaryo II: Tüm istasyonların eğitim verilerinin 

birleştirilerek ortak bir modelin eğitilmesi ve bu modelin 
her bir istasyonun test verileri üzerinde 
değerlendirilmesi. 

Veri setinde, 12 zaman adımlık hareketli pencereler 
(sliding windows) kullanılarak özellik çıkarımı 
yapılmıştır. Her pencere, ardışık 12 zaman adımından 
oluşmakta ve bu pencereler veri seti boyunca bir adım 
kaydırılmaktadır. Model, one-step ahead forecasting 
yöntemi kullanılarak eğitilmiştir. Bu yaklaşım, her 12 
zaman adımlık pencerenin hemen ardındaki tek bir 
zaman adımının kestirilmesini sağlamaktadır. 

Bu sıralı girdilerin oluşturulmasının ardından, derin 
öğrenme modelleri her bir diziyi işlemeye başlar. 
Modelin mimarisi 100 nöronluk bir GRU/LSTM 
katmanıyla başlar. Bunu, modelin hesaplama sürecine 
doğrusal olmayan dönüşümleri dahil etmek için  ReLU 
aktivasyon fonksiyonunu uygulayan 100 nörondan 
oluşan yoğun bir katman izlemektedir. Mimari 
yapılandırma, tahmin edilen değerleri sağlamak için 
tasarlanmış yoğun bir çıktı katmanı ile sonuçlanır. Bu 
noktada, işlenen zamansal veriler nihai tahminlere 
dönüşmektedir. 

Tablo 1'de sunulan hiperparametreler, çeşitli 
kombinasyonları deneyerek en etkili yapılandırmayı 
belirlemek için bir ızgara arama (grid search) yaklaşımı 
kullanılarak seçilmiştir. Izgara araması sırasında, batch 
boyutları (32 ve 64), işlem katmanlarındaki nöron 
sayıları (64, 100, 128, 200) ve yoğun katmanlar için hem 
nöron sayıları (50, 100, 128, 200) hem de aktivasyon 
fonksiyonları (ReLU ve tanh) ayarlanmıştır. 
 

 
 

 
 
 
 
 
 

Tablo 1. Modelin hiperparametreleri. 

 
Modelin hesaplama karmaşıklığı ve performansını 

değerlendirmek amacıyla, toplam parametre sayısı, 
eğitim süresi ve çıkarım süresi gibi metrikler 
hesaplanmıştır. Birleştirilmiş tek modelin toplam 
parametre sayısı 483,005 olup, eğitilebilir parametre 
sayısı 161,001'dir. Eğitim ortalama olarak toplamda 
18.51 saniye sürmüştür. Tek bir örnek için çıkarım süresi 
ortalama 100.41 milisaniye iken, tüm test verileri için 

 
 
 
 

Hiperparametre Değer 

Girdi Biçimi (input_shape) (12, 1) 

LSTM / GRU Katmanı 
                 100 nöron, 
return_sequences=True 

YoğunKatman (Dense) 
100 nöron, 

ReLU aktivasyon 
fonksiyonu 

Kayıp Fonksiyonu (loss) 
Ortalama Kare Hatası 

(MSE) 

Optimizatör 
Adam, öğrenme oranı: 

0.001 

Değerlendirme Metrikleri 

Karekök Ortalama  Hata  
(RMSE), 

Ortalama Mutlak Hata  
(MAE) 

Erken Durdurma 
(Early Stopping) 

İzlenen metrik: Val_loss, 
patience: 10, 

restore_best_weights: True 

Öğrenme Oranı 
Zamanlayıcısı 

İterasyon < 10: mevcut 
oran,  

İterasyon ≥ 10: oran %5 
azaltılır 

Öğrenme Oranı Azaltma 
(ReduceLROnPlateau) 

İzlenen metrik: Val_loss, 
factor: 0.5, patience: 5, 

min_lr: 0.0001 
İterasyon Sayısı 200 

Batch Boyutu 32 
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 toplam çıkarım süresi  0.16 saniye olarak ölçülmüştür. 
İstasyon bazında eğitilen ayrı  modellerde ise, her bir 
modelin toplam parametre sayısı 453,305 ve eğitilebilir 
parametre sayısı 151,101'dir. Her bir istasyon için eğitim 
süresi ortalama 7.62 saniye olup, 6 istasyon için toplam 
eğitim süresi 45.72 saniyeye ulaşmaktadır. Çıkarım 
süresi her bir model için ortalama 0.64 saniye olup, 6 
istasyon için toplam çıkarım süresi 3.84 saniyedir. Bu 
sonuçlar, birleştirilmiş modelin istasyon bazında eğitilen 
modellere göre eğitim süresinde yaklaşık %59'luk bir 
azalma ve çıkarım süresinde %95.8'lik bir azalma 
sağladığını göstermektedir. Tüm deneyler, Windows 10 
işletim sistemi üzerinde, Intel64 Family 6 Model 183 
Stepping 1, Genuine Intel işlemci (14 fiziksel çekirdek, 20 
mantıksal işlemci) ve 15.69 GB RAM ile 
gerçekleştirilmiştir. 

Modelin aşırı uyumunu (overfitting) önlemek ve 
genel performansını artırmak amacıyla, eğitim sürecinde 
validasyon seti kullanılarak erken durdurma (Early 
Stopping), öğrenme oranı azaltma (ReduceLROnPlateau) 
ve öğrenme oranı zamanlayıcısı (Learning Rate 
Scheduler) teknikleri kullanılmıştır. Eğitim verilerinin 
%10'u validasyon seti olarak ayrılmıştır. Validasyon seti, 
modelin eğitim süreci boyunca performansını izlemek ve 
hiperparametre ayarlarını optimize etmek için 
kullanılmıştır. Bu teknikte, doğrulama kaybı (validation 
loss) belirli bir süre boyunca (patience değeri kadar) 
iyileşme göstermediğinde eğitim durdurulur. Ayrıca, 
iterasyon sayısına bağlı olarak öğrenme oranını dinamik 
olarak değiştiren bir öğrenme oranı zamanlayıcısı göz 
önüne alınmıştır. Bu zamanlayıcı, ilk 10 iterasyon 
boyunca öğrenme oranını sabit tutmuş, ardından her 
iterasyon sonunda %5 oranında azaltmıştır. Sonunda  en 
iyi doğrulama kaybına sahip model ağırlıkları geri 
yüklenir (restore_best_weights=True), böylece modelin 
en iyi genel performansı sağlanır. Bu teknikler, modelin 
aşırı uyumunu önlemenin yanı sıra eğitim süresini 
kısaltarak hesaplama kaynaklarının verimli 
kullanılmasını sağlar. Modelin eğitimi, 200 iterasyon 
boyunca, 32 batch boyutu ile gerçekleştirilmiş olup, bu ve 
diğer parametre bilgileri Tablo 1'de verilmektedir. 
 

 
2.1. Uzun kısa süreli bellek (LSTM) 

 
LSTM, zamansal bilginin ne kadarının 

unutulduğunu veya hatırlandığını dikkate alan ve yaygın 
olarak kullanılan bir Tekrarlayan Sinir Ağıdır 
(RNN)(Hochreiter ve Schmidhuber, 1997). LSTM, 
geleneksel RNN'lerin kaybolan gradyan sorunu gibi 
sınırlamalarının üstesinden gelmek için tasarlanmıştır. 
Sıralı verilerdeki uzun vadeli bağımlılıkları yakalama 
yeteneklerini vurgulayarak, onları özellikle zaman serisi 
analizi, doğal dil işleme ve sıralı verileri içeren diğer 
uygulamalar için kullanışlı hale getirmektedir 

LSTM algoritması, uzun dönemler boyunca bilgiyi 
işlemesine ve hatırlamasına izin vermek için hücre yapısı 
içinde bir dizi matematiksel işlem içerir. Bir LSTM 
hücresi, üç ana kapı (giriş, unutma ve çıkış) ve bilgiyi 
tutmasına yardımcı olan bir iç durum ile ifade edilir ( 
Demiryege ve Ulukavak, 2022). 

 

        •Unutma Kapısı (ft): unutma kapısı hücre 
durumundan (Ct−1) hangi bilginin korunacağını veya 
atılacağını mevcut zaman adımı (t) için belirler. Bu, 
mevcut girdi (xt) ve önceki çıktı (ht−1), işlenerek, hücre 
durumundaki her sayı için 0 (atma) ile 1 (koruma) 
arasında bir değer üretilerek çalışmaktadır.  
Matematiksel olarak,  
  

ft = σ(Wf · [ht−1,xt] + bf)                                       (1) 
 

   ifada edilir. Burada, σ sigmoid fonksiyonu , Wf unutma 
kapısının ağırlık matrisi, [ht−1,xt] önceki çıktı ve mevcut 
girdinin birleştirilmesi ve  bf unutma kapısının biasıdır. 
 
 
   •Giriş Kapısı (it): 
 
 it = σ(Wi · [ht−1,xt] + bi)                                      (2) 
 C̃ t = tanh(WC · [ht−1,xt] + bC)                      (3) 
 
C̃ aday hücre durumudur, Wi ve WC ağırlık matrisleridir, 
bi and bC giriş kapısı ve aday değerler için biaslardır. 
 
    Hücre Durumu Güncellemesi: 
 
 Ct = ft ∗ Ct−1 + it ∗ C̃t                                       (4) 
 
        burada, Ct yeni hücre durumu, Ct−1 önceki hücre 
durumu ve ∗ eleman bazında çarpımı ifade eder.. 
       Giriş kapısı, herhangi bir zaman adımında hücre 
durumunun (Ct) güncellenmesinde çok önemli bir rol 
oynar. İlgili bilgileri hücre durumuna etkin bir şekilde 
dahil etmek için iki ana adımda çalışır. İlk olarak, gelen 
verileri filtrelemek için bir Sigmoid katman kullanır ve 
mevcut zaman adımı için hangi bilgilerin uygun olduğunu 
seçer. Bu seçim sürecinin ardından, bir tanh katmanı 
seçilen bilgiyi değerlendirerek önem düzeyini belirler ve 
bu bilginin hücre durumunu ne kadar etkilemesi 
gerektiğini ölçer. 
 
       •Çıkış Kapısı: Çıkış kapısı, hücre durumunun (Ct) 
mevcut çıktıyı (ht) ne kadar etkileyeceğini belirlemekle 
görevlidir. Bunu başarmak için, öncelikle mevcut anda 
hücre durumunun önemini değerlendirmek üzere bir 
Sigmoid fonksiyonu kullanır. Bu değerlendirme, 
ardından, nihai çıktıyı oluşturmak için değerlendirilen 
önemi modüle eden bir tanh fonksiyonu ile işlenir. 
 Bu işlemler matematiksel olarak şu formüllerle temsil 
edilir: 

ot = σ(Wo · [ht−1,xt] + bo)   (5) 
 ht = ot ∗ tanh(Ct)    (6) 
 
     Burada, Wo çıkış kapısının ağırlık matrisi,  çıkış 
kapısının biası,  ht   LSTM hücresinin mevcut çıktısıdır. 
 
2.2. Geçitli Tekrarlayan Birim(GRU) 

 
LSTM'nin daha sade bir çeşididir ve dizilim 

modellemede yüksek performans sağlarken hesaplama 
verimliliğini artırmak için optimize edilmiştir. GRU'lar, 
hücre ve gizli durumları birleştirerek LSTM yapısını 
basitleştirir ve böylece sistemin karmaşıklığını azaltır. 
Her GRU hücresi iki kapı ile çalışır: sıfırlama ve 
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güncelleme kapıları. Bu kapılar, yeni girdinin önceki çıktı 
ile entegrasyonunu ayarlayarak bilgi akışını düzenler ve 
böylece gelecekteki dizilimler için gerekli olan geçmiş 
bilgileri etkin bir şekilde korur (Chung ve ark, 2014). 

 
•Sıfırlama Kapısı (rt): Sıfırlama kapısı, mevcut girdi 

(xt) işlenirken geçmiş bilgilerin (önceki gizli durum ht-

1'den) ne kadarının unutulması gerektiğini belirler. Bu 
kapı, modelin geçmiş bilgilerin mevcut durumu ne kadar 
etkilemesi gerektiğine karar vermesine yardımcı olur. 
Sıfırlama kapısının işlemi matematiksel olarak şu şekilde 
temsil edilir: 

rt = σ(Wr · [ht−1,xt] + br)        (7) 
 
Burada, σ sigmoid fonksiyonudur, Wr sıfırlama 

kapısının ağırlık matrisi ve br sıfırlama kapısının biasıdır. 
 

      •Güncelleme Kapısı (zt): Güncelleme kapısı, önceki 
gizli durumun (ht-1) ne kadarının bir sonraki duruma 
aktarılacağını belirler. Güncelleme kapısının işlemi şu 
şekilde temsil edilir: 
 

zt = σ(Wi · [ht−1,xt] + zi)                                    (8) 
ĥ t = tanh(W · [rt ∗ ht−1,xt] + b)                    (9) 
ht = zt ∗ ht−1 + (1 − zt) ∗  ĥ t                                  (10) 
 

Burada, W ağırlık matrislerini, b biasları, σ sigmoid 
aktivasyon fonksiyonunu ve tanh hiperbolik tanjant 
aktivasyon fonksiyonunu temsil eder. 

 
3. Bulgular  

 
İlk olarak her bir GNSS istasyonu için ayrı ayrı eğitilen 

LSTM ve GRU modellerinin ve tüm istasyonlardan gelen 
birleşik veriler üzerinde eğitilen tek bir modelin 
performansı değerlendirmiş, sonrasında tek bir modelin 
zaman serisinin kestirimi için ayrı ayrı eğitilmiş 
modellerle karşılaştırılabilir doğruluğa ulaşabilirliği 
analiz edilmeye çalışılmıştır. İlk senaryoda modellerin 
her istasyon için ayrı ayrı eğitilmesi durumunda tipik 
olarak yüksek performans ölçütleri sağlanmıştır. Bu 
durum, modellerin her istasyonun verilerini etkili bir 
şekilde öğrenip kestirim yapabildiğini göstermektedir.  

Doğu bileşeni için ilk senaryoda hem LSTM hem de 
GRU modelleri, özellikle Şekil 5’teki AKDG  ve NEVS gibi 
istasyonlar için yüksek R² değerleriyle güçlü performans 
göstermiştir. Örneğin, LSTM modeli AKDG’nin Doğu 
bileşeni için 0.77 ve NIGD için 0.92 R² elde ederken, GRU 
modeli de sırasıyla 0.70 ve 0.89 R² değerleriyle yüksek 
performans göstermiştir. İkinci senaryoda yani tek ortak 
bir model eğitildiğinde Doğu bileşeni için tek modelin 
performans ölçütlerinin, ayrı ayrı eğitilen modellerin 
performans ölçütlerine yakın olduğu görülmektedir. 
Daha düşük olan metrikler Tablo 3-6 üzerinde koyu 
olarak işaretlenmiştir.  Örneğin, tek model AKDG için 
0.78 ve NIGD için 0.86 R² değerlerine ulaşmıştır, NEVS 
istasyonunda RMSE ve MAE sırasıyla %20 ve %25 
oranında azalmış ve birleşik modelin bu bölgedeki 
verilere iyi genelleme yapabildiğini ve birden fazla 
istasyondan gelen verilerin toplanmasına rağmen temel 
özellikleri etkili bir şekilde yakaladığını göstermiştir. 
Şekil 6’daki KIRS istasyonu için birleştirilmiş modelin 
RMSE değeri 1.30, MAE değeri 1.0 ve R² değeri 0.75 olup 

ayrı ayrı eğitilmiş modellerle benzer özellikler 
göstermekte ve bu da KIRS verilerinin örüntülerinin 
birleştirilmiş veri kümesinde iyi temsil edildiğini 
göstermektedir. POZA istasyonunda birleştirilmiş 
modelin RMSE değeri 3.30 mm, MAE değeri 2.30 mm ve 
R² değeri 0.51 olup bireysel model performansıyla 
karşılaştırılabilir. Bu, birleştirilmiş modelin POZA gibi 
karmaşık verileri makul bir doğrulukla işleyebileceğini 
göstermektedir. Tablo 2’de gösterildiği gibi özellikle GRU 
için ortalama RMSE ve MAE değerlerine bakıldığında ayrı 
ayrı eğitilen modellerin ortalama RMSE değeri 1.68 mm 
iken ortak modelin 1.67 mm ve MAE değerleri de 
sırasıyla 1.24 ve 1.27 mm’dir burada doğruluk seviyesi 
aynıdır. Ancak Tablo 5’e bakıldığında LSTM modeli 
kullanıldığında ortak modelin doğruluğu daha düşüktür. 

Kuzey bileşende ise, tüm istasyonlarda daha da 
yüksek R² değerleri görülmektedir. NEVS ve NIGD gibi 
istasyonlar Tablo 3’de gösterildiği üzere GRU ile sırasıyla 
0.96 ve 0.95 R² değerlerine ulaşmıştır. Bu tutarlılık, 
kuzey bileşenden gelen verilerin daha öngörülebilir 
olduğunu göstermektedir. Genel olarak yüksek 
performans, hem LSTM'nin hem de GRU'nun bu 
bileşendeki zaman serisi verilerini işlemedeki 
sağlamlığını vurgulamaktadır.  İkinci senaryo yani ortak 
(tek) model de iyi performans göstermiş ve ayrı ayrı 
eğitilen modellere yakın yüksek R² değerlerini 
korumuştur. Örneğin, ortak model AKDG’nin Kuzey 
bileşeni için 0.91 ve Şekil 4’te gösterilen NEVS istasyonu 
için 0.94 R² değerine sahiptir. Ortalama MAE ve RMSE 
değerleri açısından GRU modeliyle ilk senaryo yani ayrı 
modellerden elde edilen ortalama RMSE ve MAE 
değerleri sırasıyla 1.32 ve 1.70 mm iken ortak modelinki 
1.33 ve 1.72 mm olup neredeyse aynı değerlerdir (Tablo 
3). LSTM modeli sonuçlarının verildiği Tablo 6’ya 
bakıldığında ortak model ve ayrı modeller arasındaki 
fark daha açıktır. KAYS istasyonun Kuzey bileşeninde 
gerçek değerler ve kestirim  değerleri Şekil 3’te 
sunulmuştur. 

 

 
Şekil 3. KAYS istasyonunun Kuzey bileşeni için LSTM 
modeliyle elde edilen kestirim değerleri ve gerçek 
değerler. 
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Şekil 4. NEVS istasyonunun Kuzey bileşeni için LSTM 
modeliyle elde edilen kestirim değerleri ve gerçek 
değerler. 
 

Düşey bileşenin doğası gereği daha karmaşık oluşu 
daha düşük R² değerleri ve daha yüksek RMSE ve MAE 
metriklerine sebep olmuştur. Örneğin, POZA 
istasyonunun GRU modeliyle sadece 0.25 ve LSTM 
modeliyle 0.22 R² değerine sahip olması, modellerin bu 
istasyondan gelen verilerdeki karmaşık veya daha az 
tahmin edilebilir kalıpları yakalamakta zorlandığını 
göstermektedir. Şekil 8’de gösterilen AKDG 
istasyonunun Düşey bileşeninde GRU ve LSTM 
modellerinin her ikisi de zorluklarla karşılaşmıştır; GRU 
3.80 mm RMSE, 3.0 mm MAE ve 0.53 R², LSTM ise 3.70 
mm RMSE, 2.90 mm MAE ve 0.56 R² performansı 
göstermiştir. KAYS istasyonunda GRU 5.10 RMSE, 4.00 
MAE ve 0.30 R² değerlerine sahipken, LSTM 5.10 RMSE, 
4.10 MAE ve 0.28 R² değerlerini göstermiştir. Bu 
sonuçlar, her iki modelin de KAYS istasyonunun düşey 
bileşenindeki örüntüleri yakalamada karşılaştığı zorluğu 
göstermektedir.  

Düşey bileşende, tek model, ayrı ayrı eğitilen 
modellere kıyasla ortalama olarak GRU modeliyle ilk ve 
ikinci senaryo için sırasıyla 4.50 ve 4.43 mm RMSE;  3.58 
ve 3.50 mm MAE değerleri elde edilmiştir. LSTM 
modelinde ise 4.55 ve 4.43 mm RMSE ve 3.63 mm ve 3.50 
mm MAE değerleri elde edilmiştir ve değerler Tablo 4 ve 
7’de sunulmaktadır. Bu verilere bakarak Düşey bileşen 
için ortak model daha düşük metrikler sağlamıştır. Şekil 
7’deki NIGD istasyonunda ortak model metrikleri RMSE 
için %7 ve MAE için %8 civarı iyileşme sağlamıştır. Bu 
durumdan ortak eğitimin karmaşık veri senaryolarında 
bazen istasyon bazında eğitimden daha iyi performans 
gösterebileceği anlaşılmaktadır.  
 

 
Şekil 5. AKDG istasyonunun Doğu bileşeni için LSTM 

modeliyle elde edilen kestirim  değerleri ve gerçek 
değerler 

 

 
Şekil 6. KIRS istasyonunun Doğu bileşeni için LSTM 
modeliyle elde edilen kestirim değerleri ve gerçek 
değerler. 
 
 

 
Şekil 7. NIGD istasyonunun Düşey bileşeni için GRU  
modeliyle elde edilen kestirim değerleri ve gerçek 
değerler. 
 

 
Şekil 8. AKDG istasyonunun Düşey bileşeni için GRU 
modeliyle elde edilen kestirim değerleri ve gerçek 
değerler. 

 
Genel olarak incelendiğinde ; Doğu bileşeninde RMSE 

ve MAE değerleri, her iki senaryoda da benzer düzeyde 
olup, LSTM modelinde senaryo II'nin performansı biraz 
daha düşük kalmıştır. Kuzey bileşeninde ise özellikle 
LSTM modelinde senaryo II'nin RMSE ve MAE değerleri 
belirgin şekilde daha yüksek olup, bu bileşende ortak 
modelin performansının daha düşük olduğunu 
göstermektedir. Düşey bileşende ise LSTM ve GRU 
algoritmalarının ikisi için de ortak modelin RMSE ve MAE 
değerleri ayrı modellerden daha düşük olup, bu 
bileşende ortak modelin daha iyi performans 
sergilediğini ortaya koymaktadır. Genel olarak, ortak 
modelin performansı, bileşen ve metriklere bağlı olarak 
değişiklik göstermekte ve bazı durumlarda ayrı 
modellerden daha iyi ya da hemen hemen aynı seviyede 
sonuçlar verebilmektedir. 
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Tablo 2. Doğu bileşeni için GRU modelinin farklı 
senaryolardaki değerlendirme metrikleri 

 
Senaryo I 

(ayrı modeller) 
Senaryo II 
( tek model) 

İstasyon 
RMSE 
(mm) 

MAE 
(mm) 

R² 
RMSE 
(mm) 

MAE) 
(mm) 

R² 

AKDG 1.40 1.06 0.70 1.20 0.90 0.78 

KIRS 1.30 1.00 0.75 1.30 1.00 0.75 

POZA 3.10 2.10 0.59 3.30 2.30 0.51 

NEVS 1.50 1.20 0.80 1.20 0.90 0.86 

NIGD 1.30 1.00 0.89 1.40 1.20 0.86 

KAYS 1.50 1.10 0.81 1.60 1.30 0.76 

Ort 1.68 1.24  1.67 1.27  

 
Tablo 3. Kuzey bileşeni için GRU modelinin farklı 
senaryolardaki değerlendirme metrikleri 

 
Senaryo I 

(ayrı modeller) 
Senaryo II 
( tek model) 

İstasyon 
RMSE 
(mm) 

MAE 
(mm) 

R² 
RMSE 
(mm) 

MAE) 
(mm) 

R² 

AKDG 1.80 1.40 0.92 2.00 1.50 0.91 

KIRS 1.30 1.00 0.94 1.20 1.00 0.95 

POZA 2.40 1.90 0.86 2.20 1.70 0.88 

NEVS 1.30 1.00 0.96 1.30 1.00 0.96 

NIGD 1.40 1.10 0.95 1.40 1.10 0.96 

KAYS 2.00 1.50 0.92 2.20 1.70 0.91 

Ort 1.70 1.32  1.72 1.33  

 
Tablo 4. Düşey bileşen için GRU modelinin farklı 
senaryolardaki değerlendirme metrikleri 

 
Senaryo I 

(ayrı modeller) 
Senaryo II 
( tek model) 

İstasyon 
RMSE 
(mm) 

MAE 
(mm) 

R² 
RMSE 
(mm) 

MAE) 
(mm) 

R² 

AKDG 3.80 3.00 0.53 3.60 2.80 0.57 

KIRS 4.00 3.20 0.50 4.10 3.20 0.51 

POZA 6.40 5.10 0.25 6.50 5.20 0.22 

NEVS 3.50 2.80 0.52 3.30 2.60 0.57 

NIGD 4.20 3.40 0.17 3.90 3.10 0.30 

KAYS 5.10 4.00 0.30 5.20 4.10 0.27 

Ort 4.50 3.58  4.43 3.50  

 
Tablo 5. Doğu bileşeni için LSTM  modelinin farklı 
senaryolardaki değerlendirme metrikleri 

 
Senaryo I 

(ayrı modeller) 
Senaryo II 
( tek model) 

İstasyon 
RMSE 
(mm) 

MAE 
(mm) 

R² 
RMSE 
(mm) 

MAE) 
(mm) 

R² 

AKDG 1.20 0.90 0.77 1.20 0.90 0.78 

KIRS 1.30 1.00 0.75 1.40 1.10 0.73 

POZA 3.30 2.30 0.54 4.30 3.60 0.21 

NEVS 1.30 1.20 0.80 1.10 0.90 0.88 

NIGD 1.10 0.90 0.92 1.90 1.60 0.77 

KAYS 1.50 1.20 0.81 1.60 1.30 0.77 

Ort 1.62 1.25  1,92 1,57  

 
Tablo 6. Kuzey bileşeni için LSTM  modelinin farklı 
senaryolardaki değerlendirme metrikleri 
 

 
Senaryo I 

(ayrı modeller) 
Senaryo II 
( tek model) 

İstasyon 
RMSE 
(mm) 

MAE 
(mm) 

R² 
RMSE 
(mm) 

MAE) 
(mm) 

R² 

AKDG 1.50 1.10 0.95 2.50 2.10 0.86 

KIRS 1.30 1.00 0.93 1.20 1.00 0.95 

POZA 2.20 1.70 0.88 2.50 1.90 0.85 

NEVS 1.20 0.90 0.96 1.60 1.30 0.94 

NIGD 1.60 1.20 0.94 1.80 1.40 0.93 

KAYS 1.70 1.20 0.94 2.70 2.20 0.86 

Ort 1.58 1.18  2.05 1.65  

 
 
Tablo 7. Düşey bileşen için LSTM  modelinin farklı 
senaryolardaki değerlendirme metrikleri 

 
Senaryo I 

(ayrı modeller) 
Senaryo II 
( tek model) 

İstasyon 
RMSE 
(mm) 

MAE 
(mm) 

R² 
RMSE 
(mm) 

MAE) 
(mm) 

R² 

AKDG 3.70 2.90 0.56 3.60 2.90 0.56 

KIRS 4.10 3.20 0.51 4.10 3.20 0.50 

POZA 6.50 5.20 0.22 6.60 5.20 0.20 

NEVS 3.50 2.80 0.53 3.30 2.60 0.49 

NIGD 4.40 3.60 0.07 3.80 3.00 0.32 

KAYS 5.10 4.10 0.28 5.20 4.10 0.25 

Ort 4.55 3.63  4.43 3.50  

 

4. Sonuçlar  
 

Bu çalışmada, Türkiye’nin Orta Anadolu Bölgesinde 
bulunan altı GNSS istasyondan alınan verilerin üç 
bileşeni üzerinde LSTM ve GRU algoritmalarıyla kestirim 
çalışmaları yapılmış 2 senaryo üzerinde 
değerlendirilmiştir. İlk olarak her istasyon için ayrı 
modeller eğitilmiş ve performansları tüm istasyonlardan 
gelen birleştirilmiş veriler üzerinde eğitilen tek bir 
modelle karşılaştırılmıştır.  

Sonuçlar, tek bir modelin çeşitli veri kümelerinde ayrı 
ayrı eğitilmiş modellerle karşılaştırılabilir yeterli 
doğruluğa ulaşabileceği hatta daha yüksek doğruluk elde 
ettiği durumlar olduğunu ortaya koymuştur. Örneğin 
NEVS istasyonun Doğu bileşeninde, KIRS ve POZA 
istasyonunun Kuzey bileşeninde, AKDG, NEVS ve NIGD 
istasyonlarının Düşey bileşende GRU algoritması 
kullanımıyla; NEVS istasyonun Doğu bileşeninde, KIRS 
istasyonunun Kuzey bileşeninde, NEVS ve NIGD 
istasyonlarının Düşey bileşenlerinde LSTM 
algoritmasıyla elde edilen sonuçlar ayrı ayrı eğitilmiş 
modellerinkinden yüksek olmuştur. 

Sonuçlar, birleştirilmiş veriler üzerinde eğitilen tek 
bir modelin zaman serisi kestirimleri için yeterli 
doğruluğa ulaşabileceği hipotezini doğrulamakta ve 
çeşitli pratik avantajlar sağlamaktadır. Örneğin model 
yönetimi açısından tek bir modelin eğitilmesi ve 
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sürdürülmesi daha basit ve daha verimlidir, dağıtım ve 
bakım için gereken karmaşıklığı ve kaynakları 
azaltmaktadır. Bu, özellikle birden fazla modeli 
yönetmenin zahmetli olabileceği büyük ölçekli 
uygulamalarda faydalıdır. Kaynak Optimizasyonu 
açısından tek bir model hem eğitim hem de çıkarım 
aşamalarında daha az hesaplama kaynağı gerektirir, bu 
da onu daha uygun maliyetli bir çözüm haline 
getirmektedir. Ayrıca tek bir model, ek istasyonlardan 
gelen yeni verileri içerecek şekilde kolayca 
genişletilebilir. Yeni veriler elde edildikçe, model 
minimum ayarlamalarla yeniden eğitilebilir veya ince 
ayar yapılabilir, bu da sürekli iyileştirmeyi ve 
uyarlanabilirliği kolaylaştırır. Sonuç olarak birleşik 
model yaklaşımı, basitlik ve doğruluk arasında bir denge 
sunarak belirli bağlamlarda uygulanabilir bir alternatif 
olmaktadır. 

Kullanılan veri seti Türkiye'nin İç Anadolu 
Bölgesi'ndeki 6 GNSS istasyonu ile sınırlıdır, bu da 
modelin genelleme yeteneğini kısıtlayabilir. Farklı 
coğrafi bölgelerden ve daha fazla sayıda istasyondan elde 
edilecek verilerle, modelin performansı daha kapsamlı 
bir şekilde değerlendirilebilir ve genelleme kapasitesi 
artırılabilir. Ayrıca, modelimiz yalnızca GNSS koordinat 
zaman serisi verilerini kullanmıştır; atmosferik koşullar, 
jeolojik olaylar veya insan kaynaklı faktörler gibi ek 
değişkenlerin modele dahil edilmesi, tahmin 
doğruluğunu daha da artırabilir.  

Gelecekte, birleşik modeller genelleme ve kestirim 
doğruluğunu artırmak için birden fazla istasyondan 
gelen verilerden yararlanarak GNSS veri kestirimini 
önemli ölçüde geliştirebilir. Farklı bölgelerdeki istasyon 
verilerinin modele dahil edilmesiyle, modelin genelleme 
yeteneği artırılabilir ve çeşitli jeolojik ve çevresel 
koşullara uyum sağlanabilir. Bu, modelin farklı coğrafi 
alanlarda da güvenilir tahminler yapabilmesini mümkün 
kılabilir. Gelecekte, daha geniş ve çeşitli veri setleriyle 
modelin eğitilmesi ve transfer öğrenme gibi tekniklerin 
kullanılmasıyla, tek model yaklaşımının farklı 
bölgelerdeki GNSS veri kestiriminde etkinliği daha da 
artırılabilir. Bu yaklaşım, model yönetimini ve dağıtımını 
basitleştirerek gerçek zamanlı izleme sistemlerinde 
uygulanmasını ve sürdürülmesini kolaylaştırır. Kaynak 
verimliliğini ve ölçeklenebilirliği optimize ederek,  risk 
değerlendirme çalışmalarını daha iyi destekleyebilir ve 
sonuçta daha etkili afet yönetimi planlamasına katkıda 
bulunabilir.  
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