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Bu ¢alismada, derin 6grenme algoritmalarindan olan Uzun Kisa Siireli Bellek (LSTM) ve
Gegitli Tekrarlayan Birim (GRU) ile GNSS istasyon verilerinin Kuzey, Dogu ve Diisey
bilesenleri i¢in ileriye doniik ayr1 ayri kestirimler yapilarak, istasyon bazinda egitilen
modeller ve tiim istasyon verilerinin birlikte egitildigi tek model performanslari
karsilastirilarak model yonetiminin performanslar tizerine etkisi incelenmistir. Her
bir GNSS istasyonu icin ayr1 modellerin kullanildigi Senaryo I ve toplu verilerle tek bir birlesik
modelin kullanildigi Senaryo II icin model performansi, ortalama karekok hata (RMSE),
ortalama mutlak hata (MAE) ve belirleme katsayisi (R?) kullanilarak Dogu, Kuzey ve Diisey
bilesenler icin degerlendirilmistir. GRU algoritmasiyla Dogu bilesen icin ortalama RMSE
degeri Senaryo I ve Il i¢in sirayla 1.68 ve 1.67 mm, MAE degeri 1.24 ve 1.27 mm; Kuzey bilesen
icin RMSE degeri 1.70 ve 1.72 ve MAE degeri 1.32 ve 1.33 mm, Diisey bilesen icin RMSE 4.50
ve 4.43 mm ve MAE 3.58 ve 3.50 mm’dir. Bulgular tek model yaklasiminin model y6netimini
basitlestirilerek 6zellikle daha homojen veri 6zelliklerine sahip bolgelerde, ayr1 ayr1 egitilmis
modellerle karsilastirilabilir dogruluk elde edebilecegini gostermektedir.
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Abstract

In this study, the effect of model management on performance is analysed by comparing the
performance of station-based models and the single model trained with all station data using
the Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning
algorithms for the North, East and Vertical components of GNSS station data. For Scenario I,
where separate models are used for each GNSS station, and Scenario II, where a single
combined model is used with aggregated data, model performance is evaluated for the East,
North and Vertical components using Root Mean Square Error (RMSE), Mean Absolute Error
(MAE) and Coefficient of Determination (R?). With the GRU algorithm, the average RMSE for
the East component is 1.68 and 1.67 mm and the MAE is 1.24 and 1.27 mm for scenarios I and
I respectively; for the North component the RMSE is 1.70 and 1.72 and the MAE is 1.32 and
1.33 mm; for the Vertical component the RMSE is 4.50 and 4.43 mm and the MAE is 3.58 and
3.50 mm. The results show that the single model approach can simplify model management
and achieve comparable accuracy to separately trained models, especially in regions with
more homogeneous data characteristics.


https://dergipark.org.tr/tr/pub/geomatik
https://orcid.org/0000-0001-6198-171X
https://orcid.org/0000-0002-6436-6963
https://orcid.org/0000-0003-1619-2652
https://doi.org/10.29128/geomatik.1530761

Geomatik - 2025, 10(1), 66-75

1. Giris

Kiiresel Navigasyon Uydu Sistemi (GNSS), modern
diinyanin temel yapi1 taslarindan biri haline gelmistir
(Mutlu ve Kahveci, 2019). Son yillarda, GNSS teknolojisi,
sadece navigasyon ve konumlandirma alanlarinda degil,
ayni zamanda jeodezik ve jeofiziksel arastirmalar gibi
daha genis bir yelpazede kullanilmaya baslanmistir (Li ve
ark., 2021). Bu teknoloji, yer yiizeyinin ve yer kabugunun
hareketlerinin hassas ol¢iimlerini saglayarak, deprem
oncesi aktivite izleme, volkanik hareketlerin takibi ve
iklim degisikliklerinin etkilerinin anlasilmasi gibi kritik
alanlarda 6nemli roller tistlenmektedir. GNSS verilerinin
bu genis spektrumda kullanimi, dogal afetlerin erken
tespiti ve zararlarinin azaltilmasi agisindan biiyiik 6nem
tasimaktadir. GNSS, yer hareketini ¢ok yliksek frekansta
ve mekansal hassasiyetle gercek zamanl olarak 6l¢er (Li
ve ark., 2015, Mufundirwa ve ark., 2010). Uzun dénem
veri toplanmis GNSS koordinat zaman serileri jeodezi ve
jeodinamik  arastirmalar i¢in  degerli  bilgiler
saglamaktadir (Ohta ve ark., 2012; Deng ve ark., 2017).
Bu veriler yalmizca uzun vadeli degisim egilimini
yansitmakla kalmaz, ayn1 zamanda jeofiziksel etkilerin
neden oldugu dogrusal olmayan degisiklikleri de temsil
etmektedir. GNSS koordinat zaman serileri, levha
hareketlerinin izlenmesinde (Bevis ve ark., 2005; Simgsek
ve ark, 2019), baraj veya koprii deformasyonunun
izlenmesinde (Meng ve ark., 2004; Yi ve ark.,, 2013; Yu ve
ark., 2014; Xive ark., 2018; Chen ve ark., 2018) ve kiiresel
veya bolgesel referans sistemlerinin olusturulmasinda
onemli bir rol oynamaktadir (Altamimi ve ark., 2016;
Yurdakul ve Kalayci, 2022).

Jeodezi ve jeofizik alanlarinda, GNSS verilerinin
analizi Diinya'nin dinamiklerini anlamak i¢in hayati
o6neme sahiptir. Bu sistemlerin performansini daha da
iyilestirmek ve daha derinlemesine analizler yapabilmek
icin Makine Ogrenimi (ML) ve Derin Ogrenme (DL)
tekniklerinin kullanilmas1 giderek daha fazla 6nem
kazanmaktadir. Bu teknikler, geleneksel analiz
yontemlerinin otesine gecerek, verilerin dagilimi igin
acik bir formiil iiretmek yerine, veri 6zellikleri arasindaki
karmasik iligkileri 6grenmeye ve bu bilgileri tahmin,
siniflandirma, kiimeleme ve anomali tespiti gibi cesitli
uygulamalarda kullanmaya olanak tanimaktadir.
Ozellikle, Derin Ogrenme ve yapay sinir aglari, bilyiik ve
karmasik GNSS veri kiimelerindeki gizli oriintiileri ve
iliskileri ortaya ¢ikarmak i¢in idealdir ( Mogaraju, 2024 ).
Bu teknolojiler, zaman serilerinin yapisal 6zelliklerini ve
uzun vadeli egilimlerini anlamakta son derece etkilidir.

Makine 6grenmesi ve derin 6grenme gibi veri odakl
o6grenme tekniklerin zaman serilerini modelledigi ve
tahmin ettigi calismalar yapilmistir. Yapay sinir agi
(YSA) (Lian ve ark., 2015; Serwa ve ark., 2024 ), rastgele
orman (Hu ve ark., 2021), destek vektor makinesi (SVM)
(Miao ve ark., 2018), asir1 6grenme makinesi (ELM) (Liao
ve ark., 2020) ve LSTM aglari (Yang ve ark., 2019) zaman
serisi tahmininde genis capta calisilmistir. Xing ve
arkadaslari, heyelan deformasyonunun izlenmesinde,
Dashuitian'da yapilan deneylerde varyasyonel mod
ayrisimina (VMD) ve LSTM ve EMD-LSTM agindan daha
yliksek tahmin dogruluguna sahip bir yigin LSTM'e
dayanan bir model 6nermistir (Xing ve ark., 2019a). Xing
ve arkadaslar1 heyelan yer degistirmesini tahmin etmek

icin ¢ift hareketli ortalama (DMA) yontemi ile LSTM'yi
birlestirmis ve yiliksek Kkaliteli giiven araliklari elde
etmistir (Xing ve ark. 2019b). Wang ve arkadaslari,
Uyarlanabilir Giriltili Komple Topluluk Ampirik Mod
Ayrisimina (CEEMDAN-AMLSTM) dayali bir dikkat
mekanizmasi LSTM modeli gelistirmis ve heyelan yer
degistirme tahmini i¢in gecerliligini dogrulamistir (Wang
ve ark, 2021). Yang ve arkadaslari, Three Gorges
Rezervuar Alanindaki heyelanlarin periyodik yer
degistirmesini tahmin etmek icin bir LSTM modeli
kullanmis ve LSTM yo6nteminin, tarihsel bilgilerin tam
olarak kullanilmas1 nedeniyle heyelanlarin dinamik
ozelliklerini statik bir modelden daha iyi simiile
edebildigini bulmuslardir (Yang ve ark., 2019).

Zhu ve arkadaslart (2022), heyelan yer
degistirmesini tahmin etmek i¢in hibrit bir makine
o6grenme yaklasimi sunmaktadir. Degisken Modal
Ayristirma (VMD) ile yer degistirme egilim ve periyodik
bilesenlere ayrilmistir. Periyodik bilesen icin ise Asiri
Ogrenme Makinesi (ELM) kullamlmistir. ELM modelini
optimize etmek icin Pargacik Stirti Optimizasyonu (PSO)
uygulanmistir. U¢ Bogaz Baraji alaninda test edilen
model, LSSVM ve CNN-GRU gibi diger yontemlerle
karsilastirildiginda RMSE, MAE, MAPE ve R? degerleri
acisindan istiin performans gostermistir. DES-PSO-ELM
modelinin RMSE, MAE, MAPE ve R? degerleri sirasiyla
1.295 mm, 0.998 mm, %0.008 ve 0.999 olarak
bulunmustur.

Jiang ve arkadaslar1 (2023), baraj goli yer
kaymalarini tahmin etmek icin Coklu Olcekli Tepki
Analizi (JTFA) ve GRU tabanli bir derin 6grenme modeli
onermektedir. GNSS verileri, yillik yagis miktar1 ve
rezervuar su seviyesi verilerini kullanarak, yer
kaymasimin dogrusal olmayan dogasini modellemeyi
amaglamislardir. Calismanin bulgulari, yer kaymalarinin
belirgin bir 12 aylik déngiisti oldugunu ve GRU modelinin
yiiksek bir basar1 oran1 (RMSE: 12.301 mm, R% 0.979)
elde ettigini gostermektedir.

Huang ve arkadaslar1 (2022), Muyubao heyelaninin
yer degistirmesini tahmin etmek i¢in Temporal
Convolutional Network (TCN) ve Salp Swarm Algorithm
(SSA) algoritmasini Dbirlestiren bir hibrit model
onermektedir. Trend bileseni i¢in polinom fonksiyonlari,
periyodik bilesenin tahmininde ise SSA ile optimize
edilmis TCN modeli kullanilmistir. TCN modelinin RMSE
degeri 6.37 mm, MAPE degeri %1.49 olarak dl¢iilmiistir.
SVM modeliyle karsilastirildiginda, ortalama iyilesme
orant %8.99 ile %66.69 arasinda degismektedir. Bu
sonuclar, TCN'nin RNN ve CNN 6zelliklerini birlestirerek
yliksek performans sagladigini gostermektedir.

Yang ve arkadaslarinin 2024'te yaptigi calisma,
Cin'in  Zhejiang  Eyaleti'ndeki =~ Wenzhou  Belt
Otoyolu'ndaki bir heyelana odaklanmakta ve grafik derin
6grenme ile GNSS konumlandirmasina dayali yeni ¢cok
degiskenli heyelan yer degistirme tahmin yodntemi
onermektedir. Bu yontem, GNSS yer degistirme verileri,
yagis, yeraltl su seviyesi ve toprak nem igerigi gibi zaman
serisi verilerini birlestirerek yer kaymasi tahminlerinde
iistiin sonugclar gostermistir. GTS modeli, SVM, XGBoost
ve LSTM gibi mevcut yontemlerden daha iyi performans
sergilemis ve mekansal ve zamansal bagimhliklar bir
araya getirerek tahmin yetenegini artirmistir.
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Port Kembla ve Milner Bay lokasyonlari i¢in deniz
seviyesi yiikselmesini tahmin etmek amaciyla karma bir
derin o6grenme modeli olan SVMD-CNN-BiLSTM'yi
kullanmislardir. Port Kembla i¢in yillik ortalama deniz
seviyesi yiikselmesinin yaklasik olarak 4,5 mm/yil,
Milner Bay icin ise yaklasik 2,75 mm/yil olacagl tahmin
edilmistir. Bu projeksiyonlar, gelecekte alinacak
onlemler ve politikalar i¢in kritik 6neme sahiptir. Sonug
olarak, Raj ve Brown'un (2023) ¢alismasi, deniz seviyesi
ylkselmesi tahminleri icin olduk¢a karmasik bir derin
o0grenme modeli kullanarak yiliksek derecede dogru ve
givenilir sonuglar elde etmeyi basarmistir (Raj, N. ve
Brown, J., 2023).

Jiang ve ark. (2024), GNSS koordinat zaman
serilerinin tahmini icin Transformer cergevesine
dayanan yeni bir derin kendine dikkat sinir ag1 (DSANN)
onermislerdir. Yaptiklar1 deneylerde, DSANN modelinin
LSTM ve En Kiiciik Kareler (LS) yontemlerine gére daha
diisiik RMSE ve MAE degerleri elde ettigini ve eksik veri
orant %20'ye kadar olan durumlarda bile ytiiksek tahmin
dogrulugunu korudugunu gostermislerdir. Benzer
sekilde, Xie ve ark. (2024), GNSS verileriyle deformasyon
izleme icin CNN ve GRU modellerini birlestiren bir
yontem sunmuslardir. Onerilen CNN-GRU modeli,
geleneksel Genisletilmis Kalman  Filtresi (EKF)
yontemine gore yaklasik %45 daha iyi performans
sergilemis ve deformasyon tahmininde daha yiiksek
dogruluk ve giivenilirlik saglamistir. Bu ¢alismalar, derin
ogrenme modellerinin GNSS zaman serilerinin
tahmininde etkin bir sekilde kullanilabilecegini
gostermektedir.

Bu calismada da derin 6grenme algoritmalarindan
olan GRU ve LSTM ile Tiirkiye’'nin i¢ Anadolu Bélgesinde
bulunan TUSAGA-Aktif agina ait 6 GNSS istasyon
verilerinin Kuzey, Dogu ve Diisey bilesenleri igin ileriye
déniik ayr1 ayri kestirimler yapilmistir. istasyon bazinda
egitilen modeller ve tiim istasyon verilerinin birlikte
egitildigi tek model performanslar1 karsilastirilarak
model yonetimin performanslar {zerine etkisi analiz
edilmistir.

ilerleyen bolumlerde; Bolim 2'de kullanilan veriler,
yontemlerin ve islem adimlarinin, model
algoritmalarinin agiklamas1 verilmistir. Bolim 3'te,
bulgular verilmis ve karsilastirmali analizleri yapilmis;
Boliim 4'te sonuglar tartisilmis ve dneriler sunulmustur.

2. Yontem

Bu arastirmanin verisi Nevada Jeodezi Laboratuvari
tarafindan saglanan giinliik Hassas Nokta
Konumlandirma (PPP) ¢6zlimlerinden elde edilmistir. Bu
calismada kullanilan GNSS istasyonlari, bolgenin énemli
bir boliimiinii kapsayan cografi dagilimlar1 ve yillar
boyunca sagladiklar: verilerin kalitesi ve siirekliligi de
dahil olmak iizere belirli kriterlere gore secilmistir(Sekil
1). Verilerin zaman araligr 16 Ocak 2009'dan 31 Ekim
2015'e kadar wuzanmakta ve yaklasik yedi yilhik
gozlemleri kapsamaktadir. Her bir istasyon icin Dogu,

Kuzey ve Diisey bilesenlerine ait veriler ayri ayri
degerlendirilmistir.

39° T 1B
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33| P

38°

79

374
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37° 4 ava w
33° 34° 34° 35° 357 3o¢ 36°

Sekil 1. GNSS Istasyonlarinin Konumu

Gerceklestirilen ¢alisma ile ilgili adimlar1 gosteren
blok diyagram Sekil 2’de gosterilmistir. Analiz amaciyla,
veri kiimesi zaman sirasina gore boéliimlendirilmis,
verilerin ilk %80'i yani daha eski tarihli veriler modelin
egitimi icin ayrilmis ve kalan %20'si test kiimesi olarak
degerlendirilmistir. Bu oranlar zaman serisi analizinde
yaygin olarak kullanilan oranlar oldugu i¢in secilmistir.
Egitim ve test setleri lizerinde; T-test ve Kolmogorov-
Smirnov  (KS) testi ile yapilan istatistiksel
karsilastirmalarda, tim bilesenler i¢in p-degerleri
0.05'in izerinde bulunmustur. Bu sonuglar, egitim ve test
setleri arasinda istatistiksel olarak anlamli bir fark
olmadigini ve her iki setin de ayni dagilimdan geldigini
dolayisiyla homojen olduklarim1 gostermektedir. Bu
boliimleme yaklasimi, kapsamli bir egitim siirecini
kolaylastirirken, modelin tahmin  dogrulugunun
goriinmeyen veriler iizerinde saglam bir sekilde test
edilmesi ve dogrulanmasi i¢in yeterli bir veri kiimesinin
mevcut olmasim saglamistir. Bu alti farkh istasyon
iizerinde yinelemeli sinir aglarindan olan LSTM ve GRU
modelleri kullanilarak kestirimler gerceklestirilmistir.
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kuzey, dogu ve disey bilesenler igin
zaman serilerinin hazirlanmasi

uyusumsuz dlgllerin atilmasi

senaryo Ii

—» editim ve test verilerinin ayrilmasi

ayrlan egitim verilerinin birlegtiriimesi

Sekil 2. Akis semasi

Calisma iki farkli
yuritilmiistir:

Senaryo I: Her bir istasyonun verilerinin ayr1 ayri
egitim ve test edilmesi.

Senaryo II: Tim istasyonlarin egitim verilerinin
birlestirilerek ortak bir modelin egitilmesi ve bu modelin
her bir istasyonun test verileri  {izerinde
degerlendirilmesi.

Veri setinde, 12 zaman adimlik hareketli pencereler
(sliding windows) kullanilarak 6zellik  ¢ikarimi
yapilmistir. Her pencere, ardisik 12 zaman adimindan
olusmakta ve bu pencereler veri seti boyunca bir adim
kaydirilmaktadir. Model, one-step ahead forecasting
yontemi kullanilarak egitilmistir. Bu yaklasim, her 12
zaman adimlik pencerenin hemen ardindaki tek bir
zaman adiminin kestirilmesini saglamaktadir.

Bu sirali girdilerin olusturulmasinin ardindan, derin
6grenme modelleri her bir diziyi islemeye basglar.
Modelin mimarisi 100 néronluk bir GRU/LSTM
katmaniyla baslar. Bunu, modelin hesaplama stirecine
dogrusal olmayan doniisiimleri dahil etmek icin ReLU
aktivasyon fonksiyonunu uygulayan 100 ndrondan
olusan yogun bir katman izlemektedir. Mimari
yapilandirma, tahmin edilen degerleri saglamak icin
tasarlanmis yogun bir ¢ikt1 katmani ile sonug¢lanir. Bu
noktada, islenen zamansal veriler nihai tahminlere
doniismektedir.

Tablo 1'de sunulan hiperparametreler, c¢esitli
kombinasyonlar1 deneyerek en etkili yapilandirmay:
belirlemek icin bir 1zgara arama (grid search) yaklasimi
kullanilarak secilmistir. Izgara aramasi sirasinda, batch
boyutlar1 (32 ve 64), islem katmanlarindaki néron
sayilar1 (64, 100, 128, 200) ve yogun katmanlar i¢cin hem
noron sayilart (50, 100, 128, 200) hem de aktivasyon
fonksiyonlar1 (ReLU ve tanh) ayarlanmistir.

senaryo kapsaminda

model mimarisi ve
hiperparametrelerin
—_— ayarlanmasi

test setleri (zerinde degerlendirmenin
— yapiimasi

Tablo 1. Modelin hiperparametreleri.

Hiperparametre Deger
Girdi Bi¢imi (input_shape) (12, 1)
LSTM / GRU Katmani 100 néron,
return_sequences=True
100 noron,
YogunKatman (Dense) ReLU aktivasyon
fonksiyonu
Kayip Fonksiyonu (loss) Ortalag\l/[aslé;i re Hatasi
Optimizator Adam, g%rg:ilme orani:
Karekok Ortalama Hata
Degerlendirme Metrikleri Ortalan(lfzil\l([/[SuEt%;lk Hata
(MAE)

izlenen metrik: Val_loss,

Erken Durdurma patience: 10,

(Early Stopping) restore_best_weights: True
iterasyon < 10: mevcut

Ogrenme Orani oran,
Zamanlayicisi Iterasyon > 10: oran %5

azaltihir
{zlenen metrik: Val_loss,

Ogrenme Oram Azaltma factor: 0.5, patience: 5,

(ReduceLROnPlateau) min_Ir- 0.0001
Iterasyon Sayisi 200
Batch Boyutu 32

Modelin hesaplama karmasikligi ve performansini
degerlendirmek amaciyla, toplam parametre sayisi,
egitim siiresi ve ¢ikarim siiresi gibi metrikler
hesaplanmistir. Birlestirilmis tek modelin toplam
parametre sayisi 483,005 olup, egitilebilir parametre
sayist 161,001'dir. Egitim ortalama olarak toplamda
18.51 saniye siirmiistiir. Tek bir 6rnek i¢in ¢ikarim stiresi
ortalama 100.41 milisaniye iken, tiim test verileri i¢in

69



Geomatik - 2025, 10(1), 66-75

toplam ¢ikarim siiresi 0.16 saniye olarak dlciilmiistiir.
Istasyon bazinda egitilen ayr1 modellerde ise, her bir
modelin toplam parametre sayis1 453,305 ve egitilebilir
parametre sayist 151,101'dir. Her bir istasyon i¢in egitim
sliresi ortalama 7.62 saniye olup, 6 istasyon icin toplam
egitim siiresi 45.72 saniyeye ulasmaktadir. Cikarim
stiresi her bir model icin ortalama 0.64 saniye olup, 6
istasyon icin toplam ¢ikarim siiresi 3.84 saniyedir. Bu
sonuglar, birlestirilmis modelin istasyon bazinda egitilen
modellere gore egitim siiresinde yaklasik %59'luk bir
azalma ve c¢ikarim siiresinde %95.8'lik bir azalma
sagladigini gostermektedir. Tiim deneyler, Windows 10
isletim sistemi lizerinde, Intel64 Family 6 Model 183
Stepping 1, Genuine Intel islemci (14 fiziksel ¢ekirdek, 20
mantiksal islemci) ve 1569 GB RAM ile
gerceklestirilmistir.

Modelin asir1 uyumunu (overfitting) onlemek ve
genel performansini artirmak amaciyla, egitim siirecinde
validasyon seti kullanilarak erken durdurma (Early
Stopping), 6grenme orani azaltma (ReduceLROnPlateau)
ve Ogrenme orani zamanlayicis1 (Learning Rate
Scheduler) teknikleri kullanilmistir. Egitim verilerinin
%10'u validasyon seti olarak ayrilmistir. Validasyon seti,
modelin egitim stireci boyunca performansini izlemek ve
hiperparametre ayarlarini  optimize etmek igin
kullanilmistir. Bu teknikte, dogrulama kaybi (validation
loss) belirli bir siire boyunca (patience degeri kadar)
iyilesme gostermediginde egitim durdurulur. Ayrica,
iterasyon sayisina bagl olarak 6grenme oranini dinamik
olarak degistiren bir 6grenme orani1 zamanlayicis1 goz
onine alinmistir. Bu zamanlayici, ilk 10 iterasyon
boyunca 6grenme oranini sabit tutmus, ardindan her
iterasyon sonunda %5 oraninda azaltmistir. Sonunda en
iyi dogrulama kaybina sahip model agirliklar1 geri
ylklenir (restore_best weights=True), boylece modelin
en iyi genel performansi saglanir. Bu teknikler, modelin
asirt uyumunu Onlemenin yani sira egitim siiresini
kisaltarak hesaplama kaynaklarinin verimli
kullanilmasini saglar. Modelin egitimi, 200 iterasyon
boyunca, 32 batch boyutu ile gergeklestirilmis olup, bu ve
diger parametre bilgileri Tablo 1'de verilmektedir.

2.1. Uzun kisa siireli bellek (LSTM)

LSTM, zamansal bilginin ne kadarinin
unutuldugunu veya hatirlandigini dikkate alan ve yaygin
olarak kullanilan bir Tekrarlayan Sinir Agidir
(RNN)(Hochreiter ve Schmidhuber, 1997). LSTM,
geleneksel RNN'lerin kaybolan gradyan sorunu gibi
sinirlamalarinin iistesinden gelmek i¢in tasarlanmistir.
Sirali verilerdeki uzun vadeli bagimhliklar1 yakalama
yeteneklerini vurgulayarak, onlar1 6zellikle zaman serisi
analizi, dogal dil isleme ve sirali verileri iceren diger
uygulamalar i¢in kullaniglh hale getirmektedir

LSTM algoritmasi, uzun dénemler boyunca bilgiyi
islemesine ve hatirlamasina izin vermek i¢in hiicre yapisi
icinde bir dizi matematiksel islem icerir. Bir LSTM
hiicresi, li¢ ana kap1 (giris, unutma ve ¢ikis) ve bilgiyi
tutmasina yardimc olan bir i¢ durum ile ifade edilir (
Demiryege ve Ulukavak, 2022).

eUnutma Kapis1 (ft): unutma kapisi hiicre
durumundan (Ce-1) hangi bilginin korunacagini veya
atilacagini mevcut zaman adimi (t) icin belirler. Bu,
mevcut girdi (x:) ve onceki ¢ikti (he-1), islenerek, hiicre
durumundaki her say1 icin 0 (atma) ile 1 (koruma)
arasinda bir deger iretilerek calismaktadir.
Matematiksel olarak,

fi= G(Wf . [ht—l,Xt] + bf) (1)

ifada edilir. Burada, o sigmoid fonksiyonu , Wr unutma
kapisinin agirlik matrisi, [he-1,xt] 6nceki ¢ikt1 ve mevcut
girdinin birlestirilmesi ve bfunutma kapisinin biasidir.

Giris Kapisi (it):

it= (Wi [he-1,x] + bi) (2)
Ce= tanh(Wc - [he-1,xc] + bc) 3)

C aday hiicre durumudur, Wi ve W¢ agirlik matrisleridir,
bi and bc giris kapisi ve aday degerler i¢in biaslardir.

Hiicre Durumu Giincellemesi:
Ce=fi* Ce-1+ iex Ct (4)

burada, C: yeni hiicre durumu, Ci-1 6nceki hiicre
durumu ve * eleman bazinda ¢arpimi ifade eder..

Giris kapisi, herhangi bir zaman adiminda hiicre
durumunun (Ct) glincellenmesinde ¢ok onemli bir rol
oynar. llgili bilgileri hiicre durumuna etkin bir sekilde
dahil etmek icin iki ana adimda ¢ahgir. ilk olarak, gelen
verileri filtrelemek i¢in bir Sigmoid katman kullanir ve
mevcut zaman adimi i¢in hangi bilgilerin uygun oldugunu
secer. Bu secim slirecinin ardindan, bir tanh katmani
secilen bilgiyi degerlendirerek 6nem diizeyini belirler ve
bu bilginin hiicre durumunu ne kadar etkilemesi
gerektigini olcer.

«Cikis Kapist: Cikis kapisi, hiicre durumunun (Ci)
mevcut ¢iktiy1 (ht) ne kadar etkileyecegini belirlemekle
gorevlidir. Bunu basarmak icin, éncelikle mevcut anda
hiicre durumunun 6nemini degerlendirmek iizere bir
Sigmoid fonksiyonu kullanir. Bu degerlendirme,
ardindan, nihai ¢iktiy1 olusturmak i¢in degerlendirilen
6nemi modiile eden bir tanh fonksiyonu ile islenir.

Bu islemler matematiksel olarak su formiillerle temsil
edilir:
0t=0(Wo- [he-1,x] + bo) (5
ht= o¢* tanh(Ct) (6)

Burada, W, cikis kapisinin agirlhik matrisi, ¢ikis
kapisinin biasi, ht LSTM hiicresinin mevcut ¢iktisidir.

2.2. Gegitli Tekrarlayan Birim(GRU)

LSTM'nin daha sade bir c¢esididir ve dizilim
modellemede yiiksek performans saglarken hesaplama
verimliligini artirmak icin optimize edilmistir. GRU'lar,
hiicre ve gizli durumlar1 birlestirerek LSTM yapisini
basitlestirir ve bdylece sistemin karmasikligini azaltir.
Her GRU hiicresi iki kapi ile c¢alisir: sifirlama ve
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giincelleme kapilari. Bu kapilar, yeni girdinin énceki ¢ikti
ile entegrasyonunu ayarlayarak bilgi akisini diizenler ve
boylece gelecekteki dizilimler i¢in gerekli olan geg¢mis
bilgileri etkin bir sekilde korur (Chung ve ark, 2014).

eSifirlama Kapisi (rt): Sifirlama kapisi, mevcut girdi
(xt) islenirken ge¢mis bilgilerin (6nceki gizli durum ht
1'den) ne kadarinin unutulmasi gerektigini belirler. Bu
kapi, modelin ge¢mis bilgilerin mevcut durumu ne kadar
etkilemesi gerektigine karar vermesine yardimci olur.
Sifirlama kapisinin islemi matematiksel olarak su sekilde
temsil edilir:

re= o(Wr- [he-1,x¢] + br) (7)

Burada, o sigmoid fonksiyonudur, W; sifirlama
kapisinin agirlik matrisi ve by sifirlama kapisinin biasidir.

eGiincelleme Kapisi (zt): Glincelleme kapisi, dnceki
gizli durumun (ht1) ne kadarinmin bir sonraki duruma
aktarilacagimi belirler. Giincelleme kapisinin islemi su
sekilde temsil edilir:

ze= (Wi« [he-1,xe] + 21) (8)
ht=tanh(W - [rc * he-1,x] + b) 9)
he=ztxhe1+ (1 -2z * he (10)

Burada, W agirlik matrislerini, b biaslari, o sigmoid
aktivasyon fonksiyonunu ve tanh hiperbolik tanjant
aktivasyon fonksiyonunu temsil eder.

3. Bulgular

I1k olarak her bir GNSS istasyonu i¢in ayr1 ayr1 egitilen
LSTM ve GRU modellerinin ve tiim istasyonlardan gelen
birlesik veriler iizerinde egitilen tek bir modelin
performansi degerlendirmis, sonrasinda tek bir modelin
zaman serisinin kestirimi icin ayr1 ayr1 egitilmis
modellerle Kkarsilastirilabilir dogruluga ulasabilirligi
analiz edilmeye calisilmistir. ilk senaryoda modellerin
her istasyon icin ayri ayri egitilmesi durumunda tipik
olarak yiiksek performans olciitleri saglanmistir. Bu
durum, modellerin her istasyonun verilerini etkili bir
sekilde 6g8renip kestirim yapabildigini géstermektedir.

Dogu bileseni i¢in ilk senaryoda hem LSTM hem de
GRU modelleri, 6zellikle Sekil 5'teki AKDG ve NEVS gibi
istasyonlar i¢in yiiksek R? degerleriyle giiclii performans
gostermistir. Ornegin, LSTM modeli AKDG’nin Dogu
bileseni icin 0.77 ve NIGD icin 0.92 R? elde ederken, GRU
modeli de sirasiyla 0.70 ve 0.89 R? degerleriyle yiiksek
performans gostermistir. ikinci senaryoda yani tek ortak
bir model egitildiginde Dogu bileseni icin tek modelin
performans o6lciitlerinin, ayr1 ayri egitilen modellerin
performans olgiitlerine yakin oldugu goriilmektedir.
Daha diisiik olan metrikler Tablo 3-6 lizerinde koyu
olarak isaretlenmistir. Ornegin, tek model AKDG igin
0.78 ve NIGD icin 0.86 R? degerlerine ulasmistir, NEVS
istasyonunda RMSE ve MAE sirasiyla %20 ve %25
oraninda azalmis ve birlesik modelin bu bolgedeki
verilere iyi genelleme yapabildigini ve birden fazla
istasyondan gelen verilerin toplanmasina ragmen temel
ozellikleri etkili bir sekilde yakaladigin1 gostermistir.
Sekil 6’daki KIRS istasyonu i¢in birlestirilmis modelin
RMSE degeri 1.30, MAE degeri 1.0 ve R* degeri 0.75 olup

ayrt ayr1 egitilmis modellerle benzer 6zellikler
gostermekte ve bu da KIRS verilerinin oriintiilerinin
birlestirilmis veri kimesinde iyi temsil edildigini
gostermektedir. POZA istasyonunda birlestirilmis
modelin RMSE degeri 3.30 mm, MAE degeri 2.30 mm ve
R? degeri 0.51 olup bireysel model performansiyla
karsilastirilabilir. Bu, birlestirilmis modelin POZA gibi
karmasik verileri makul bir dogrulukla isleyebilecegini
gostermektedir. Tablo 2’de gosterildigi gibi 6zellikle GRU
icin ortalama RMSE ve MAE degerlerine bakildiginda ayr1
ayr1 egitilen modellerin ortalama RMSE degeri 1.68 mm
iken ortak modelin 1.67 mm ve MAE degerleri de
sirasiyla 1.24 ve 1.27 mm’dir burada dogruluk seviyesi
aynidir. Ancak Tablo 5’e bakildiginda LSTM modeli
kullanildiginda ortak modelin dogrulugu daha diistiktiir.

Kuzey bilesende ise, tiim istasyonlarda daha da
yiiksek R? degerleri goriilmektedir. NEVS ve NIGD gibi
istasyonlar Tablo 3’'de gosterildigi iizere GRU ile sirasiyla
0.96 ve 0.95 R* degerlerine ulasmigtir. Bu tutarhlik,
kuzey bilesenden gelen verilerin daha o6ngoériilebilir
oldugunu gostermektedir. Genel olarak yiiksek
performans, hem LSTM'nin hem de GRU'nun bu
bilesendeki zaman serisi verilerini islemedeki
saglamligini vurgulamaktadir. ikinci senaryo yani ortak
(tek) model de iyi performans gdstermis ve ayri ayri
egitilen modellere yakin yiiksek R? degerlerini
korumugtur. Ornegin, ortak model AKDG’nin Kuzey
bileseni i¢in 0.91 ve Sekil 4’te gosterilen NEVS istasyonu
icin 0.94 R? degerine sahiptir. Ortalama MAE ve RMSE
degerleri agisindan GRU modeliyle ilk senaryo yani ayr1
modellerden elde edilen ortalama RMSE ve MAE
degerleri sirasiyla 1.32 ve 1.70 mm iken ortak modelinki
1.33 ve 1.72 mm olup neredeyse ayni degerlerdir (Tablo
3). LSTM modeli sonuglarinin verildigi Tablo 6’ya
bakildiginda ortak model ve ayr1 modeller arasindaki
fark daha agiktir. KAYS istasyonun Kuzey bileseninde
gercek degerler ve kestirim  degerleri Sekil 3’te
sunulmustur.
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Sekil 3. KAYS istasyonunun Kuzey bileseni i¢in LSTM
modeliyle elde edilen kestirim degerleri ve gercek
degerler.
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Sekil 4. NEVS istasyonunun Kuzey bileseni i¢in LSTM
modeliyle elde edilen kestirim degerleri ve gercek
degerler.

Diisey bilesenin dogasi geregi daha karmasik olusu
daha diisiik R? degerleri ve daha yiiksek RMSE ve MAE
metriklerine  sebep  olmustur.  Ornegin, POZA
istasyonunun GRU modeliyle sadece 0.25 ve LSTM
modeliyle 0.22 R? degerine sahip olmasi, modellerin bu
istasyondan gelen verilerdeki karmasik veya daha az
tahmin edilebilir kaliplar1 yakalamakta zorlandigini
gostermektedir.  Sekil 8'de  gosterilen  AKDG
istasyonunun Diisey bileseninde GRU ve LSTM
modellerinin her ikisi de zorluklarla karsilasmistir; GRU
3.80 mm RMSE, 3.0 mm MAE ve 0.53 R?, LSTM ise 3.70
mm RMSE, 290 mm MAE ve 0.56 R* performansi
gostermistir. KAYS istasyonunda GRU 5.10 RMSE, 4.00
MAE ve 0.30 R? degerlerine sahipken, LSTM 5.10 RMSE,
410 MAE ve 0.28 R? degerlerini géstermistir. Bu
sonuglar, her iki modelin de KAYS istasyonunun diisey
bilesenindeki 6riintiileri yakalamada karsilastig1 zorlugu
gostermektedir.

Diisey bilesende, tek model, ayri ayr1 egitilen
modellere kiyasla ortalama olarak GRU modeliyle ilk ve
ikinci senaryo i¢in sirasiyla 4.50 ve 4.43 mm RMSE; 3.58
ve 3.50 mm MAE degerleri elde edilmistir. LSTM
modelinde ise 4.55 ve 4.43 mm RMSE ve 3.63 mm ve 3.50
mm MAE degerleri elde edilmistir ve degerler Tablo 4 ve
7’de sunulmaktadir. Bu verilere bakarak Diisey bilesen
icin ortak model daha diisiik metrikler saglamistir. Sekil
7’deki NIGD istasyonunda ortak model metrikleri RMSE
icin %7 ve MAE i¢in %8 civari iyilesme saglamistir. Bu
durumdan ortak egitimin karmasik veri senaryolarinda
bazen istasyon bazinda egitimden daha iyi performans
gosterebilecegi anlasilmaktadir.
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Sekil 5. AKDG istasyonunun Dogu bileseni i¢in LSTM
modeliyle elde edilen kestirim degerleri ve gercek
degerler
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Sekil 6. KIRS istasyonunun Dogu bileseni i¢in LSTM
modeliyle elde edilen kestirim degerleri ve gercek
degerler.
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Sekil 7. NIGD istasyonunun Diisey bileseni i¢cin GRU
modeliyle elde edilen kestirim degerleri ve gergek
degerler.
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Sekil 8. AKDG istasyonunun Diisey bileseni icin GRU
modeliyle elde edilen kestirim degerleri ve gercek
degerler.

Genel olarak incelendiginde ; Dogu bileseninde RMSE
ve MAE degerleri, her iki senaryoda da benzer diizeyde
olup, LSTM modelinde senaryo II'nin performansi biraz
daha diisiik kalmistir. Kuzey bileseninde ise 6zellikle
LSTM modelinde senaryo II'nin RMSE ve MAE degerleri
belirgin sekilde daha yiiksek olup, bu bilesende ortak
modelin  performansinin daha diisiik oldugunu
gostermektedir. Diisey bilesende ise LSTM ve GRU
algoritmalarinin ikisi icin de ortak modelin RMSE ve MAE
degerleri ayr1 modellerden daha disiik olup, bu
bilesende ortak modelin daha iyi performans
sergiledigini ortaya koymaktadir. Genel olarak, ortak
modelin performansi, bilesen ve metriklere bagh olarak
degisiklik gostermekte ve bazi durumlarda ayr
modellerden daha iyi ya da hemen hemen ayni seviyede
sonuclar verebilmektedir.

72



Geomatik - 2025, 10(1), 66-75

Tablo 2. Dogu bileseni icin GRU modelinin farkl
senaryolardaki degerlendirme metrikleri

Senaryol Senaryo II
(ayr1 modeller) (tek model)

istasyon RMSE MAE RZ RMSE MAE)

(mm) (mm) (mm) (mm)
AKDG 140 1.06 0.70 1.20 0.90 0.78
KIRS 1.30 1.00 0.75 1.30 1.00 0.75
POZA 3.10 2.10 0.59 330 230 0.51
NEVS 1.50 1.20 0.80 1.20 0.90 0.86
NIGD 1.30 1.00 0.89 140 1.20 0.86
KAYS 1.50 1.10 0.81 1.60 1.30 0.76

Ort 1.68 1.24 1.67 1.27

Tablo 3. Kuzey bileseni icin GRU modelinin farkh
senaryolardaki degerlendirme metrikleri

Senaryol Senaryo II
(ayr1 modeller) (tek model)
istasyon RMSE MAE RZ RMSE MAE) RZ

(mm) (mm) (mm) (mm)
AKDG 180 140 0.92 200 150 091
KIRS 130 100 094 120 1.00 0.95
POZA 240 190 086 220 170 0.88
NEVS 130 100 096 130 1.00 0.96
NIGD 140 110 095 140 110 0.96
KAYS ~ 2.00 150 0.92 220 170 091
Ort 170 132 172 133

Tablo 4. Diisey bilesen i¢in GRU modelinin farkh
senaryolardaki degerlendirme metrikleri

Senaryol  Senaryo Il
(ayr1 modeller) (tek model)
istasyon RMSE MAE RZ RMSE MAE) RZ

(mm) (mm) (mm) (mm)
AKDG 3.80 3.00 053 3.60 2.80 0.57
KIRS 4.00 320 050 410 3.20 051
POZA 6.40 5.10 0.25 650 520 0.22
NEVS 350 280 052 330 2.60 0.57
NIGD 420 340 0.17 390 3.10 0.30
KAYS 510 4.00 030 520 410 0.27
Ort 450 3.58 443 3.50

Tablo 5. Dogu bileseni icin LSTM modelinin farkh
senaryolardaki degerlendirme metrikleri

Senaryol  Senaryo II
(ayr1 modeller) (tek model)
RMSE MAE

RMSE MAE) RZ
(mm) (mm) (mm) (mm)

AKDG 1.20 090 0.77 120 090 0.78
KIRS 1.30 1.00 0.75 140 110 0.73
POZA 330 230 0.54 430 360 0.21
NEVS 1.30 120 080 1.10 0.90 0.88
NIGD 1.10 090 092 190 160 0.77
KAYS 1.50 1.20 0.81 160 130 0.77
Ort 1.62 1.25 1,92 1,57

istasyon R?

Tablo 6. Kuzey bileseni i¢cin LSTM modelinin farkh
senaryolardaki degerlendirme metrikleri

Senaryol Senaryo Il
(ayr1 modeller) (tek model)
RMSE MAE ., RMSE MAE)

istasyon (mm) (mm) (mm) (mm) R?

AKDG 1.50 1.10 095 250 2.10 0.86
KIRS 1.30 1.00 093 1.20 1.00 0.95
POZA 2,20 1.70 0.88 250 190 0.85
NEVS 1.20 090 096 1.60 1.30 0.94
NIGD 1.60 1.20 094 1.80 1.40 0.93
KAYS 1.70 1.20 094 2.70 2.20 0.86
Ort 1.58 1.18 2.05 1.65

Tablo 7. Diisey bilesen icin LSTM modelinin farkli
senaryolardaki degerlendirme metrikleri

Senaryo I

(ayr1 modeller)

RMSE MAE 2
(mm) (mm)

Senaryo II
(tek model)

RMSE MAE) _,
(mm) (mm)

istasyon

AKDG 3.70 290 0.56 3.60 290 0.56
KIRS 410 3.20 0.51 4.10 3.20 0.50
POZA 6.50 5.20 0.22 6.60 520 0.20
NEVS 3.50 2.80 0.53 3.30 2.60 0.49
NIGD 440 3.60 0.07 3.80 3.00 0.32
KAYS 510 4.10 0.28 5.20 4.10 0.25
Ort 455 3.63 443 3.50

4. Sonuclar

Bu calismada, Tiirkiye'nin Orta Anadolu Bolgesinde
bulunan alti GNSS istasyondan alinan verilerin ii¢
bileseni tizerinde LSTM ve GRU algoritmalariyla kestirim
calismalar yapilmis 2 senaryo lizerinde
degerlendirilmistir. ilk olarak her istasyon icin ayri
modeller egitilmis ve performanslari tiim istasyonlardan
gelen birlestirilmis veriler ilizerinde egitilen tek bir
modelle karsilastirilmistir.

Sonuglar, tek bir modelin ¢esitli veri kimelerinde ayr1
ayr1 egitilmis modellerle Kkarsilastirilabilir yeterli
dogruluga ulasabilecegi hatta daha yiiksek dogruluk elde
ettigi durumlar oldugunu ortaya koymustur. Ornegin
NEVS istasyonun Dogu bileseninde, KIRS ve POZA
istasyonunun Kuzey bileseninde, AKDG, NEVS ve NIGD
istasyonlarinin Diisey bilesende GRU algoritmasi
kullamimiyla; NEVS istasyonun Dogu bileseninde, KIRS
istasyonunun Kuzey bileseninde, NEVS ve NIGD
istasyonlarinin Diisey bilesenlerinde LSTM
algoritmasiyla elde edilen sonuglar ayri ayr1 egitilmis
modellerinkinden yiiksek olmustur.

Sonuglar, birlestirilmis veriler lizerinde egitilen tek
bir modelin zaman serisi kestirimleri icin yeterli
dogruluga ulasabilecegi hipotezini dogrulamakta ve
cesitli pratik avantajlar saglamaktadir. Ornegin model
yonetimi agisindan tek bir modelin egitilmesi ve
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stirdiirilmesi daha basit ve daha verimlidir, dagitim ve
bakim icin gereken karmasikligi ve kaynaklar
azaltmaktadir. Bu, oOzellikle birden fazla modeli
yonetmenin zahmetli olabilecegi biiyliik o6lgekli
uygulamalarda faydalidir. Kaynak Optimizasyonu
acisindan tek bir model hem egitim hem de c¢ikarim
asamalarinda daha az hesaplama kaynagi gerektirir, bu
da onu daha wuygun maliyetli bir ¢6ziim haline
getirmektedir. Ayrica tek bir model, ek istasyonlardan
gelen yeni verileri igerecek sekilde kolayca
genisletilebilir. Yeni veriler elde edildikce, model
minimum ayarlamalarla yeniden egitilebilir veya ince
ayar yapilabilir, bu da stirekli iyilestirmeyi ve
uyarlanabilirligi kolaylastirir. Sonug¢ olarak birlesik
model yaklasimyi, basitlik ve dogruluk arasinda bir denge
sunarak belirli baglamlarda uygulanabilir bir alternatif
olmaktadir.

Kullanilan veri seti Tiirkiye'nin I¢ Anadolu
Bolgesi'ndeki 6 GNSS istasyonu ile simirhdir, bu da
modelin genelleme yetenegini kisitlayabilir. Farklh
cografi bolgelerden ve daha fazla sayida istasyondan elde
edilecek verilerle, modelin performansi daha kapsaml
bir sekilde degerlendirilebilir ve genelleme kapasitesi
artirilabilir. Ayrica, modelimiz yalnizca GNSS koordinat
zaman serisi verilerini kullanmistir; atmosferik kosullar,
jeolojik olaylar veya insan kaynakli faktorler gibi ek
degiskenlerin  modele dahil edilmesi, tahmin
dogrulugunu daha da artirabilir.

Gelecekte, birlesik modeller genelleme ve kestirim
dogrulugunu artirmak i¢in birden fazla istasyondan
gelen verilerden yararlanarak GNSS veri kestirimini
onemli 6lciide gelistirebilir. Farkl bolgelerdeki istasyon
verilerinin modele dahil edilmesiyle, modelin genelleme
yetenegi artirilabilir ve cesitli jeolojik ve c¢evresel
kosullara uyum saglanabilir. Bu, modelin farkli cografi
alanlarda da giivenilir tahminler yapabilmesini miimkiin
kilabilir. Gelecekte, daha genis ve cesitli veri setleriyle
modelin egitilmesi ve transfer 6grenme gibi tekniklerin
kullanilmasiyla, tek model yaklasimimnin farkh
bolgelerdeki GNSS veri kestiriminde etkinligi daha da
artirilabilir. Bu yaklasim, model y6netimini ve dagitimini
basitlestirerek gercek zamanli izleme sistemlerinde
uygulanmasini ve siirdiiriilmesini kolaylastirir. Kaynak
verimliligini ve 6lceklenebilirligi optimize ederek, risk
degerlendirme calismalarini daha iyi destekleyebilir ve
sonucta daha etkili afet yonetimi planlamasina katkida
bulunabilir.

Arastirmacilarin katki orani

Merve Simsek: Literatiir taramasi, Modelleme, Makale
yazimi; Murat Taskiran: Diizenleme; Ugur Dogan:
Diizenleme

Catisma Beyani

Herhangi bir ¢ikar ¢atismasi bulunmamaktadir.

Kaynakca

Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X.
(2016). ITRF2014: A new release of the International
Terrestrial Reference Frame modeling nonlinear
station motions. Journal Of Geophysical Research:
Solid Earth, 121(8), 6109-6131.

Bevis, M., Alsdorf, D., Kendrick, E., Fortes, L. P., Forsberg,
B., Smalley Jr, R, & Becker, ]. (2005). Seasonal
fluctuations in the mass of the Amazon River system
and Earth's elastic response. Geophysical Research
Letters, 32(16).

Chen, Q., Jiang, W., Meng, X,, Jiang, P., Wang, K, Xie, Y, &
Ye, ]. (2018). Vertical deformation monitoring of the
suspension bridge tower using GNSS: A case study of
the forth road bridge in the UK. Remote Sensing, 10(3),
364.

Chung ], Gulcehre C, Cho K, et al (2014) Empirical
evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555.

Demiryege, I, & Ulukavak, M. (2022). Derin 6grenme
tabanli iyonosferik TEC tahmini. Geomatik, 7(2), 80-
87.

Deng, Z., Jiang, S., Mo, J., & Yu, S. (2017). Design of a new
carrier tracking loop in a positioning receiver. In
Automotive, Mechanical and Electrical Engineerin,
157-160.

Hochreiter S, Schmidhuber ] (1997) Long short-term
memory. Neural Computation 9(8):1735-1780

Hu, W. H,, Rea, C,, Yuan, Q. P,, Erickson, K. G., Chen, D. L.,
Shen, B, ... & EAST Team. (2021). Real-time prediction
of high-density EAST disruptions using random
forest. Nuclear Fusion, 61(6), 066034.

Huang, D., He, ]., Song, Y., Guo, Z., Huang, X., & Guo, Y.
(2022). Displacement prediction of the Muyubao
landslide based on a GPS time-series analysis and
temporal convolutional network model. Remote
Sensing, 14(11), 2656.

Jiang Y, Liao L, Luo H, et al (2023) Multi-scale response
analysis and displacement prediction of landslides
using deep learning with jtfa: A case study in the three
gorges reservoir, china. Remote Sensing, 15(16):3995.

Jiang, W., Wang, |, Li, Z,, Li, W., & Yuan, P. (2024). A new
deep self-attention neural network for GNSS
coordinate time series prediction. GPS
Solutions, 28(1), 3.

Li, X,, Ge, M., Dai, X,, Ren, X,, Fritsche, M., Wickert, J., &
Schuh, H. (2015). Accuracy and reliability of multi-
GNSS real-time precise positioning: GPS, GLONASS,
BeiDou, and Galileo. Journal of Geodesy, 89(6), 607-
635.

Li, Z., Chen, P, Zheng, N, & Liu, H. (2021). Accuracy
analysis of GNSS-IR snow depth inversion
algorithms. Advances In Space Research, 67(4), 1317-
1332.

Liao, K., Wu, Y., Miao, F,, Li, L., & Xue, Y. (2020). Using a
kernel extreme learning machine with grey wolf
optimization to predict the displacement of step-like
landslide. Bulletin of Engineering Geology and the
Environment, 79, 673-685.

Lian, C., Zeng, Z., Yao, W., & Tang, H. (2015). Multiple
neural networks switched prediction for landslide
displacement. Engineering Geology, 186, 91-99.

74



Geomatik - 2025, 10(1), 66-75

Meng, X., Dodson, A. H., Roberts, G. W., Cosser, E., Barnes,
], & Rizos, C. (2004). Impact of GPS Satellite Geometry
on Structural Deformation Monitoring: analytical and
empirical studies. Journal of Geodesy, 77(2), 809-822.

Miao, X., Liu, Y. Zhao, H., & Li, C. (2018). Distributed
online one-class support vector machine for anomaly
detection over networks. I[EEE transactions on
cybernetics, 49(4), 1475-1488.

Mogaraju, J. K. (2024). Machine learning assisted
prediction of land surface temperature (LST) based
on major air pollutants over the Annamayya District
of India. International Journal of Engineering and
Geosciences, 9(2), 233-246.

Mufundirwa, A., Fujii, Y., & Kodama, ]. (2010). A new
practical method for prediction of geomechanical
failure-time. International Journal of Rock Mechanics
and Mining Sciences, 47(7), 1079-1090.

Mutly, ., & Kahveci, M. (2019). GNSS Uydu Dagiliminin
Gercek Zamanli Kinematik GNSS ve Ag-RTK
Olgiilerindeki Onemi. Geomatik, 4(3), 179-189.
https://doi.org/10.29128/geomatik.522343.

Ohta, Y., Kobayashi, T., Tsushima, H., Miura, S., Hino, R,,
Takasu, T,, ... & Umino, N. (2012). Quasi real-time fault
model estimation for near-field tsunami forecasting
based on RTK-GPS analysis: Application to the 2011
Tohoku-Oki earthquake (Mw 9.0). Journal of
Geophysical Research: Solid Earth, 117(B2).

Raj, N., & Brown, J. (2023). Prediction of Mean Sea Level
with GNSS-VLM Correction Using a Hybrid Deep
Learning Model in Australia. Remote Sensing, 15(11),
2881.

Serwa, A, Qasimi, A. B, & Isazade, V. (2024). Registration
of interferometric DEM by deep artificial neural
networks using GPS control points coordinates as
network target. International Journal of Engineering
and Geosciences, 9(2), 292-301.

Simsek, M., Gzarpac1, S., & Dogan, U., (2019). Yer kabugu
hareketlerinin belirlenmesinde web tabanl ¢evrimici
GNSS servislerinin performans analizi. Geomatik,
(4)2, 147-159.

Wang, J., Nie, G, Gao, S., Wu, S, Li, H,, & Ren, X. (2021).
Landslide deformation prediction based on a GNSS
time series analysis and recurrent neural network
model. Remote Sensing, 13(6), 1055.

Xi, R, Meng, X, Jiang, W., An, X,, & Chen, Q. (2018).
GPS/GLONASS carrier phase elevation-dependent
stochastic modelling estimation and its application in
bridge monitoring. Advances in Space Research, 62(9),
2566-2585.

Xie, Y., Wang, ], Li, H., Dong, A, Kang, Y., Zhy, ], ... & Yang,
Y. (2024). Deep learning CNN-GRU method for GNSS

deformation monitoring
Sciences, 14(10), 4004.

Xing Y, Yue ], Chen C (2019a) Interval estimation of
landslide displacement prediction based on time
series decomposition and long short-term memory
network. IEEE Access 8:3187-3196

Xing Y, Yue ], Chen C, et al (2019b) Dynamic displacement
forecasting of dashuitian landslide in china using
variational mode decomposition and stack long short-
term memory network. Applied Sciences, 9(15):2951.

Yang, B, Yin, K, Lacasse, S., & Liu, Z. (2019). Time series
analysis and long short-term memory neural network
to predict landslide displacement. Landslides, 16, 677-
694.

Yang, C., Yin, Y., Zhang, J., Ding, P., & Liu, J. (2024). A graph
deep learning method for landslide displacement
prediction based on global navigation satellite system
positioning. Geoscience Frontiers, 15(1), 101690.

Yi, T. H, Li, H. N, & Gu, M. (2013). Experimental
assessment of high-rate GPS receivers for
deformation monitoring of bridge. Measurement,
46(1),420-432.

Yu, J., Meng, X, Shao, X, Yan, B, & Yang, L. (2014).
Identification of dynamic displacements and modal
frequencies of a medium-span suspension bridge
using multimode GNSS processing. Engineering
Structures, 81, 432-443.

Yurdakul, 0., & Kalaycy, 1. (2022). The effect of GLONASS
on position accuracy in CORS-TR measurements at
different baseline distances. International Journal of
Engineering and Geosciences, 7(3), 229-246.
https://doi.org/10.26833/ijeg.975204.

Zhu X, Xu Q, Tang M, et al (2017) Comparison of two
optimized machine learning models for predicting
displacement of rainfall-induced landslide: A case
study in sichuan province, china. Engineering Geology
218:213-222.

prediction. Applied

@ @ @ © Author(s) 2023. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/

75


https://doi.org/10.29128/geomatik.522343
https://doi.org/10.26833/ijeg.975204
https://creativecommons.org/licenses/by-sa/4.0/

