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Abstract: This paper presents a comprehensive comparison of grid search and randomized search, the two main hyperparameter search 

methods used in machine learning. The paper analyses the performance of these two methods in terms of efficiency, scalability and 

applicability on different machine learning models and datasets. In the paper, it is emphasized that grid search provides a comprehensive 

search since it searches all hyperparameter combinations on a regular grid, but it creates high computational cost. On the other hand, 

while random search provides faster results by selecting random samples from the hyperparameter space, it has the disadvantage of 

not providing complete coverage. Practical suggestions and decision-making processes are also presented for which search method 

should be preferred in real-world applications. In conclusion, the paper summarizes the situations where grid search and random search 

can be advantageous according to factors such as the complexity of the model, the size of the hyperparameter space and the available 

computational resources and aims to provide a comprehensive guide for practitioners. 
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Veri Kümesi Performansı Üzerinde Izgara ve Rastgele Aramanın Kapsamlı Analizi 

Öz. Bu makale, makine öğreniminde kullanılan iki ana hiperparametre arama yöntemi olan ızgara arama ve rastgele arama 

yöntemlerinin kapsamlı bir karşılaştırmasını sunmaktadır. Makale, bu iki yöntemin performansını verimlilik, ölçeklenebilirlik ve farklı 

makine öğrenimi modelleri ve veri kümeleri üzerinde uygulanabilirlik açısından analiz etmektedir. Makalede, ızgara aramanın düzenli 

bir ızgara üzerinde tüm hiperparametre kombinasyonlarını aradığı için kapsamlı bir arama sağladığı, ancak yüksek hesaplama maliyeti 

yarattığı vurgulanmaktadır. Öte yandan, rastgele arama hiperparametre uzayından rastgele örnekler seçerek daha hızlı sonuçlar 

sağlarken, tam kapsam sağlamama dezavantajına sahiptir. Gerçek dünya uygulamalarında hangi arama yönteminin tercih edilmesi 

gerektiğine dair pratik öneriler ve karar verme süreçleri de sunulmuştur. Sonuç olarak makale, modelin karmaşıklığı, hiperparametre 

uzayının büyüklüğü ve mevcut hesaplama kaynakları gibi faktörlere göre grid arama ve rastgele aramanın avantajlı olabileceği 

durumları özetlemekte ve uygulayıcılar için kapsamlı bir rehber sunmayı amaçlamaktadır. 

Anahtar kelimeler: Veri Kümesi, Izgara Arama, Hiperparametre Optimizasyonu, Makine Öğrenmesi, Model Performansı, Rastgele 

Arama,. 

 

1. Introduction  

Hyperparameter optimization plays a critical role in the 

performance of machine learning models by improving the 
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accuracy and generalization capability of algorithms. Correct 

tuning of hyperparameters such as learning rate and 

regularization power allows the model to perform optimally on 

unseen data. The most common methods for this optimization 
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are grid search and random search, which follow different 

strategies [1]. 

Grid search guarantees the best result by evaluating all 

possible combinations of hyperparameters; however, the 

computational cost increases rapidly as the number of  

hyperparameters increases. This method has been a 

fundamental tool for many years, especially in models such as 

support vector machines and decision trees with limited 

hyperparameters but has become less effective in complex 

models such as deep neural networks [2], [3]. 

In contrast, random search takes a more probabilistic approach 

by randomly sampling hyperparameter values from predefined 

ranges. Instead of evaluating every possible combination, 

randomized search randomly selects a subset of 

hyperparameters to be evaluated. Although it may seem 

counterintuitive, Bergstra and Bengio showed that random 

search often outperforms grid search in high-dimensional 

spaces, especially when only a few hyperparameters are 

important [4]. This is because randomized search avoids 

wasting computational effort exploring irrelevant parts of the 

hyperparameter space. 

Random search, developed by Bergstra and Bengio in 2012, 

aims to explore a large space at a lower cost by taking random 

samples from the hyperparameter space. This method has 

emerged as a more advantageous option when working with 

large hyperparameter spaces or limited resources and has 

become widely used in machine learning libraries such as 

Scikit-learn. 

This paper aims to present a comprehensive comparison of 

grid search and randomized search in terms of efficiency, 

scalability and applicability in machine learning models. We 

will examine the advantages and disadvantages of the 

methods, evaluate their performance on benchmark datasets 

and discuss the reasons for their preference over real-world 

applications. At the end of the paper, clear guidelines on which 

method is more appropriate depending on model complexity, 

size of the hyperparameter space and computational resources 

will be presented. 

1.1. Hyperparameter Optimization 

Hyperparameter optimization is a critical process to improve 

model performance and avoid under- or over-fitting problems. 

Grid search, a widely used method, has high computational 

cost while systematically evaluating all possible combinations 

of hyperparameters. In contrast, random search offers a faster 

and more efficient alternative by randomly sampling 

hyperparameters in the search space, but at the risk of missing 

optimal regions. Understanding the advantages and 

disadvantages of these methods is a fundamental requirement 

for choosing the optimization technique that suits the 

requirements of the model. 

1.1.1. Grid Search 

Grid search is a traditional method in hyperparameter 

optimization as it systematically evaluates all possible 

combinations. For example, for three hyperparameters with 

three potential values (learning rate, chunk size and 

regularization power), a total of 27 combinations are tested and 

the best performing combination is guaranteed to be found. 

This method is effective in low-dimensional spaces, but as the 

number of hyperparameters increases, the combinations 

increase exponentially, and the computational cost rises 

rapidly. This is known as the curse of dimensionality and 

makes grid search inefficient, especially for complex models. 

Furthermore, in high-dimensional spaces where only a few 

hyperparameters contribute significantly to performance, grid 

search often wastes computational resources by working on 

unnecessary combinations. 

1.1.2. Random Search 

Bergstra and Bengio proposed randomized search to overcome 

the limitations of grid search. Random search works faster and 

more efficiently in high-dimensional spaces by sampling 

hyperparameters from specific distributions. Unlike grid 

search, instead of giving the same importance to every 

hyperparameter, it enables faster selection of important 

parameters. This is particularly advantageous when 

performance depends on several hyperparameters. 

Mathematically, the random search complexity is limited to a 

certain number of iterations (N), which can be adjusted 

according to resources or time. This flexibility can provide 

good results even with a low number of iterations. However, 

randomized search may not discover specific areas, and since 

the results depend on the sampling distributions used, 

important areas may be missed if the distributions are 

inadequate. 

2. Summary of Real-World Applications and Case 

Studies 

The theoretical comparisons between grid search and random 

search can be better understood through the performance of 

these hyperparameter optimization techniques on real-world 

problems. Case studies in areas such as deep learning and 

natural language processing (NLP) demonstrate the 

effectiveness of these methods [1]. 

In deep learning, especially in complex models such as 

Convolutional Neural Networks (CNN), random search offers 

a significant advantage. In a study on the CIFAR-10 dataset, 

grid search evaluated 729 combinations, while random search 

achieved similar accuracy with only 100 combinations. 

Random search also halved the optimization time [5]. In an 

optimization study for transducer models in NLP, random 

search achieved 92.5% accuracy with 100 combinations, while 

grid search achieved 92.7% accuracy with 500 combinations. 

Randomized search saves time by providing similar results 

even though fewer configurations are evaluated [6]. 

Automated Machine Learning (AutoML) systems favor 

random search to deal with large hyperparameter spaces. In the 

H2O.ai AutoML framework, optimization with random search 

resulted in faster training times and better accuracy results. [7]. 

In the financial sector, training times were reduced by 40% 

using random search for fraud detection. This emphasises the 

ability of randomized search for rapid tuning and large-scale 

deployment in high-risk environments [8]. Studies show that 

random search is more efficient in high-dimensional spaces 

and should be preferred especially in areas such as deep 

learning and NLP. Grid search can be useful in small-scale 
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tasks, but random search is generally a better choice for more 

complex and large data sets. 

2.1. Challenges and Limitations 

Although grid search and random search are effective methods 

for hyperparameter optimization, they both have various 

challenges and limitations. Understanding these limitations is 

critical to choosing the right optimization technique. 

Challenges of Grid Search 

• Computational Cost: As the hyperparameter space 

expands, grid search becomes computationally 

inefficient. For example, in an optimization with three 

hyperparameters, the number of possible combinations 

increases exponentially and becomes difficult to 

manage in large models. 

• The Curse of Dimensionality: As the number of 

hyperparameters increases, the number of 

combinations also increases exponentially, which 

reduces the chance of reaching the optimal 

combination. Grid search often wastes time and 

resources by evaluating sub-optimal points. 

• Lack of Flexibility: Since a fixed hyperparameter 

values work on a grid search, there is a risk of missing 

the optimum values. This is especially problematic for 

hyperparameters that take continuous values. 

Challenges of Randomized Search 

• Stochastic Structure: Randomized search shows 

variability as the results depend on the random seed. 

Without enough iterations, sub-optimal results can be 

obtained. 

• Risk of Inadequate Exploration: Under-exploration 

may occur in lower dimensional spaces. If very few 

iterations are performed, better results can be obtained 

due to the exhaustive nature of grid search. 

• Dependence on Hyperparameter Distributions: 

Randomized search is dependent on predefined 

distributions. Poorly chosen intervals can lead to 

missing important hyperparameter values. 

Limitations of Both Methods 

• Lack of Adaptability: Both grid and random search 

are static methods. New sets of hyperparameters are 

determined independently of previous results, which 

can lead to wasted computations. 

• Scalability Issues in Large Models: In large models 

such as deep neural networks with millions of 

parameters, both methods struggle to find the optimal 

hyperparameters. 

As a result, grid search is computationally expensive and 

ineffective in high-dimensional spaces, while randomized 

search offers a more efficient alternative but carries the risk of 

under-exploration. Both methods lack adaptability and may 

have difficulty in dealing with large, complex models. 

3. Material and Method 

This section describes the methodology used to compare grid 

search and random search for hyperparameter optimization. 

The aim is to evaluate the efficiency, scalability and accuracy 

of these methods on different machine learning models and 

datasets. 

1. Experimental Setup: The objective of the experiment 

was to evaluate the efficacy of grid search and random 

search techniques using the most commonly employed 

datasets (MNIST (5000x784), Iris (150x4)) and machine 

learning models, comprising support vector machines 

(SVM), neural networks (NN), and random forest (RF). 

Among the datasets used in the study, the MNIST dataset 

contains 5000 samples, each with 784 feature vectors of 

28x28 pixels. On the other hand, the IRIS dataset consists 

of 150 samples and has 4 features for each sample [9][10]. 

2. Hyperparameter Space: The impact of hyperparameters 

on model performance should be assessed in terms of 

accuracy, generalizability and computational cost. For 

example, while higher parameter numbers generally lead 

to better performance, they can also increase 

computational cost and risk over-learning. For each model, 

an attempt is made to balance the number of parameters. 

Each model has its own hyperparameters and search space. 

For SVM, parameters such as gamma, regularization 

parameter C, kernel type and kernel coefficient were 

determined. For NN, the hidden layer size, activation 

function, L2 regularization term (Alpha), learning rate 

parameters are selected. For Random Forest (RF), the 

learning coefficient, number of trees and depth parameters 

are selected. 

3. Implementation: Both methods are implemented with the 

GridSearchCV and RandomisedSearchCV functions of the 

Scikit-learn library. Performance is evaluated by k- fold 

cross-validation and compared on metrics such as 

accuracy and computational cost. 

4. Evaluation Criteria: Performance is evaluated based on 

training time as a and calculation cost and verification 

accuracy. 

5. Scalability Test: The scalability of all methods was tested 

with hyperparameter spaces of different dimensions. 

6. Stopping Criteria: For random search, stopping criteria 

were determined using a certain number of iterations and 

performance threshold. 

The performance and practical applications of this 

methodology between grid search and random search are 

extensively analyzed. 

4. Main Results and Performance Indicators 

4.1. Performance Comparison 

The performance of grid search and random search in 

hyperparameter optimization is evaluated based on key factors 

such as efficiency, scalability and effectiveness in finding 

optimal hyperparameters. In this section, we present the results 

of both methods using different machine learning models and 

datasets. We will focus on training time, validation accuracy 

(or model performance) and computational cost as metrics. It 

is shown in Table 1. 
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Table 1 Comparison of performance and computational 

cost of models 

Dataset Model Search Algorithms 
Accuracy 

(%) 
Duration 

(sec) 

MNIST 

SVM 
GRID SEARCH 92.440% 3349.189 

RANDOM SEARCH 90.500% 2581.997 

NN 
GRID SEARCH 92.400% 1395.008 

RANDOM SEARCH 93.080% 776.624 

RF 
GRID SEARCH 93.660% 2149.913 

RANDOM SEARCH 93.460% 516.123 

IRIS 

SVM 
GRID SEARCH 97.333% 5.810 

RANDOM SEARCH 97.333% 0.648 

NN 
GRID SEARCH 97.333% 54.176 

RANDOM SEARCH 96.667% 17.266 

RF 
GRID SEARCH 96.667% 164.022 

RANDOM SEARCH 96.667% 42.972 

Evaluations on the MNIST dataset show that the RF algorithm 

is ahead in terms of accuracy. However, the RandomSearch 

method stands out by achieving a 4.16-fold reduction in 

computational cost for only a 0.2% reduction in accuracy. In 

the IRIS dataset, SVM achieves a high accuracy rate due to the 

low number of features, whereas the RandomSearch method 

achieves the same accuracy rate but reduces the computational 

cost by 9.5 times in the hyperparameter selection process. 

Table 1 emphasizes that various algorithms should be 

preferred for different datasets. However, when the 

hyperparameter selection process is considered, the 

RandomSearch method stands out as a viable option that offers 

a significant computational cost advantage with an acceptable 

loss of accuracy. 

4.2. Efficiency and Computational Cost in 

Hyperparameter Space 

While grid search evaluates each hyperparameter combination 

in a systematic way, random search explores the 

hyperparameter space more efficiently by randomly sampling 

these values. For example, in our experiment using Support 

Vector Machine (SVM), the SVM hyperparameter pool offers 

32 different options. With the cross-validation value defined as 

5, the grid search evaluated 160 models, while the random 

search worked with only 100 combinations.  

Although both methods achieved similar validation accuracy, 

the random search completed the optimization process in less 

time than the grid search. The other model parameter pools are 

detailed in Table 2.  

Table 2 Model Parameters Pool 
 SVM NN RF 

PARAMETERS 32 48 108 
CROSS-VALIDATION 5 5 5 
GRID SEARCH CANDIDATES 160 240 540 
RANDOM SEARCH 
CANDIDATES 

100 100 100 

CANDIDATE DROPOUT RATE % 62,5 41,6 18,5 

Grid search leads to high computational costs due to its 

exhaustive nature, as it evaluates all possible combinations. 

For example, a random forest model with three 

hyperparameters may need to evaluate hundreds or thousands 

of configurations. Randomized search can work with fewer 

combinations and perform fewer evaluations, making it a more 

time and resource efficient option. In the experiments on the 

MNIST dataset, random search is limited to 100 combinations 

and evaluated, while grid search works with 540 combinations 

by trying all possibilities. This is presented in Table 2. 

As can be seen from Table 1, in terms of computational cost 

(time), random search is only inferior to the random forest 

model, and the success rate is only 0.2% lower against this 

requirement, as mentioned in the previous table. 

4.3. Practical Considerations 

Practitioners should consider the balance of computational 

cost and efficiency when choosing between grid search and 

randomized search. Grid search is generally more suitable for 

small hyperparameter spaces, but random search is a better 

choice in high dimensional spaces. Especially for scenarios 

where time and resources are limited, random search offers a 

more practical approach for complex models such as deep 

learning. 

As a result, random search consistently outperforms grid 

search in terms of computational efficiency and scalability, 

while providing similar or near-optimal results in most cases. 

While the exhaustive approach of grid search may not be 

suitable for high-dimensional hyperparameter spaces, random 

search offers a flexible and effective alternative for many 

machine learning tasks. 

For the evaluation, the MNIST (5000x784) dataset, which is 

frequently used in machine learning studies, was used. At this 

stage, the dataset was hyperparameter optimized with SVM, 

NN and RF algorithms using grid search and random search, 

respectively, and the graphs of success rates and computational 

costs (time) are presented in Figure 1, Figure 2 and Figure 3. 

 
Figure 1. SVM performance for MNIST Dataset 

Figure 1 shows the accuracy and computational cost of the 

SVM algorithm for the MNIST dataset. GridSearch calculates 

it in 3349 seconds with 92.44% accuracy. The same dataset 

and algorithm with RandomSearch can compute in 2581 

seconds with 90.5% accuracy. Thus, the 1.94% accuracy 

decrease was realized 23% more rapidly. 
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Figure 2. NN performance for MNIST Dataset 

Figure 2 shows the accuracy and computational cost of the NN 

algorithm for the MNIST dataset. GridSearch calculates it in 

1395 seconds with 92,4% accuracy. The same dataset and 

algorithm with RandomSearch can compute in 776 seconds 

with 93% accuracy. In this calculation, Random Search 

achieved both better accuracy (0.6%) and 44% quicker. 

 

Figure 3. RF performance for MNIST Dataset 

Figure 3 shows the accuracy and computational cost of the RF 

algorithm for the MNIST dataset. GridSearch calculates it in 

20149 seconds with 93,6% accuracy. The same dataset and 

algorithm with RandomSearch can compute in 516 seconds 

with 93,4% accuracy. Thus, the 0,2% accuracy decrease was 

realized 76% more rapidly. 

Figure 4 shows a box plot of the cross-validation values for the 

performance comparison of these algorithms. This box plot 

compares the cross-validation scores of SVM, NN and RF 

models. SVM models exhibit a wider distribution of 

performance compared to the other models. In some cases, 

very low scores (outliers around 0.2) were obtained, indicating 

that SVM may be inadequate in certain scenarios. The NN 

models are quite consistent in terms of performance, with 

scores generally concentrated between 0.8 and 0.9. This shows 

that NN has a stable performance. RF models, on the other 

hand, are as consistent and high performing as NN, but with 

slightly less variance. Overall, NN and RF models show 

similarly high performance, but RF may be a step ahead in 

terms of stability. On the other hand, SVM performs poorly 

compared to the other models with its low median value and 

high variance. 

While continuing the evaluation, another dataset frequently 

used in machine learning studies, IRIS (150x4) dataset was 

also tested. 

At this stage, the dataset was hyperparameter optimized with 

SVM, NN and RF algorithms using grid search and random 

search respectively and the graphs of success rates and 

computational costs (time) are presented in Figure 5, Figure 6 

and Figure 7. 

 
Figure 4. SVM performance for IRIS Dataset 

Figure 5 shows the accuracy and computational cost of the 

SVM algorithm for the IRIS dataset. GridSearch calculates it 

in 5,8 seconds with 97,33% accuracy. The same dataset and 

algorithm with RandomSearch can compute in 0,64 seconds 

with the same accuracy. Even though the accuracy is the same, 

it is 89% faster in terms of time. 

 
Figure 5. NN performance for IRIS Dataset 

Figure 6 shows the accuracy and computational cost of the NN 

algorithm for the IRIS dataset. GridSearch calculates it in 

54,17 seconds with 97,33% accuracy. The same dataset and 

algorithm with RandomSearch can compute in 17,26 seconds 

with 96,66% accuracy. In this calculation, Thus, the 0,67% 

accuracy decrease was realized 68% more rapidly. 

 
Figure 3. Performance comparison of Algorithms for 

MNIST Dataset 
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Figure 6. RF performance for IRIS Dataset 

Figure 7 shows the accuracy and computational cost of the RF 

algorithm for the IRIS dataset. GridSearch calculates it in 

20149 seconds with 93,6% accuracy. The same dataset and 

algorithm with RandomSearch can compute in 516 seconds 

with 93,4% accuracy. Even though the accuracy is the same, it 

is 74% faster in terms of time. 

Figure 8 shows a box plot of the cross-validation values for the 

performance comparison of these algorithms. Box plot 

compares the cross-validation scores of SVM, NN and RF 

models. SVM models exhibit a wider distribution of 

performance compared to the other models. In some cases, 

very low scores (outliers around 0.2) were obtained, indicating 

that SVM may be inadequate in certain scenarios. The NN 

models are quite consistent in terms of performance, with 

scores generally concentrated between 0.8 and 0.9. This shows 

that NN has a stable performance. RF models, on the other 

hand, are as consistent and high performing as NN, but with 

slightly less variance. Overall, NN and RF models show 

similarly high performance, but RF may be a step ahead in 

terms of stability. On the other hand, SVM performs poorly 

compared to the other models with its low median value and 

high variance. 

5. Future Directions and Improvements 

As the complexity of machine learning models increases and 

datasets grow, more sophisticated techniques for 

hyperparameter optimization are needed. In this chapter, 

advanced approaches such as Bayesian optimization, adaptive 

search techniques, automated machine learning (AutoML) 

systems and hybrid methods will be reviewed and their 

potential on hyperparameter tuning efficiency will be 

discussed. 

Bayesian optimization is a method that guides hyperparameter 

search using past performance information. Builds a surrogate 

model (usually a Gaussian process) and establishes a balance 

between exploration and exploitation [11]. 

• Efficiency: It provides a more efficient search by 

focusing on the regions of the hyperparameter space 

containing the best solution. 

• Adaptability: It becomes adaptive with further 

evaluation. 

• Scalability: Works well for models with less than 20 

hyperparameters, but complexity increases as the 

number increases. 

Adaptive randomized search techniques become more 

effective by dynamically adjusting the search process based on 

previous results. Methods such as Hyperband terminate low-

performing configurations early, directing resources to more 

promising configurations. This is particularly efficient for 

large hyperparameter spaces. 

Evolutionary algorithms, such as genetic algorithms, optimize 

hyperparameter configurations by simulating the process of 

natural selection. In each generation the best configurations 

are selected and improved over time. This method offers the 

ability to effectively explore large and complex spaces [12]. 

AutoML systems automate processes such as model selection 

and hyperparameter optimization. By integrating advanced 

search techniques, it becomes useful for non-experts with user-

friendly interfaces. It also provides more efficient optimization 

by automatically adapting to the characteristics of data sets. 

Hybrid methods combine the strengths of more than one 

optimization technique. For example, they can start with a 

broad random search and continue with Bayesian optimization 

around promising regions. These methods strike a balance 

between exploration and exploitation, resulting in more robust 

results. 

6. Conclusion 

The development of advanced hyperparameter optimization 

techniques such as Bayesian optimization, adaptive search 

methods and evolutionary algorithms reflects the growing 

need for more efficient and scalable solutions in machine 

learning. While grid search and randomized search continue to 

be widely used, these new methods offer significant 

improvements in computational efficiency, adaptability and 

scalability. As machine learning continues to evolve, hybrid 

approaches and AutoML systems will likely play an 

increasingly important role in simplifying and automating the 

hyperparameter optimization process. In this paper, we show 

that when random search is compared to grid search, random 

search offers a high gain in computational cost over grid 

search, with a modest performance degradation when using the 

same hyperparameter spaces, but a high computational cost 

gain. 
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