

 European Journal of
 Engineering and Applied Sciences

 ISSN: 2651-3412 (Print) & 2667-8454 (Online)

 Journal homepage: http://dergipark.gov.tr/EJEAS
 Published by Çorlu Faculty of Engineering, Tekirdağ Namık Kemal University

 European J. Eng. App. Sci. 7(2), 77-83, 2024

77

Research Article

Comprehensive Analysis of Grid and Randomized Search on

Dataset Performance

Nadir Subaşı1,*

1Department of Computer Programming, Vocational School of Technical Sciences, Kırklareli University, Kırklareli, Türkiye,

39100
1nadir.subasi@klu.edu.tr

Geliş: 08.11.2024 Kabul: 28.11.2024 DOI: 10.55581/ejeas.1581494

Abstract: This paper presents a comprehensive comparison of grid search and randomized search, the two main hyperparameter search

methods used in machine learning. The paper analyses the performance of these two methods in terms of efficiency, scalability and

applicability on different machine learning models and datasets. In the paper, it is emphasized that grid search provides a comprehensive

search since it searches all hyperparameter combinations on a regular grid, but it creates high computational cost. On the other hand,

while random search provides faster results by selecting random samples from the hyperparameter space, it has the disadvantage of

not providing complete coverage. Practical suggestions and decision-making processes are also presented for which search method

should be preferred in real-world applications. In conclusion, the paper summarizes the situations where grid search and random search

can be advantageous according to factors such as the complexity of the model, the size of the hyperparameter space and the available

computational resources and aims to provide a comprehensive guide for practitioners.

Keywords: Dataset, Grid Search, Hyperparameter Optimization, Machine Learning, Model Performance, Random Search.

Veri Kümesi Performansı Üzerinde Izgara ve Rastgele Aramanın Kapsamlı Analizi

Öz. Bu makale, makine öğreniminde kullanılan iki ana hiperparametre arama yöntemi olan ızgara arama ve rastgele arama

yöntemlerinin kapsamlı bir karşılaştırmasını sunmaktadır. Makale, bu iki yöntemin performansını verimlilik, ölçeklenebilirlik ve farklı

makine öğrenimi modelleri ve veri kümeleri üzerinde uygulanabilirlik açısından analiz etmektedir. Makalede, ızgara aramanın düzenli

bir ızgara üzerinde tüm hiperparametre kombinasyonlarını aradığı için kapsamlı bir arama sağladığı, ancak yüksek hesaplama maliyeti

yarattığı vurgulanmaktadır. Öte yandan, rastgele arama hiperparametre uzayından rastgele örnekler seçerek daha hızlı sonuçlar

sağlarken, tam kapsam sağlamama dezavantajına sahiptir. Gerçek dünya uygulamalarında hangi arama yönteminin tercih edilmesi

gerektiğine dair pratik öneriler ve karar verme süreçleri de sunulmuştur. Sonuç olarak makale, modelin karmaşıklığı, hiperparametre

uzayının büyüklüğü ve mevcut hesaplama kaynakları gibi faktörlere göre grid arama ve rastgele aramanın avantajlı olabileceği

durumları özetlemekte ve uygulayıcılar için kapsamlı bir rehber sunmayı amaçlamaktadır.

Anahtar kelimeler: Veri Kümesi, Izgara Arama, Hiperparametre Optimizasyonu, Makine Öğrenmesi, Model Performansı, Rastgele

Arama,.

1. Introduction

Hyperparameter optimization plays a critical role in the

performance of machine learning models by improving the

Corresponding author

E-mail address: nadir.subasi@klu.edu.tr (N. Subaşı)

accuracy and generalization capability of algorithms. Correct

tuning of hyperparameters such as learning rate and

regularization power allows the model to perform optimally on

unseen data. The most common methods for this optimization

mailto:nadir.subasi@klu.edu.tr
https://orcid.org/0000-0002-5657-9002

Subaşı / European J. Eng. App. Sci. 7(2), 77-83, 2024

78

are grid search and random search, which follow different

strategies [1].

Grid search guarantees the best result by evaluating all

possible combinations of hyperparameters; however, the

computational cost increases rapidly as the number of

hyperparameters increases. This method has been a

fundamental tool for many years, especially in models such as

support vector machines and decision trees with limited

hyperparameters but has become less effective in complex

models such as deep neural networks [2], [3].

In contrast, random search takes a more probabilistic approach

by randomly sampling hyperparameter values from predefined

ranges. Instead of evaluating every possible combination,

randomized search randomly selects a subset of

hyperparameters to be evaluated. Although it may seem

counterintuitive, Bergstra and Bengio showed that random

search often outperforms grid search in high-dimensional

spaces, especially when only a few hyperparameters are

important [4]. This is because randomized search avoids

wasting computational effort exploring irrelevant parts of the

hyperparameter space.

Random search, developed by Bergstra and Bengio in 2012,

aims to explore a large space at a lower cost by taking random

samples from the hyperparameter space. This method has

emerged as a more advantageous option when working with

large hyperparameter spaces or limited resources and has

become widely used in machine learning libraries such as

Scikit-learn.

This paper aims to present a comprehensive comparison of

grid search and randomized search in terms of efficiency,

scalability and applicability in machine learning models. We

will examine the advantages and disadvantages of the

methods, evaluate their performance on benchmark datasets

and discuss the reasons for their preference over real-world

applications. At the end of the paper, clear guidelines on which

method is more appropriate depending on model complexity,

size of the hyperparameter space and computational resources

will be presented.

1.1. Hyperparameter Optimization

Hyperparameter optimization is a critical process to improve

model performance and avoid under- or over-fitting problems.

Grid search, a widely used method, has high computational

cost while systematically evaluating all possible combinations

of hyperparameters. In contrast, random search offers a faster

and more efficient alternative by randomly sampling

hyperparameters in the search space, but at the risk of missing

optimal regions. Understanding the advantages and

disadvantages of these methods is a fundamental requirement

for choosing the optimization technique that suits the

requirements of the model.

1.1.1. Grid Search

Grid search is a traditional method in hyperparameter

optimization as it systematically evaluates all possible

combinations. For example, for three hyperparameters with

three potential values (learning rate, chunk size and

regularization power), a total of 27 combinations are tested and

the best performing combination is guaranteed to be found.

This method is effective in low-dimensional spaces, but as the

number of hyperparameters increases, the combinations

increase exponentially, and the computational cost rises

rapidly. This is known as the curse of dimensionality and

makes grid search inefficient, especially for complex models.

Furthermore, in high-dimensional spaces where only a few

hyperparameters contribute significantly to performance, grid

search often wastes computational resources by working on

unnecessary combinations.

1.1.2. Random Search

Bergstra and Bengio proposed randomized search to overcome

the limitations of grid search. Random search works faster and

more efficiently in high-dimensional spaces by sampling

hyperparameters from specific distributions. Unlike grid

search, instead of giving the same importance to every

hyperparameter, it enables faster selection of important

parameters. This is particularly advantageous when

performance depends on several hyperparameters.

Mathematically, the random search complexity is limited to a

certain number of iterations (N), which can be adjusted

according to resources or time. This flexibility can provide

good results even with a low number of iterations. However,

randomized search may not discover specific areas, and since

the results depend on the sampling distributions used,

important areas may be missed if the distributions are

inadequate.

2. Summary of Real-World Applications and Case

Studies

The theoretical comparisons between grid search and random

search can be better understood through the performance of

these hyperparameter optimization techniques on real-world

problems. Case studies in areas such as deep learning and

natural language processing (NLP) demonstrate the

effectiveness of these methods [1].

In deep learning, especially in complex models such as

Convolutional Neural Networks (CNN), random search offers

a significant advantage. In a study on the CIFAR-10 dataset,

grid search evaluated 729 combinations, while random search

achieved similar accuracy with only 100 combinations.

Random search also halved the optimization time [5]. In an

optimization study for transducer models in NLP, random

search achieved 92.5% accuracy with 100 combinations, while

grid search achieved 92.7% accuracy with 500 combinations.

Randomized search saves time by providing similar results

even though fewer configurations are evaluated [6].

Automated Machine Learning (AutoML) systems favor

random search to deal with large hyperparameter spaces. In the

H2O.ai AutoML framework, optimization with random search

resulted in faster training times and better accuracy results. [7].

In the financial sector, training times were reduced by 40%

using random search for fraud detection. This emphasises the

ability of randomized search for rapid tuning and large-scale

deployment in high-risk environments [8]. Studies show that

random search is more efficient in high-dimensional spaces

and should be preferred especially in areas such as deep

learning and NLP. Grid search can be useful in small-scale

Subaşı / European J. Eng. App. Sci. 7(2), 77-83, 2024

79

tasks, but random search is generally a better choice for more

complex and large data sets.

2.1. Challenges and Limitations

Although grid search and random search are effective methods

for hyperparameter optimization, they both have various

challenges and limitations. Understanding these limitations is

critical to choosing the right optimization technique.

Challenges of Grid Search

• Computational Cost: As the hyperparameter space

expands, grid search becomes computationally

inefficient. For example, in an optimization with three

hyperparameters, the number of possible combinations

increases exponentially and becomes difficult to

manage in large models.

• The Curse of Dimensionality: As the number of

hyperparameters increases, the number of

combinations also increases exponentially, which

reduces the chance of reaching the optimal

combination. Grid search often wastes time and

resources by evaluating sub-optimal points.

• Lack of Flexibility: Since a fixed hyperparameter

values work on a grid search, there is a risk of missing

the optimum values. This is especially problematic for

hyperparameters that take continuous values.

Challenges of Randomized Search

• Stochastic Structure: Randomized search shows

variability as the results depend on the random seed.

Without enough iterations, sub-optimal results can be

obtained.

• Risk of Inadequate Exploration: Under-exploration

may occur in lower dimensional spaces. If very few

iterations are performed, better results can be obtained

due to the exhaustive nature of grid search.

• Dependence on Hyperparameter Distributions:

Randomized search is dependent on predefined

distributions. Poorly chosen intervals can lead to

missing important hyperparameter values.

Limitations of Both Methods

• Lack of Adaptability: Both grid and random search

are static methods. New sets of hyperparameters are

determined independently of previous results, which

can lead to wasted computations.

• Scalability Issues in Large Models: In large models

such as deep neural networks with millions of

parameters, both methods struggle to find the optimal

hyperparameters.

As a result, grid search is computationally expensive and

ineffective in high-dimensional spaces, while randomized

search offers a more efficient alternative but carries the risk of

under-exploration. Both methods lack adaptability and may

have difficulty in dealing with large, complex models.

3. Material and Method

This section describes the methodology used to compare grid

search and random search for hyperparameter optimization.

The aim is to evaluate the efficiency, scalability and accuracy

of these methods on different machine learning models and

datasets.

1. Experimental Setup: The objective of the experiment

was to evaluate the efficacy of grid search and random

search techniques using the most commonly employed

datasets (MNIST (5000x784), Iris (150x4)) and machine

learning models, comprising support vector machines

(SVM), neural networks (NN), and random forest (RF).

Among the datasets used in the study, the MNIST dataset

contains 5000 samples, each with 784 feature vectors of

28x28 pixels. On the other hand, the IRIS dataset consists

of 150 samples and has 4 features for each sample [9][10].

2. Hyperparameter Space: The impact of hyperparameters

on model performance should be assessed in terms of

accuracy, generalizability and computational cost. For

example, while higher parameter numbers generally lead

to better performance, they can also increase

computational cost and risk over-learning. For each model,

an attempt is made to balance the number of parameters.

Each model has its own hyperparameters and search space.

For SVM, parameters such as gamma, regularization

parameter C, kernel type and kernel coefficient were

determined. For NN, the hidden layer size, activation

function, L2 regularization term (Alpha), learning rate

parameters are selected. For Random Forest (RF), the

learning coefficient, number of trees and depth parameters

are selected.

3. Implementation: Both methods are implemented with the

GridSearchCV and RandomisedSearchCV functions of the

Scikit-learn library. Performance is evaluated by k- fold

cross-validation and compared on metrics such as

accuracy and computational cost.

4. Evaluation Criteria: Performance is evaluated based on

training time as a and calculation cost and verification

accuracy.

5. Scalability Test: The scalability of all methods was tested

with hyperparameter spaces of different dimensions.

6. Stopping Criteria: For random search, stopping criteria

were determined using a certain number of iterations and

performance threshold.

The performance and practical applications of this

methodology between grid search and random search are

extensively analyzed.

4. Main Results and Performance Indicators

4.1. Performance Comparison

The performance of grid search and random search in

hyperparameter optimization is evaluated based on key factors

such as efficiency, scalability and effectiveness in finding

optimal hyperparameters. In this section, we present the results

of both methods using different machine learning models and

datasets. We will focus on training time, validation accuracy

(or model performance) and computational cost as metrics. It

is shown in Table 1.

Subaşı / European J. Eng. App. Sci. 7(2), 77-83, 2024

80

Table 1 Comparison of performance and computational

cost of models

Dataset Model Search Algorithms
Accuracy

(%)
Duration

(sec)

MNIST

SVM
GRID SEARCH 92.440% 3349.189

RANDOM SEARCH 90.500% 2581.997

NN
GRID SEARCH 92.400% 1395.008

RANDOM SEARCH 93.080% 776.624

RF
GRID SEARCH 93.660% 2149.913

RANDOM SEARCH 93.460% 516.123

IRIS

SVM
GRID SEARCH 97.333% 5.810

RANDOM SEARCH 97.333% 0.648

NN
GRID SEARCH 97.333% 54.176

RANDOM SEARCH 96.667% 17.266

RF
GRID SEARCH 96.667% 164.022

RANDOM SEARCH 96.667% 42.972

Evaluations on the MNIST dataset show that the RF algorithm

is ahead in terms of accuracy. However, the RandomSearch

method stands out by achieving a 4.16-fold reduction in

computational cost for only a 0.2% reduction in accuracy. In

the IRIS dataset, SVM achieves a high accuracy rate due to the

low number of features, whereas the RandomSearch method

achieves the same accuracy rate but reduces the computational

cost by 9.5 times in the hyperparameter selection process.

Table 1 emphasizes that various algorithms should be

preferred for different datasets. However, when the

hyperparameter selection process is considered, the

RandomSearch method stands out as a viable option that offers

a significant computational cost advantage with an acceptable

loss of accuracy.

4.2. Efficiency and Computational Cost in

Hyperparameter Space

While grid search evaluates each hyperparameter combination

in a systematic way, random search explores the

hyperparameter space more efficiently by randomly sampling

these values. For example, in our experiment using Support

Vector Machine (SVM), the SVM hyperparameter pool offers

32 different options. With the cross-validation value defined as

5, the grid search evaluated 160 models, while the random

search worked with only 100 combinations.

Although both methods achieved similar validation accuracy,

the random search completed the optimization process in less

time than the grid search. The other model parameter pools are

detailed in Table 2.

Table 2 Model Parameters Pool
 SVM NN RF

PARAMETERS 32 48 108
CROSS-VALIDATION 5 5 5
GRID SEARCH CANDIDATES 160 240 540
RANDOM SEARCH
CANDIDATES

100 100 100

CANDIDATE DROPOUT RATE % 62,5 41,6 18,5

Grid search leads to high computational costs due to its

exhaustive nature, as it evaluates all possible combinations.

For example, a random forest model with three

hyperparameters may need to evaluate hundreds or thousands

of configurations. Randomized search can work with fewer

combinations and perform fewer evaluations, making it a more

time and resource efficient option. In the experiments on the

MNIST dataset, random search is limited to 100 combinations

and evaluated, while grid search works with 540 combinations

by trying all possibilities. This is presented in Table 2.

As can be seen from Table 1, in terms of computational cost

(time), random search is only inferior to the random forest

model, and the success rate is only 0.2% lower against this

requirement, as mentioned in the previous table.

4.3. Practical Considerations

Practitioners should consider the balance of computational

cost and efficiency when choosing between grid search and

randomized search. Grid search is generally more suitable for

small hyperparameter spaces, but random search is a better

choice in high dimensional spaces. Especially for scenarios

where time and resources are limited, random search offers a

more practical approach for complex models such as deep

learning.

As a result, random search consistently outperforms grid

search in terms of computational efficiency and scalability,

while providing similar or near-optimal results in most cases.

While the exhaustive approach of grid search may not be

suitable for high-dimensional hyperparameter spaces, random

search offers a flexible and effective alternative for many

machine learning tasks.

For the evaluation, the MNIST (5000x784) dataset, which is

frequently used in machine learning studies, was used. At this

stage, the dataset was hyperparameter optimized with SVM,

NN and RF algorithms using grid search and random search,

respectively, and the graphs of success rates and computational

costs (time) are presented in Figure 1, Figure 2 and Figure 3.

Figure 1. SVM performance for MNIST Dataset

Figure 1 shows the accuracy and computational cost of the

SVM algorithm for the MNIST dataset. GridSearch calculates

it in 3349 seconds with 92.44% accuracy. The same dataset

and algorithm with RandomSearch can compute in 2581

seconds with 90.5% accuracy. Thus, the 1.94% accuracy

decrease was realized 23% more rapidly.

Subaşı / European J. Eng. App. Sci. 7(2), 77-83, 2024

81

Figure 2. NN performance for MNIST Dataset

Figure 2 shows the accuracy and computational cost of the NN

algorithm for the MNIST dataset. GridSearch calculates it in

1395 seconds with 92,4% accuracy. The same dataset and

algorithm with RandomSearch can compute in 776 seconds

with 93% accuracy. In this calculation, Random Search

achieved both better accuracy (0.6%) and 44% quicker.

Figure 3. RF performance for MNIST Dataset

Figure 3 shows the accuracy and computational cost of the RF

algorithm for the MNIST dataset. GridSearch calculates it in

20149 seconds with 93,6% accuracy. The same dataset and

algorithm with RandomSearch can compute in 516 seconds

with 93,4% accuracy. Thus, the 0,2% accuracy decrease was

realized 76% more rapidly.

Figure 4 shows a box plot of the cross-validation values for the

performance comparison of these algorithms. This box plot

compares the cross-validation scores of SVM, NN and RF

models. SVM models exhibit a wider distribution of

performance compared to the other models. In some cases,

very low scores (outliers around 0.2) were obtained, indicating

that SVM may be inadequate in certain scenarios. The NN

models are quite consistent in terms of performance, with

scores generally concentrated between 0.8 and 0.9. This shows

that NN has a stable performance. RF models, on the other

hand, are as consistent and high performing as NN, but with

slightly less variance. Overall, NN and RF models show

similarly high performance, but RF may be a step ahead in

terms of stability. On the other hand, SVM performs poorly

compared to the other models with its low median value and

high variance.

While continuing the evaluation, another dataset frequently

used in machine learning studies, IRIS (150x4) dataset was

also tested.

At this stage, the dataset was hyperparameter optimized with

SVM, NN and RF algorithms using grid search and random

search respectively and the graphs of success rates and

computational costs (time) are presented in Figure 5, Figure 6

and Figure 7.

Figure 4. SVM performance for IRIS Dataset

Figure 5 shows the accuracy and computational cost of the

SVM algorithm for the IRIS dataset. GridSearch calculates it

in 5,8 seconds with 97,33% accuracy. The same dataset and

algorithm with RandomSearch can compute in 0,64 seconds

with the same accuracy. Even though the accuracy is the same,

it is 89% faster in terms of time.

Figure 5. NN performance for IRIS Dataset

Figure 6 shows the accuracy and computational cost of the NN

algorithm for the IRIS dataset. GridSearch calculates it in

54,17 seconds with 97,33% accuracy. The same dataset and

algorithm with RandomSearch can compute in 17,26 seconds

with 96,66% accuracy. In this calculation, Thus, the 0,67%

accuracy decrease was realized 68% more rapidly.

Figure 3. Performance comparison of Algorithms for

MNIST Dataset

Subaşı / European J. Eng. App. Sci. 7(2), 77-83, 2024

82

Figure 6. RF performance for IRIS Dataset

Figure 7 shows the accuracy and computational cost of the RF

algorithm for the IRIS dataset. GridSearch calculates it in

20149 seconds with 93,6% accuracy. The same dataset and

algorithm with RandomSearch can compute in 516 seconds

with 93,4% accuracy. Even though the accuracy is the same, it

is 74% faster in terms of time.

Figure 8 shows a box plot of the cross-validation values for the

performance comparison of these algorithms. Box plot

compares the cross-validation scores of SVM, NN and RF

models. SVM models exhibit a wider distribution of

performance compared to the other models. In some cases,

very low scores (outliers around 0.2) were obtained, indicating

that SVM may be inadequate in certain scenarios. The NN

models are quite consistent in terms of performance, with

scores generally concentrated between 0.8 and 0.9. This shows

that NN has a stable performance. RF models, on the other

hand, are as consistent and high performing as NN, but with

slightly less variance. Overall, NN and RF models show

similarly high performance, but RF may be a step ahead in

terms of stability. On the other hand, SVM performs poorly

compared to the other models with its low median value and

high variance.

5. Future Directions and Improvements

As the complexity of machine learning models increases and

datasets grow, more sophisticated techniques for

hyperparameter optimization are needed. In this chapter,

advanced approaches such as Bayesian optimization, adaptive

search techniques, automated machine learning (AutoML)

systems and hybrid methods will be reviewed and their

potential on hyperparameter tuning efficiency will be

discussed.

Bayesian optimization is a method that guides hyperparameter

search using past performance information. Builds a surrogate

model (usually a Gaussian process) and establishes a balance

between exploration and exploitation [11].

• Efficiency: It provides a more efficient search by

focusing on the regions of the hyperparameter space

containing the best solution.

• Adaptability: It becomes adaptive with further

evaluation.

• Scalability: Works well for models with less than 20

hyperparameters, but complexity increases as the

number increases.

Adaptive randomized search techniques become more

effective by dynamically adjusting the search process based on

previous results. Methods such as Hyperband terminate low-

performing configurations early, directing resources to more

promising configurations. This is particularly efficient for

large hyperparameter spaces.

Evolutionary algorithms, such as genetic algorithms, optimize

hyperparameter configurations by simulating the process of

natural selection. In each generation the best configurations

are selected and improved over time. This method offers the

ability to effectively explore large and complex spaces [12].

AutoML systems automate processes such as model selection

and hyperparameter optimization. By integrating advanced

search techniques, it becomes useful for non-experts with user-

friendly interfaces. It also provides more efficient optimization

by automatically adapting to the characteristics of data sets.

Hybrid methods combine the strengths of more than one

optimization technique. For example, they can start with a

broad random search and continue with Bayesian optimization

around promising regions. These methods strike a balance

between exploration and exploitation, resulting in more robust

results.

6. Conclusion

The development of advanced hyperparameter optimization

techniques such as Bayesian optimization, adaptive search

methods and evolutionary algorithms reflects the growing

need for more efficient and scalable solutions in machine

learning. While grid search and randomized search continue to

be widely used, these new methods offer significant

improvements in computational efficiency, adaptability and

scalability. As machine learning continues to evolve, hybrid

approaches and AutoML systems will likely play an

increasingly important role in simplifying and automating the

hyperparameter optimization process. In this paper, we show

that when random search is compared to grid search, random

search offers a high gain in computational cost over grid

search, with a modest performance degradation when using the

same hyperparameter spaces, but a high computational cost

gain.

Author Contribution

Formal analysis – Nadir Subaşı (NS); Investigation – NS;

Experimental Performance – NS; Collection – NS; Processing

– NS; Literature review – NS; Writing – NS; Review and

editing – NS.

Declaration of Competing Interest

Figure 7. Performance comparison of Algorithms for

IRIS Dataset

Subaşı / European J. Eng. App. Sci. 7(2), 77-83, 2024

83

The authors declared no conflicts of interest with respect to the

research, authorship, and/or publication of this article.

References

[1] Mekonnen, T. (2019). Random vs. Directed Search for

Scarce Resources. International Journal of Advanced

Computer Science and Applications,269-278.

[2] Lawrence, J. P., & Steiglitz, K. (1972). Randomized

Pattern Search. IEEE Transactions on Computers, 21(4), 382–

385.

[3] Vincent, P., & Rubin, I. (2004). Cooperative search

versus random search using UAV swarms. IFAC Proceedings

Volumes (IFAC-PapersOnline), 37(8), 944–949.

[4] Bergstra, J., Ca, J. B., & Ca, Y. B. (2012). Random

search for hyper-parameter optimization. The Journal of

Machine Learning Research, 13, 281–305.

[5] Aszemi, N. M., & Dominic, P. D. D. (2019).

Hyperparameter Optimization in Convolutional Neural

Network using Genetic Algorithms. International Journal of

Advanced Computer Science and Applications, 10(6).

[6] Sudhakaran, P., & Baitalik, S. (2022). XGBoost

Optimized by Adaptive Tree Parzen Estimators for Credit Risk

Analysis. 2022 IEEE 2nd Mysore Sub Section International

Conference (MysuruCon), (pp. 1-6). IEEE.

[7] Japa, L., Serqueira, M., Mendonca, I., Aritsugi, M.,

Bezerra, E., & Gonzalez, P. H. (2023). A Population-Based

Hybrid Approach for Hyperparameter Optimization of Neural

Networks. IEEE Access, 11, 50752–50768.

[8] Zhao, Z., & Bai, T. (2022). Financial Fraud Detection

and Prediction in Listed Companies Using SMOTE and

Machine Learning Algorithms. Entropy, 24(8), 1157.

[9] Y Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11), 2278–2324.

[10] Unwin, A., & Kleinman, K. (2021). The Iris Data Set: In

Search of the Source of Virginica. Significance, 18(6), 26–29.

[11] Snoek, J., Larochelle, H., & Adams, R. P. (2012).

Practical bayesian optimization of machine learning

algorithms. Advances in neural information processing

systems, 25.

[12] Stanley, K. O., & Miikkulainen, R. (2002). Evolving

neural networks through augmenting topologies. Evolutionary

computation, 10(2), 99-127

