Black Sea Journal of Engineering and Science
doi: 10.34248/bsengineering.1581822

Research Article

Open Access Journal

e-ISSN: 2619 - 8991 Volume 8 - Issue 1: 172-178 / January 2025

LATTICE STRUCTURES OF MULTI-FUZZY SOFT SETS

Rabia iSCIit, Serife YILMAZ2*

1Karadeniz Technical University, Graduate School of Natural and Applied Science, Department of Mathematics, 61080,
Trabzon, Tiirkiye
2Karadeniz Technical University, Faculty of Science, Department of Mathematics, 61080, Trabzon, Tiirkiye

Abstract: The multi-fuzzy soft set theory has recently been introduced and it has started to be applied in some fields such as decision
making and medical diagnosis. In this paper, algebraic structure of multi-fuzzy soft sets is studied. Several related properties of some
operations on multi-fuzzy soft sets are investigated. Two lattice structures of multi-fuzzy soft sets are constructed. It is shown that
these lattices are distributive and whence modular. Additionally, the ordering relations on the lattices of multi-fuzzy soft sets are
presented. Moreover, by giving an example, it is indicated that some pairs of operations on multi-fuzzy soft sets do not satisfy the
absorption rule which is necessary to form a lattice. So it is proved that a lattice structure cannot be constructed by using these

operations.

Keywords: Lattice, Multi-fuzzy set, Multi-fuzzy soft set

*Corresponding author: Karadeniz Technical University, Faculty of Science, Department of Mathematics, 61080, Trabzon, Tiirkiye

E mail: serifeyilmaz@ktu.edu.tr (§. YILMAZ)
Rabia ISCI https://orcid.org/0000-0003-2426-1873

Serife YILMAZ https://orcid.org/0000-0002-0282-9483

Received: November 08, 2024
Accepted: December 12,2024
Published: January 15, 2025

Cite as: isci R, Yilmaz $. 2025. Lattice structure of multi-fuzzy soft sets. BSJ Eng Sci, 8(1): 172-178.

1. Introduction

A big part of our lives is full of uncertainty and
vagueness. Uncertainties are problems waiting to be
solved for us. Traditional tools are not always successful
to solve these problems. While probability theory, fuzzy
set theory (Zadeh, 1965), rough set theory (Pawlak,
1982) and other mathematical tools are well-known and
often useful approaches to describe uncertainty, each of
these theories has its inherent difficulties as pointed out
in Molodtsov (1999)’s paper that introduced the notion
of soft set to deal with uncertainty. From then on, the soft
set model has been combined with other mathematical
models. Sun et al. (2008) proposed the notion of soft
modules and studied their basic properties. Jun (2008)
introduced the concept of soft BCK/BClI-algebras. Feng et
al. (2008) initiated the study of soft semirings, soft ideals
on soft semirings and idealistic soft semirings. Kazanci et
al. (2010) introduced the concepts of soft BCH-algebra
and soft BCH-subalgebra. They discussed some of their
properties and structural characteristics. Qin and Hong
(2010) gave the lattice structures of soft sets and
introduced the concept of soft equality.

Fuzzy set theory was initiated by Zadeh (1965). Maji et
al. (2001) presented the definition of fuzzy soft set, which
is a combination of fuzzy set and soft set, and they
studied its properties. Further, Aygiinoglu and Aygiin
(2009) introduced the concept of fuzzy soft group and
discussed some of their properties. Majumdar and
Samanta (2010) generalized the notion of fuzzy soft sets
as introduced by Maji et al. (2001). The definition of

generalized fuzzy soft set is more practical than the
definition of fuzzy soft set as it adds one more degree to
the parametrization of the fuzzy set. Yang (2011)
presented the notions of fuzzy soft semigroup and fuzzy
softideal.

Birkhoff's work in 1930s started the general
development of lattice theory (Birkhoff, 1984). Because
of the lattices are one of the algebraic structures widely
used and discussed in mathematics and its applications,
many authors focused on studying lattice structures of
algebraic systems. For example, Shao and Qin (2012)
applied the notion of fuzzy soft set to lattice theory and
they investigated the algebraic structure of fuzzy soft
lattices.

The concept of multi-fuzzy sets presents a new method
that contributes to explaining some problems that are
difficult to represent with fuzzy set theory. Sebastian and
Ramakrishnan (2011a) proposed the concept of multi-
fuzzy set which is a more general fuzzy set using ordinary
fuzzy sets. Yang et al. (2013) combined the multi-fuzzy
set and soft set models. They introduced the concept of
multi-fuzzy soft sets and defined some operations on
multi-fuzzy soft sets. Akin (2021) applied the multi-fuzzy
soft sets to the theory of groups and form a new algebraic
structure which is called a multi-fuzzy soft group as an
extension of multi-fuzzy sets. Kazanc et al. (2022)
combined the multi-fuzzy soft set and polygroup
structure, from which they obtain a new soft structure
called the multi-fuzzy soft polygroup. The organization of
this paper is as follows: In Section 2, some basic
definitions and theorems of the lattice theory, soft set
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theory, fuzzy soft sets, multi-fuzzy sets and multi-fuzzy
soft sets are introduced. In Section 3, the lattice structure
of multi-fuzzy soft sets is studied. Some algebraic
structures of multi-fuzzy soft sets are presented. In
Section 4, the results obtained in this work are
summarized.

2. Preliminaries

In this section, we present some basic definitions and
facts related to lattices, soft sets, fuzzy soft sets, multi-
fuzzy sets and multi-fuzzy soft sets; see the references
(Birkhoff, 1984; Molodtsov, 1999; Skornjakov, 1977;
Gratzer, 1978; Zadeh, 1965; Maji et al, 2001; Sebastian
and Ramakrishnan, 2011 a; Sebastian and Ramakrishnan,
2011 b; Yang et al,, 2013; Kazanci et al,, 2022).

By a partly ordered set is meant a system X in which a
binary relation " <" is reflexive, antisymmetric and
transitive. An upper bound of a subset X of a partially
ordered set P is an element a € P which is greater than
every x € X. A least upper bound (l.u.b.) is an upper
bound lesser than every other upper bound of X. The
notions of a lower bound and greatest lower bound
(g.1b.) are defined dually (Birkhoff, 1984).

Definition 2.1. A lattice is a partly ordered set in which
any pair of elements a, b have a g.l.b. or “meet” a A b and
alub. or “join” a v b (Birkhoff, 1984).

Theorem 2.2. For a lattice L, the following identities are
satisfied, for all a, b, ¢ € L (Skornjakov, 1977):

0] avVa=a,alha=a,

(i) avb=bVaaAb=>bAa,

(iii) av((bvc)=(avb)Ve,
anNn(bAc)=(anb)Ac,

(iv) a=aV(anb),a=aA(aVb)

Let L be the set of propositions, V denote the connective
“or” and A denote the connective “and”. Then (i) to (iv)
are well-known properties from propositional logic.

Let L be a set endowed with two binary operations " A"’
and " v'" which satisfy the identities given in Theorem
2.2. Then if we set

a<bsoaAb=a(ora<beaVb=h),

then L is a lattice with the ordering relation " <"
(Gratzer, 1978).

Definition 2.3. The algebra (L,0) is a semilattice iff "o
is idempotent, commutative and associative (Gratzer,
1978).

Definition 2.4. Let L be a lattice and L’ be a subset of L
such that for every pair of elements a,b in L' both aVv b
and a A b are in L', then we say that L' with the same
operations is a sublattice e of L (Birkhoff, 1984).

For alattice L, @ is considered as a sublattice of L.
Definition 2.5. Let L be a partially ordered set. L is a
complete lattice in which every subset had a least upper
bound and a greatest upper bound (Birkhoff, 1984).

n

Definition 2.7. A distributive lattice is a lattice which
satisfies either of the distributive laws, forall a, b,c € L,

(1) an(bvc)=(anb)V(anc),
(ii) aVvV(bnac)=(avb)A(aVo).

One can see a lattice L satisfies (i) if and only if satisfies
(ii) (Birkhoff, 1984).

Definition 2.8. A lattice is called a modular lattice if and
only if its elements satisfy the condition,

ifx <z thenxV(yAz)=(xVy)Az

Any distributive lattice is modular (Birkhoff, 1984).
Definition 2.9. Let U be an initial universe set and E be a
set of parameters. P(U) denotes the power set of U and
A € E. A pair (F, A) is called a soft set over U, where F is
a set-valued function F: A —» P(U) can be defined as

F(x)={y e P(U):(x,y) e R}, forallx € A

and R will refer to an arbitrary binary relation between
an element of 4 and an element of U, that is, R is a subset
of A X U. In fact, a soft set over U is a parameterized
family of subsets of universe U (Molodtsov,1999).
Definition 2.10. Let X be a non-empty set. A fuzzy subset
u of X is a function u: X — [0,1] (Zadeh, 1965).
Definition 2.11. Let P(U) be the set of all fuzzy subsets
of U. A pair (F, A) is called fuzzy soft set over U, where F
is a mapping given by F: A — P(U). That is, for each a €
4,

F(a) =F,:U - [0,1] is a fuzzy set on U (Maji et al,
2001).

Definition 2.12. Let k be a positive integer. A multi-fuzzy
set Ain U is a set of ordered sequences

A= {u/(#l(u)'#Z(u)J "'v#k(u)):u € U}'

where u; € P(U) ,i=1,2,...,k. The function uz=
(41, -, 1g) is called the multi membership function of
multi-fuzzy set A denoted by MMy k is called a
dimension of A. The set of all multi-fuzzy sets of
dimension k in U is denoted by M*FS(U) (Sebastian and
Ramakrishnan, 2011a).

Definition 2.13. Let A € M¥FS(U).If
A=1{u/0,0,..,0):u € U}, then 4 is called the null multi-
fuzzy set of dimension k, denoted by @. If
A=1{u/(1,1,..,1):u €U}, then A is called the absolute
multi-fuzzy set of dimension k, denoted by 1, (Sebastian
and Ramakrishnan, 2011a).

Definition 2.14. Let

A= {u/(u (W), to (W), ..., e (W):u € U3,

B = {u/(ri),y2(w), ...,y (W):u € U} € MKFS(U).

We define the following relations and operations.

)] AC B if and only if MMz < MMj, ie
uiw) <y;(w),vueUand1<i<k.
(ii) A=B if and only if MMz = MMjg, ie

uiw) =y;(w),vueUand1<i<k.
(i) AuB={u/(u@ vy, ...m@ Vv

Theorem 2.6. Let L be a partly ordered set with 1 and yk(u)):u e U}. That is MMj,5 =
every non-void subset of L have a glb. then L is a
MMz Vv MMg.
complete lattice (Birkhoff, 1984).
BSJ Eng Sci / Rabia ISCI and Serife YILMAZ 173
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(iv) AnB={u/ (@ Ay, ., (W) A

ye@):u €U}  That is MMgpz =
MMz A MMg.
W A = {u/(uy 6 16, o i€ i u € UY

(Sebastian and Ramakrishnan, 2011 a).
Theorem 2.15. Let 4, B, C € M¥F5(U). Then

(iii) A= Bifandonlyif AUB=Band ANB=A4
(Sebastian and Ramakrishnan, 2011b).
Theorem 2.16. Let 4, B, C € M¥F*(U). Then

(i) AuB=BudAnB=BnA,
(i) Au(Bul)=@AubByuc,
An(BnC)=(AnB)nc,
(iii) B = C implies
AuBcAuCandAnBeAncC
(Sebastian and Ramakrishnan, 2011a).
Proposition 2.17. 4, B € M¥F5(U). Then
) (AuB)nd=A4
(i (AnB)ud=A4A
Proof. (i) Let A = {u/(u(w), upy (W), ..., e (W)):u € U},
B ={u/(y:(w),y2(w), ..., yx(W):u € U}. Then
(AuB)n4
={u/ (1@ vy, ... i Vy W) u € U}
m {u/(:ul(u)'MZ(u)l '--'Hk(u)):u € U}
= {w/ (@ vy ) A @, ..,
(e @) V i) A e ()) - € U}
= {u/(#l(u)'#Z(u)v "'J”’k(u)):u € U} = A
(ii) The proofis similar to (i).
Proposition 2.18. Let 4, B, C € M*F5(U). Then,
6] Au(BnC)=(AuB)n(Au?),
(i) An(BuC)=(AnB)u(And).

Proof. (i) Let A = {u/(u1 (W), (), ..., e (w)): u € U},
E = {u/(}/1(u)!y2(u)r '"!YR(u)):u € U} and

C ={u/(6,(w),0,(w),..,0,w):u € U}. Then
Au@Bno

= {u/(#l(u)r#Z(u)v "'J”’k(u)):u € U} u

{u/(ri() A0, @W),.., yic(w) A Oy (u)):u € U}

= {u/ (1@ V (1) A 0; @), ., 1 (W) V (i) A
Gk(u))):u € U}

= {w/ (0@ V7 @) A (G v O,@)). ...,

() v 7)) A (i) v 0,)) ) s € 0
={u/(u @V y (W), ., i@ Vyew):u e Uln
= /() V 0, ), ., () V By a0)):u € U}
=(AuB)n(Au?l).

(ii) The proof is similar to (i).

Definition 2.19. A pair (F",A) is called a multi-fuzzy soft
set of dimension k over U, where F mapping given by
F:A - M¥FS(U). Thatis, for each a € 4,

F(a) = MMz, € MKFS(U). For a €A, F(a) may be
considered a set of a-approximate elements of the multi-
fuzzy soft set (F, A). Let A C E, denote the set of all multi-
fuzzy soft sets of dimension k over U by M¥F§ (U)
(Yangetal, 2013).

Definition 2.20. Let 4,B € E, (F,A) and (G, B) be two
multi-fuzzy soft sets of dimension k over U. (F, A) is said
to be a multi-fuzzy soft subset of (G,B) if, A< B and for
each a€A, F(a) S G(a). In this case, we write
(F,A) E (G,B) (Yangetal, 2013).

Definition 2.21. A multi-fuzzy soft set (F,A) of
dimension k over U is said to be null multi-fuzzy soft set,

denoted by é):k if F(a) = é):k for all a € A. A multi-fuzzy
soft set (F, A) of dimension k over U is said to be absolute
multi-fuzzy soft set, denoted by lTAk if F(a) = ITAk for all
a € A (Yangetal, 2013).

Definition 2.22. The extended union of two multi-fuzzy
soft sets sets (F,A) and (G, B) of dimension k over U is
the multi-fuzzy soft set (H,C), where C = AU B and for
alxeC, Hx) =F(x) if x€ A—B, Hx) =G(x) if c €
B—A4 and H(x) = F(x) uG(x) if x € AnB. We write
(F,A) T, (G,B) = (H,C) (Yangetal, 2013).

Definition 2.23. The restricted union of two multi-fuzzy
soft sets (F, A) and (G, B) of dimension k over U is

the multi-fuzzy soft set (H, C), where C = AN B and for
allx € C, H(x) = F(x) u G(x). We write

(F,A) g (G.B) = (7).

Definition 2.24. The extended intersection of two multi-
fuzzy soft sets sets (F, A) and (G, B) of dimension k over
U is the multi-fuzzy soft set (H,C), where C = AU B and
for all x € C, H(x) = F(x) if x € A— B, H(x) = G(x) if
x€B—-A and H(x)=F(x)néG(x) if xeAnB. We
write (F,A4) fi, (G, B) = (H,C) (Kazana etal,, 2022).

We define the restricted intersection of two multi-fuzzy
soft sets as follows. Note that our definition is different
from the definition given by Yang at al. (Yang et al,
2013). Because even if ANB =@ we can still define
(F,A)Tig (G,B) = (H,0), where H = : 0 > M*FS(U).
Definition 2.25. The restricted intersection of two multi-
fuzzy soft sets (F, A) and (G, B) of dimension k over U is
the multi-fuzzy soft set (H,C), where C = An B

forallx € C, H(x) = F(x) M G(x). We write

(F,4) fir (G, B) = (7).

3. Lattice Structure of Multi-Fuzzy Soft Sets
In this section, we investigate some properties of the
operations given on multi-fuzzy soft sets. Then we give
the lattice structure of multi-fuzzy soft sets.

Proposition 3.1. (M¥F$(U),0,) is a semilattice.

Proof. (i) Let (F,A) T, (F,A) = (H,C), where
C=AUA=Aand forall c € 4, H(c) = F(c). Therefore,
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(F,A) T, (F,A) = (F,A).

(ii) Let (F,4) 0, (G,B) = (K, C) and

(G,B) T, (F,A)=(L,D). Then, C=AUB and D =BU
A.

SinceAUB =BUA,thenC =D.Ifx€ A—-B,

K(x) =F(x)and L(x) = F(x).If x € B— A, K(x) = G(x)
and L(x) = G(x). If, x€ AnB, K(x) = F(x) U G(x) and
L(x) = G(x) U F(x). Therefore,

(F,A) T, (G, B) = (G, B) I, (F, ).

(iii) Let (F,A) 0. (G,B) = (K, AU B) and

(K,AuB) 0, (H,C)=(L,(AuB) U C).Similarly,

(G,B) T (H,c)=(M,BucC)and

(F,A)0, (M,Buc)=(N,AuBU0).

Itis clear that(AUB)UC =AU (BUC)=AUBUC.
Let x e AUBUC.Thenx € Aorx € B orx € C. Without
loss of generality, we can assume that x € C. Then,

a) IfxgAandx ¢ B,L(x)=H(x) = N(x).
b) Ifx€Aandx ¢ B,
L(x) = F(x) UH(x) = N(x).
c) Ifx¢ Aandx € B,
L(x) =G(x) UHX) = N(x).
d) Ifx€eAandx€B,
L(x) = (ﬁ(x) L G"(x)) U A
=F(x) U (é(x) U H(x))
= N(x).
Therefore,
((F,4) 0, (G,B)) T, (A,¢)
= (F,4) 0, ((6,B) T, (A.C)).
Proposition 3.2. (M*F$ (U),0g) is a semilattice.
Proof. (i) Let (F, A) Ug (F,A) = (H,C), where
C=AnNnA=Aandforallx € 4, H(x) = F(x). Therefore,
(F,A) Tg (F,A) = (F, A).
(ii) Let (F,A) T (G,B) = (K,C) and
(G,B) Tg (F,A) = (L,D). Then,C =ANB=BnA=D.
Forany x e ANnB,
K@x)=Fx)UG(x) =G6(x) uF(x) =Lx).
Therefore, (F,A) Oy (G,B) = (G, B) O (F, A).
(iii) Let (F,A) O (G,B) = (K, An B) and
(K,AnB) g (H,¢) = (L,(AnB) nC). Similarly,
(G,B) g (ﬁ, C) = (M,B n C) and
(F,A)Ug (M,BnC) = (N,An(BNC)). It is clear that
AnNnB)NC=An(BNnC)=AnBnC.
Let xe ANBNC, we have x € A and x € B and x € C.
L) = (Fa u ) u @)
=F@ u (G u M)
= N(x).
Therefore,
((F.4) Tx (6. 5)) T (A, )
= (F,4) Uz (6. B) g (,C)).
Proposition 3.3 (M*F$ (U),f,) is a semilattice.

Proof. (i) Let (F,A) fi. (F,A) = (H,C), where
C=AUA=Aandforallx € 4, H(x) = F(x). Therefore,
(F,A) i, (F,A) = (F,A).
(ii) Let (F,A) fi. (G,B) = (K,C) and
(G,B) fi. (F,A) = (L, D). Therefore, C = AU B and
D =BUA.SincceAUB =B UA,thenC =D.
Ifx€ A—B,K(x) = F(x)and L(x) = F(x).Ifx € B — A,
K(x) =G(x)and L(x) = G(x).Ifx € ANB,
K(x) = F(x) N G(x) and L(x) = G(x) N F(x).
Therefore, (F,A) fi. (G,B) = (G,B) fi. (F, 4).
(iii). Let ((F, 4) i, (G,B)) i, (A,¢) = (K, (4UB) U C)
and (F,4) i, ((G,B) i (A,¢)) = (LAU (B U ©)). Itis
obviousthat (AUB)UC =AU (BUC)=AUBUC.For
ale AUBUC,x € Aorx € Borx € C. Without loss of
generality, we can suppose that x € C. Then,
a) IfxgAandx ¢ B,K(x) = H(x) = L(x).
b) Ifx€Aandx ¢ B, K(x) =Fx)nHx) =
L(x).
) IfxgAdandx € B,K(x) =G(x)NnH(x) =
L(x).
d) Ifx€Aandx € B,K(x) = (I:"(x) m (f(x)) M
AG) =Fxn (6 nA®) = L.
Proposition 3.4. (M*F$ (U),fiz) is a semilattice.
Proof. (i) Let (F, A) fig (F,A) = (H,C), where
C=ANnA=A4 and for all x €4, H(x)=F(x). Thus,
(F,A) fig (F,A) = (F,A).
(ii) Let (F,A) fig (G,B) = (K,C) and
(G,B) fig (F,A) = (L, D). Therefore,
C=ANB=BnNnA=D.IfxeANB,
Kx)=Fx) néG(x) =G6(x) nF(x) =L(x).So,
(F,A)fig (G,B) = (G,B) fig (F, 4).
(iii) Let ((F,4)fig (G,B)) fir (,C) = (R,(4nB) N C)
and (F,A) iz ((G,B) iz (A,C)) = (LAN (BN C)). We
knowthat(ANB)NC=An(BNnC)=ANnBnC.
If xeAnBnNnC, then x€A and x€B and x € C.
Therefore, K (x) = (ﬁ(x) mn G(x)) nHKX)
=F@n(G@nAe))=L.
Proposition 3.5. Let (F, 4),(G, B) € M*FS (U). Then,
M) ((F.4)Te (G.B)) fir (F,4) = (F,4),
(i) ((F.4) iz (G,B)) Te (F.4) = (F,A).
Proof.
@) Let ((FA)0:(GB))=(HAUB)  and
((F,4) Ug (G.B)) Fig (F,4) = (K, (4U B) n 4) = (K, A).
Letx € A.
a) Ifx€B,thenK(x) = Hx) N F(x)
= (ﬁ(x) U (;(x)) nFQ) = Fx).
b) Ifx & B,then K(x) = H(x) N F(x)
=F(x) nF(x) = F(x).

(ii) Let ((F, 4) fig (G,B)) = (,An B) and
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((F,A) Fig (G,B)) T¢ (F,A4) = (K, (AN B) U 4)
= (K, A).
Letx € A.
a) Ifx € B,then, K(x) = H(x) U F(x)
= (FGONG0)uFlx) = F(x).
b) Ifx ¢ B, then, K(x) = H(x) U F(x)
=F(x) UF(x) = F(x).
Proposition 3.6. Let (F, 4),(G, B) € M*F$ (U). Then,
@ ((F,4) Tk (G,B)) e (F,A) = (F,4),
(@) ((F,4) ¢ (G,B)) Tg (F.4) = (F,A).
Proof. () Let ((F,4)0g(G,B))=(HANB) and

((F,4) T (G,B)) Fic (F, 4)
=(K,(AnB)u4) = (K, A).
Letx € A.

a) Ifx €B,thenK(x) = H(x) N F(x)
= (Fm uG)nFlx) = F).
b) Ifx € B,thenwe havex € AN B.
Therefore K (x) = F(x).
(ii) Let ((F,4) i (G,B)) = (, AU B) and

((F,4) 71 (G,B)) g (F, 4)
=(K,(AuB)n4) = (K, A).

Letx € A.

a) Ifx€B,thenK(x)=H(x)uF(x)

= (Fa) n6@) uF(x) = F(x).

b) Ifx & B, then K(x) = F(x).
Corollary 3.7. (M*FS (U),fig,0¢) is a complete lattice.
Proof. It is straightforward from Proposition 3.1,
Proposition 3.4, Proposition 3.5 and Theorem 2.6.
Theorem 3.8. Let =; be the ordering relation in the
lattice (MXF$(U),fig,0¢) and (F,A),(G,B) € MKFE(U).
Then (F,A) €, (G,B) if and only if AS B and F(x) &
G(x)forallx € A.
Proof. Let (F,A) E, (G, B). Therefore,
(F,A)T¢ (G,B) = (G,B) and (F,A)fig (G, B) = (F,A).
Using Definition 2.22 and Definition 2.25, we have
AUB =Band AN B = B. Then A € B. Therefore,
for each x € 4, F(x) U G(x) = G(x) and F(x) E G (x).
Conversely, let A € B and F(x) E G(x), for all x € A.
Therefore, (F,A) T (G,B) = (G,B) and
(F,A)fig (G,B) = (F,A). Thus (F,4) E, (G,B).
Theorem 3.9. The complete lattice (M*F§ (U),fig,O¢) is
distributive.
Proof. Let (F,A),(G,B), (H,C) € M*F$(U). It is enough
to prove that

(F,A) e ((G’,B) Fir (A, c))
= ((F,4) U (G,B) ) Fig ((F.4) T (A,C)).
Let (F,4) T¢ ((G,B) fig (,C)) = (R,AU (BN ) and

((F,4) Te (G,B)) Fig ((F,4) Te (A,C))

=(L@uBn@u0)=(LAuBNO).

Forallx e AU (BN (), wehavethatx e Aorx € BNC.
a) IfxeAandx € BnC,then

K@) =Feou(GeonA))
= (Fy uG@)n (F u A@)=Lx).
b) IfxeAandx¢BnNC,thenx ¢ Borx ¢ C.
e IfxéB and x€C, K(x)=F(x) =
Feon (ﬁ(x) U Fi(x)) =Fx) =
L(x).
e Ifx€B and x¢C, K(x)=F(x) =
(FoouG@) nFx) = Fx)
= L(x).
e If x¢B andx¢C, K(x)=FX) =
F(x) N F(x) = F(x) = L(x).
c) Ifxé&Aandxe€BnC, we have that x € B and
x€CKx) =6Gx)nHKX) =LX).
Corollary 3.10. The
(M*F3 (U),Fig,O¢) is modular.
Proof. Since every distributive lattice is modular, the
proof easily comes from Theorem 3.9.
Corollary 3.11. (M¥F$ (U),fi¢,UR) is a complete lattice.
Proof. It easily comes from Proposition 3.2, Proposition
3.3, Proposition 3.6 and Theorem 2.6.
Theorem 3.12. Let £, be ordering the relation in the
lattice (M¥F$ (U),fig,Ug) and (F,A),(G,B) € MKF$(U).
Then, (F,A) €, (G,B)ifand only if B € A and
F(x) E G(x) forall x € A.
Proof. Let (F,A)E; (G,B). Thus (F,A)Ux(G,B) =
(G,B) and (F,A)fig(G,B)=(F,A). According to
Definition 2.23 and Definition 2.24, we get that AN B =
Band AUB=A,so BCS A.Forallx €B, F(x) UG(x) =
G(x) and F(x) M G(x) = F(x). Therefore, F(x) E G (x).
Conversely, let BS A and F(x) € G(x) for all x €B.
Therefore, (F‘,A) dg (G,B) = (G,B) and
(F,A)fi¢ (G,B) = (F,A). Then, (F,A) €, (G,B).
Theorem 3.13. The complete lattice (M*FS (U),fig,Ug) is
distributive.
Proof. Let (F,A),(G,B),(H,C) € M¥F$(U). It is enough
to prove that

(F.4) Ur ((G.B) Fic (H.0))

= ((F,4) Uig (G, B)) fie ((F,4) Tig (A,C)).

Let (F,4) T (G, B) fie (,€)) = (R, An (BUC)) and
((F,4) Tg (G,B)) i ((F,4) Tg (,C))

= (Z, (AnB)un C)) = (Z,A n(BU C)).

We need to show that K(x) = L(x) forall x €An (B U
C).Letx e An(BUC). Then we have x € Aand x € BU
C.
Let x € A.

a) IfxeBandx€C(,

R(x) =Fo)u (G(x) n ﬁ(x))
= (Fy uG@)n (Fex u A@)=L().

complete lattice
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b) Ifx€Bandx & C,K(x) = F(x) UG(x) = L(x).
¢) Ifxe¢Bandx € C K(x) =F(x)uH(x)=L(x).
Corollary 3.14. The complete lattice (M*Fg (U),fi¢,Ug) is
modular.
Proof. Since every distributive lattice is modular, the
proof easily comes from Theorem 3.13.
Let (F,A),(G,B) € M¥F$(U). Note that the following
equalities don’t hold in general:
@ ((F.4) ¢ (G,B)) fie (F,4) = (F,A),
(i) ((F,4) iz (G,B)) Ug (F,A) = (F,4).
Example 3.15. Let L be a lattice with the diagram in

Figure 1. Let A = {e4, e,} and B = {e;, e3, €4} be the set of
parameters. We define the multi-fuzzy soft set

|

b/a\c
\/

Figure 1. Lattice diagram.

F:A - M?FS(L) as follows.

F(e;) ={0/(0.4,0.7),a/(0.4,0.8),b/(0.7,0.2),c/
(0.3,0.6),1/(0.5,0.9)},

F(ey) ={0/(1.0,0.3),a/(0.4,0.5),b/(0.9,0.3),c/
(0.2,0.1),1/(0.6,0.7)}.

We define the multi-fuzzy soft set

G:B > M?FS(L) as follows.

G(ey) ={0/(0.5,0.8),a/(0.4,0.7),b/(0.5,0.7),c/
(0.3,0.6),1/(0.4,0.6)},

G(es) = {0/(0.3,0.6),a/(0.8,0.6),b/(0.7,0.5),c/
(0.2,0.3),1/(0.1,0.1)3,

G(es) = {0/(0.8,1.0),a/(0.3,0.1),b/(0.8,0.4),c/
(0.1,0.1),1/(0.9,0.6)}.

@) Let ((F,4) Te (G, B)) fie (F, 4)

= (ﬁ, (AuB)uU A) = (ﬁ,A U B). Then H(e;) = F(ey),
H(ey) = F(ey), H(e3) = G(es), H(ey) = G(ey). Therefore,
((F,4) Te (G.B)) Fie (F.4) = (F,4).

(ii) Let (F,4) Tz (G, B)) fig (F, 4) = (K, (A0 B) n 4)
= (K,ANn B).K(e;) = F(e,). Therefore,

((F,4) Tg (G, B)) Tig (F, 4) # (F, A).

4. Conclusion

In this paper, we deal with the lattice structure of multi-
fuzzy soft sets. We give two lattice constructions on
multi-fuzzy soft sets and investigate some related
properties.
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