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Abstract 

This study presents a deep learning approach for early detection of melanoma, one of the most dangerous skin 

cancers. In this article, all pre-trained models of the Keras library are trained with the ISIC skin cancer dataset 

available on Kaggle and the accuracy of each model is analyzed in detail. With the results obtained from the 

trained models, the models were fine-tuned to further optimize the performance of each model. After re-

evaluation with fine-tuning, the accuracy rates were compared: DenseNet121 and MobileNet were found to be 

the two best models with high accuracy among the fine-tuned models. As such, these two models were combined 

in an ensemble approach to achieve a better overall accuracy. The skin cancer detection rate obtained with this 

ensemble approach is 93.03%. Therefore, the deep learning-based ensemble method appears to be a reliable and 

powerful technique that can be used to diagnose serious diseases such as skin cancer. This model can be used 

to provide a powerful support system with great potential to assist dermatologists in the early detection phase 

by easing workload and improving patient outcomes.  
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Topluluk Öğrenmesi ile İnce Ayarlı MobileNet ve DenseNet121 Modelleri 

Kullanılarak Cilt Lezyonlarının Geliştirilmiş Sınıflandırılması  

Özet 

Bu çalışma, en tehlikeli cilt kanserlerinden biri olan melanomun erken teşhisi için bir derin öğrenme yaklaşımı 

sunmaktadır Bu makalede, Keras kütüphanesinin önceden eğitilmiş tüm modelleri, Kaggle'da bulunan ISIC cilt 

kanseri veri kümesi ile eğitilmiş ve her modelin doğruluğu ayrıntılı olarak analiz edilmiştir Eğitilen modellerden 

elde edilen sonuçlarla, her modelin performansını daha da optimize etmek için modellere ince ayar yapılmıştır 

İnce ayar ile yeniden değerlendirme yapıldıktan sonra doğruluk oranları karşılaştırılmıştır DenseNet121 ve 

MobileNet, ince ayarlı modeller arasında yüksek doğruluk oranına sahip en iyi iki model olarak bulunmuştur 

Bu nedenle, bu iki model daha iyi bir genel doğruluk elde etmek için bir topluluk yaklaşımında birleştirilmiştir 

Bu topluluk yaklaşımı ile elde edilen cilt kanseri tespit oranı %93,03. Bu nedenle, derin öğrenme tabanlı 

topluluk yöntemi, cilt kanseri gibi ciddi hastalıkların teşhisinde kullanılabilecek güvenilir ve güçlü bir teknik 

olarak görünmektedir Bu model, iş yükünü hafifleterek ve hasta sonuçlarını iyileştirerek erken teşhis 

aşamasında dermatologlara yardımcı olmak için büyük potansiyele sahip güçlü bir destek sistemi sağlamak için 

kullanılabilir.  
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1. Introduction 

 

Ultraviolet or ultraviolet rays with wavelengths between 100 and 400 nanometers have a 

significant effect on skin cancer [1]. These rays are divided into three categories: UV-A, UV-

B and UV-C. UV-C rays are relatively less harmful than other rays and cannot reach the skin 

surface because they are absorbed by the atmosphere [2]. However, if UV-B and UV-C rays 

come into contact with the skin, it can cause damage to the skin tissue and cancer. Melanoma, 

a type of skin cancer, is divided into two types: benign and malignant, with an irregular 

structure containing several colors [3]. Early detection of malignant melanoma allows 

dermatologists to recommend surgical removal of the affected skin area to prevent the spread 

of the malformation in melanoma cells. Automatic disease recognition and diagnosis systems 

with machine learning and deep learning methods have been rapidly increasing in medical 

applications in recent years [4, 5, 6, 7]. These applications help specialists and significantly 

reduce their workload. Similarly, pre-diagnostic decision support systems have been 

proposed for skin cancer detection. In this study, a deep learning-based skin lesion detection 

mechanism is developed using images from the ISIC archive on Kaggle. In order to compare 

the performance of the proposed model with state-of-the-art models for early detection of 

malignant melanomas, only studies using the same dataset are evaluated. 

1.1. Related studies 

In a study by Basaran and C¸elik [8], the ISIC dataset was first trained with the 

EfficientNetB0 model and then deep features were obtained using Particle Swarm 

Optimization (PSO) and Genetic algorithm (GA) with the fully connected layer of this model. 

The features selected over different feature combinations were classified with Support Vector 

Machine, one of the classical machine learning methods, and an accuracy rate of 89.1% was 

achieved. Anand et al. [9] aimed to improve model accuracy by adding a flat layer, two dense 

layers with an activation function called LeakyRelu, and a sigmoid layer to a pre-trained 

VGG16 model and achieved 89.09% accuracy on the ISIC dataset. Sethanan et al. [10] 

classified melanoma, vascular lesions, melanocytic nevus, cutaneous fibromas, benign 

keratosis, and different carcinomas and skin moles using the HAM10000 dataset along with 

the ISIC dataset. In the proposed model, the input images are passed through the CNN model 

by applying image segmentation methods such as U-net, RP-Net, Threshold method, Edge 

detection and data augmentation such as rotation, shifting, and flipping in a dual artificial 

multiple intelligence system (AMIS). The proposed model outperformed the traditional CNN 

models with 98.4% on the hybrid dataset. Hussein et al. [11] applied various transfer learning 

networks such as AlexNet, ResNet-18, SqueezeNet, and ShuffleNet to the ISIC dataset and 

observed that the ResNet-18 model performed relatively better than other models with an 

accuracy of 89.9%. On the other hand, when precision, sensitivity and specificity values were 

compared, it was seen that the specificity rate exceeded 90% in the SqueezeNet model and 

surpassed the other models. Precision values showed slight differences in other models 

except ShuffleNet. However, when the F1 score value is analyzed, it is seen that the ResNet 
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model has better performance than the other transfer learning models in general. Tuncer et 

al. [12] presented a CNN model called TurkerNet, which aims to improve classification 

performance by minimizing the number of trainable parameters by working on four basic 

components: input block, residual bottleneck block, efficient block and output. Since the 

proposed model shows high performance with an accuracy of 92.12% even with low trainable 

parameters, it can be frequently preferred in medical applications as a low-weight CNN 

model. Bazgir et al. [13] proposed an optimized Inception model for skin cancer based on the 

InceptionNet architecture with data augmentation and the addition of base layers. The 

proposed model was applied to the dataset from the ISIC archive and achieved 84.39% and 

85.94% accuracy rates in Adam and Nadam optimizations, respectively. In another recent 

study presenting a deep learning-based approach, Prasad et al. [14] applied EfficientNet-B3, 

a deep transfer learning model, to ISIC data with rescaling, brightness, and contrast 

equalization preprocessing in the range of 20%. As a result of the experimental studies, 

90.62% accuracy, 90.21% recall, 91.33% F1-score and 91.91% precision were obtained. A 

general comparison of the studies using the raw dataset I used in this study is presented in 

Table 1. 

Table 1. Comparison of Classification Methods for Skin Lesion Analysis 

 

Year Study Method Classifier Accuracy 

2022 Basaran and Celik 
[8] 

PSO-GA SVM 89.1% 

2022 Anand et al. [9] VGG16 Softmax 89.09% 

2022 Alfi et al. [15] CNN Softmax 92% 

2023 Ramya and 
Sathiyabhama 
[16] 

Enhanced genetic 

algorithm 
SVM 89.19% 

2023 Hussein et al. [11] ResNet-18 Softmax 89.39% 

2023 Shekar and Hailu 
[17] 

DenseNet-169, local 

binary pattern 
Random 
Forest 

89.70% 

2024 Bazgir et al. [13] Optimized InceptionNet Softmax 85.94% 

2024 Prasad et al. [14] EfficientNet-B3 Softmax 90.62% 

2024 Turker et al. [12] TurkerNet Softmax 92.12% 

 This study Ensemble of 
Fine Tuned 
MobileNet and 
DenseNet121 

Softmax 93.03% 
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1.2. Research Contributions 

The main research contributions of this work are listed below: • The proposed MobileNet-

DenseNet ensemble model outperforms other works in the literature using the same dataset, 

making significant progress in skin lesion diagnosis. 

• The experimental results are presented in comparison with widely used pre-trained 

network models that have shown successful results in the literature. 

• The highest performance was achieved by combining the DenseNet and MobileNet 

architectures from the pre-trained transfer learning models, and this achievement was 

compared with different studies in the literature using the same dataset. 

• A fusion-based pre-trained transfer learning approach is proposed to improve skin 

lesion classification performance. 

The flow diagram of the hybrid model combining DenseNet and MobileNet transfer learning 

networks with CNN is given in Figure 3. 

2. Materials and Methods 

2.1. Dataset 

For the study, the Kaggle skin cancer dataset, an open-source platform containing 1800 

images of benign and malignant skin lesions sized 224*224, was used [18]. This special 

dataset consists of training and test sets containing images divided into two classes: benign 

and malignant. Figure 1 shows a representative example of the dataset. Data augmentation 

included random rotations, zoom, and contrast adjustments to simulate diverse real-world 

scenarios, improving model robustness. 
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Figure 1. ISIC Archive sample skin lesions 

As seen in Figure 2, the dataset of this study has been divided into training and test sets 

according to class labels. The benign dataset contains 360 images for testing and 1440 images 

for training. Similarly, for malignant training, 1197 training and 300 test images have been 

allocated. 

 

Figure 2. The number of benign and malignant lesions in the training and test dataset 

 



Enhanced Classification of Skin Lesions Using Fine-Tuned MobileNet and DenseNet121 Models with 

Ensemble Learning 

875 

 

2.2. The proposed ensemble transfer learning model 

The use of pre-trained transfer learning models in the field of healthcare has significantly 

improved classification performance in recent years. The hyper-parameters of these models 

and the fact that the datasets on which the deep learning approaches are trained are balanced 

and contain a sufficient number of data affect the classification performance. In this study, I 

propose a hybrid use of a pre-trained deep learning approach on original data for skin lesion 

classification. Figure 3 shows the general flowchart of the proposed MobileNet-DenseNet 

ensemble model. In the proposed model, all layers in MobileNet are made trainable and fine 

tuned without any preprocessing of the original data set. Then, using the CNN architecture, 

GlobalAverageMaxPooling2d, Dense 1024, Batch Normalization, Dropout (0.5), Dense 64 

and Dense 2 layers were used to reduce the number of classes to two, malignant and benign, 

by gradually reducing the layers in order not to lose the features obtained from the pre-trained 

model. As a second model, the last 171 layers of the DenseNet121 model out of a total of 

427 layers are trainable and subjected to fine tuning. After the same CNN operations, the 

output obtained from both models was combined end-to-end to obtain a hybrid ensemble 

model. 

The Global Average Pooling layer is a process that calculates the average output of the 

feature map in the previous layer. As shown in Figure 3, a 

 

Figure 3. The diagram of the proposed ensemble transfer learning model 

Global Average Pooling layer preceding the Dense layer fully connected layer is used to 

extract features from the trainable layers where fine tuning is performed. With this average 

calculation, the features are significantly reduced, preparing the model for the final 

classification layer. In Global Average Pooling, overfitting is avoided by averaging the 

feature map. A dropout layer is used to reduce overfitting during the training process. It is 

the elimination of some memorizing nodes in the network to prevent the network from being 

memorized. Thus, the memorization of the network is tried to be eliminated. The dropout 

layer is a flattening layer for fully connected layers. Dropout increases the smoothing ability 
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of the neural network. With dropout, neurons in the network are randomly assigned a zero 

weight value. For this process, the dropout rate is set to 0.5 to make the model robust to small 

changes in the input and to ensure high performance models. Dense fully connected layers, 

which are added after the dropout process, are gradually reduced to 2 classes in order to 

prevent the loss of features and these features are given to the Softmax layer to give the 

classification result. The training process employed the Adam optimizer with a learning rate 

of 0.001, chosen for its balance between convergence speed and stability. Other 

hyperparameters, such as batch size (32) and dropout rates (0.5), were fine-tuned through 

cross-validation to avoid overfitting. 

2.2. Mathematical Model for Global Average Pooling, Dropout, and Average Ensemble  

Let F represent the output feature map of the preceding layer, as follows: 

𝐹 =

[
 
 
 
𝑓1,1 𝑓1,2 ⋯ 𝑓1,𝑛

𝑓2,1 𝑓2,2 ⋯ 𝑓2,𝑛

⋮ ⋮ ⋱ ⋮
𝑓𝑚,1 𝑓𝑚,2 ⋯ 𝑓𝑚,𝑛]

 
 
 
 

where the output of the j-th channel of the i-th feature map is represented by fi,j. 

The average output for every channel is determined by the Global Average Pooling 

operation: 

𝐺 =
1

𝐻 × 𝑊
∑ ∑ 𝐹ℎ,𝑤

𝑊

𝑤=1

𝐻

ℎ=1

 

where H and W represent the feature map’s height and width, respectively, to create 

a vector G that represents the feature map’s summary. This technique works well to lessen 

overfitting. [19] 

In order to avoid overfitting, the Dropout layer then randomly changes a fraction p of 

the input units to zero during training: 

𝑌 = 𝐷(𝐹) = { 
𝐹 with probability 1 − 𝑝
0 with probability 𝑝

 

This technique helps to improve the generalization of neural networks [20]. 

Finally, the Dense layer receives the output from the Dropout layer and uses C units 

for classification: 

𝑍 = 𝑊 ⋅ 𝑌 + 𝑏 

where, prior to applying the Softmax activation function, Z is the output, b is the bias 

vector, W is the weight matrix, and Y is the input from the Dropout layer: 
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𝑃 = Softmax(𝑍) 

where P gives the predicted probabilities for each class. 

To employ an average ensemble strategy to integrate many models, let M represent 

the number of models and Oi represent the output of the i-th model: 

𝑂𝑖 = Softmax(𝑍𝑖) 

The final ensemble output Oensemble can be computed as the average of the outputs 

from all models: 

𝑂ensemble =
1

𝑀
∑𝑂𝑖

𝑀

𝑖=1

 

This averaging method is a common ensemble strategy used to enhance predictive 

performance. [21]. 

3. Experimental Results 

In the study, the dataset was initially trained on pre-trained models and accuracy rates were 

obtained. These models were first tested without any modifications and the accuracy rates for 

each were determined. After the initial training phase, fine-tuning was applied to each model 

to further optimize model performances. Fine-tuning was used to adjust model weights in 

pre-trained models to improve their ability to generalize from training data. After fine-tuning, 

the models were trained and the accuracy rates were redetermined. After this step, the 

DenseNet121 and MobileNet models had the highest accuracy among the fine-tuned models. 

Table 2 shows the 5 models with the highest accuracy. Fine-tuning adjusts pre-trained model 

parameters to better adapt to specific datasets, improving performance on new tasks. 

Table 2. Individual performance of transfer learning models after fine tuning and CNN 

applications 

Model PrecisionRecall F1 Score Accuracy Epoch 

MobileNet 0.9242 0.9242 0.9241 0.9242 22 

DenseNet121 0.9232 0.9227 0.9228 0.9227 68 

ResNet50V2 0.8803 0.8803 0.8800 0.8803 63 

VGG19 0.8787 0.8787 0.8787 0.8787 49 

Xception 0.8713 0.8712 0.8709 0.8712 68 

 

The graphs of training and test accuracy, training and validation loss values of the 

DenseNet121 model according to the number of epochs are given in Figure 4. As can be seen 

from the figure, while the training accuracy increases rapidly when the number of epochs is 
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increased up to 20, it reaches a more regular accuracy rate after 60 epochs. Similarly, the test 

accuracy varied at each step, but it reached over 90% after the 60th epoch. When comparing 

the training and validation loss values, the training loss value decreased in the opposite 

direction of the accuracy rate as the number of epochs increased and progressed more 

consistently than the test loss. 

 

Figure 4. Training and Test Accuracy/Loss graphs for DenseNet121 according to the 

number of epochs 

Figure 5 shows the training-test accuracy and training-validation loss graphs of the 

MobileNet model according to the number of epochs. Similar to the DenseNet graph, while 

more stable accuracy and loss rates are determined on the train data, large differences are 

observed between 20 and 40 epochs in the test set. Therefore, the number of epochs was 

truncated at 22 to minimize test loss. 

 

Figure 5. Training and Test Accuracy/Loss graphs for MobileNet according to the number of 

epochs 

An ensemble approach was used to further improve the accuracy of the classification system. 

Ensemble learning involves combining the predictions of multiple models to improve overall 

performance and robustness. In the study, the fine-tuned outputs of several transfer learning 

models were combined together to create a more comprehensive and accurate classification 
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mechanism. The ensemble method exploits the unique strengths of each model, reducing the 

weaknesses that any one model may have. This method reduced the probability of 

misclassification and increased the model’s ability to generalize across different data 

samples. The result is a significant improvement in accuracy and reliability, as demonstrated 

by the MobileNet and DenseNet121 ensemble, which reached an accuracy of 93.03%. Table 

3 shows the results obtained by combining the models with the highest accuracy with the 

ensemble method. For model ensembling, the average method was used, where the outputs 

of the individual models, MobileNet and DenseNet121, were averaged to make the final 

prediction. This approach leverages the complementary strengths of the models: MobileNet's 

efficiency and DenseNet121's ability to extract deep features. By averaging their outputs, the 

ensemble model reduces the impact of potential biases or weaknesses of individual models, 

leading to improved robustness and accuracy. This method ensures that each model 

contributes equally to the final decision, making it an effective and computationally efficient 

strategy for combining predictions in a classification task. 

Table 3. The performances of ensemble models 

 

 Model                                                   Precision        Recall     F1 Score          Accuracy 

MobileNet + DenseNet121 0,9307 0,9303 0,9303 0,9303 

MobileNet + Xception 0,9218 0,9212 0,9209 0,9212 

DenseNet121 + VGG19 0,9148 0,9136 0,9137 0,9136 

MobileNet + ResNet50V2 0,9121 0,9121 0,9121 0,9121 

MobileNet + VGG19 0,9120 0,9121 0,9120 0,9121 

DenseNet121 + ResNet50V2 0,9120 0,9121 0,9120 0,9121 

DenseNet121 + Xception 0,9030 0,9030 0,9030 0,9030 

ResNet50V2 + VGG19 0,8984 0,8984 0,8984 0,8984 

Xception + VGG19 0,8940 0,8939 0,8937 0,8939 

ResNet50V2 + Xception 0,8842 0,8833 0,8828 0,8833 

 

In Figure 6, the performance of DenseNet121, MobileNet and DenseNet121+ MobileNet hybrid 

transfer learning model on skin cancer is measured classwise in confusion matrices. In 

distinguishing two very similar classes, the total number of misclassifications of the 

DenseNet121 model is 51 while the number of misclassifications of MobileNet is 50. The total 

number of misclassifications obtained as a result of the combination of both models is reduced 

to 46. It can be said that the proposed ensemble model is effective in classifying data that are 

very similar to each other. 
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Figure 6. MobileNet, DenseNet121 and proposed model’s confusion matrices 

4. Discussion 

The results of this study show that the performance of pre-trained deep learning models in 

the classification of skin lesions is enhanced by the ensemble technique. By fine-tuning the 

MobileNet and DenseNet121 models and then creating an ensemble, superior performance 

metrics have been achieved compared to individual models or other ensemble combinations. 

The ensemble model combining MobileNet and DenseNet121 has achieved the highest 

precision, recall, F1 score, and accuracy, surpassing other commonly used models such as 

ResNet, VGG19, and Xception. One of the most significant strengths of this approach is its 

hybrid structure that combines the strengths of both MobileNet and DenseNet. MobileNet is 

known for its efficiency and speed, complementing DenseNet’s ability to leverage deeper 

feature representations. While fine-tuning the last 171 layers of DenseNet121, allowing all 

layers in MobileNet to be trainable ensured that both models adapted to the unique 

characteristics of the skin lesion dataset without overfitting. The use of dropout layers and 

global average pooling also contributed to the overall performance of the model. These 

techniques reduced overfitting and ensured that the model memorized the training data, which 

is crucial in medical imaging tasks where generalization to new, unseen data is vital. 

Additionally, instead of relying on a simple voting scheme, the end-to-end combination of 

the models’ outputs ensured the full utilization of each model’s strengths and provided a 

robust classification output. Experimental results further emphasize that independent models 

like ResNet50V2 and Xception perform reasonably well, but they cannot distinguish between 

benign and malignant skin lesions as effectively as the ensemble model. Confusion matrices 

reveal that the combination of MobileNet and DenseNet121 reduces misclassification errors, 

especially when distinguishing between classes with very similar features, compared to 

individual models. This is very important in the field of healthcare, where accurate 

classification can lead to significant clinical outcomes.  

Despite these promising results, there are some limitations in our approach. For example, 

while our ensemble model achieved high performance metrics, the computational complexity 

and training time were higher compared to individual models. Especially the DenseNet121 

model required more epochs to stabilize compared to MobileNet, indicating that future 

studies should explore more efficient ways to combine deep learning models so that the 

computational load does not increase significantly.  
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5. Conclusion 

This model, which proposes a hybrid ensemble model combining MobileNet with 

DenseNet121, was used for the classification of skin lesions. The approach here was to 

leverage the strengths of both models. By fine-tuning the final layers of the models, better 

learning was achieved. Subsequently, high accuracy was achieved using the merging method. 

Thanks to this, it has reached the latest technological performance in classifying skin lesions 

as benign or malignant. It has been determined that such hybrid approaches can provide better 

results compared to individual models obtained from transfer learning and other ensemble 

combinations. This study demonstrates the potential of transfer learning in healthcare 

applications, particularly in the classification of skin lesions. The reduction in 

misclassifications with the collective approach underscores its value, especially in a clinical 

setting where accurate diagnosis is paramount. However, further research is needed on the 

optimal computational efficiency of this approach, especially for its use in real-time 

applications. Large-scale and more diverse datasets will further validate the generalization of 

the proposed model. These promising results enable the investigation of community methods 

on medical images in many other applications where appropriate and efficient classification, 

which is absolutely necessary for the clinical decision-making process, is required. The 

proposed ensemble model significantly reduced misclassification rates compared to 

individual models, demonstrating its potential in medical imaging. By leveraging 

MobileNet’s efficiency and DenseNet121’s deeper feature extraction, the ensemble achieved 

higher accuracy and generalization. 
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