
Erzincan Üniversitesi Erzincan University

Fen Bilimleri Enstitüsü Dergisi Journal of Science and Technology

2024, 17(3), 884-904 2024, 17(3), 884-904

ISSN: 1307-9085, e-ISSN: 2149-4584

Araştırma Makalesi

DOI: 10.18185/erzifbed.1581945

Research Article

*Corresponding Author: isakhan.karabas@ogr.ebyu.edu.tr

İsakhan KARABAŞ, https://orcid.org/0009-0006-0852-1996

Fulya ASLAY, https://orcid.org/0000-0001-5212-6017

Elif ÖKSÜZ, https://orcid.org/0009-0002-8743-2676

 884

A Mobile Secure Content Development Application for Children in the Software

Development Life Cycle Framework

İsakhan KARABAŞ 1*, Fulya ASLAY 1, Elif ÖKSÜZ 1

1Department of Artificial Intelligence and Robotics, Institute of Science and Technology, Erzincan Binali

Yıldırım University, 24030, Erzincan, Turkiye.

Received: 08/11/2024, Revised: 16/12/2024, Accepted: 16/12/2024, Published: 31/12/2024

Abstract

This study focuses on the software development process of a mobile application that aims to support children's

learning, development and entertainment processes while ensuring their safety in the online environment. The

project, which was carried out within the framework of the Software Development Life Cycle (SDLC), adopted

a systematic approach that included requirements analysis, design, development, testing and maintenance

phases. This systematic structure enabled the project to proceed in a planned manner and effective use of

resources. The project aims to minimize digital security risks, provide appropriate content for children and

enable parents to safely control their children's internet use. Extreme Programming (XP) methodology was

preferred in the SDLC development phase. The principles specific to this methodology such as pair

programming, test-driven development (TDD) and continuous integration were effectively applied. The use of

XP enabled user feedback to be processed quickly and the application to be continuously improved. Thus, the

software adapted not only to technical requirements, but also to user experience and security needs. This

process, which successfully completed security and performance tests, demonstrates that effective management

of the entire process, not just coding, in software development projects directly contributes to project success.

The study aims to contribute to the literature on children's digital safety and to provide a basis for future research

in this field.

Keywords: Methodology, SDLC, Software Engineering, Software Testing, XP

Yazılım Geliştirme Yaşam Döngüsü Çerçevesinde Çocuklar için Bir Mobil Güvenli

İçerik Geliştirme Uygulaması

Öz

Bu çalışma, çocukların çevrimiçi ortamda güvenliğini sağlarken, öğrenme, gelişim ve eğlence süreçlerini

desteklemeyi amaçlayan bir mobil uygulamanın yazılım geliştirme sürecini ele almaktadır. Yazılım Geliştirme

Yaşam Döngüsü (SDLC) çerçevesinde yürütülen proje; gereksinim analizi, tasarım, geliştirme, test ve bakım

aşamalarını içeren sistematik bir yaklaşımı benimsemiştir. Bu sistematik yapı, projenin planlı bir şekilde

ilerlemesini ve kaynakların etkili kullanımını mümkün kılmıştır. Proje, dijital güvenlik risklerini minimize

ederek çocuklara uygun içerik sunmayı ve ebeveynlerin çocuklarının internet kullanımını güvenle kontrol

edebilmesini sağlamayı hedeflemektedir. SDLC geliştirme aşamasında Ekstrem Programlama (XP)

metodolojisi tercih edilmiştir. Bu metodolojiye özgü olan çift programlama, test odaklı geliştirme (TDD) ve

sürekli entegrasyon gibi prensipler etkin bir şekilde uygulanmıştır. XP'nin kullanımı, kullanıcı geri

bildirimlerinin hızlı bir şekilde işlenmesini ve uygulamanın sürekli iyileştirilmesini sağlamıştır. Böylece

yazılım, yalnızca teknik gereksinimlere değil, aynı zamanda kullanıcı deneyimi ve güvenlik ihtiyaçlarına da

uyum sağlamıştır. Güvenlik ve performans testlerini başarıyla tamamlayan bu süreç, yazılım geliştirme

projelerinde yalnızca kodlama değil, tüm sürecin etkin yönetiminin proje başarısına doğrudan katkı sağladığını

ortaya koymaktadır. Çalışma, çocukların dijital güvenliği alanındaki literatüre katkı sunmayı ve bu alanda

gelecekte yapılacak araştırmalar için bir temel oluşturmayı hedeflemektedir.

Anahtar Kelimeler: Metodoloji, SDLC, Yazılım Mühendisliği, Yazılım Testi, XP

https://orcid.org/0009-0006-0852-1996
https://orcid.org/0000-0001-5212-6017
https://orcid.org/0009-0002-8473-2676

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

885

1. Introduction

The process of developing a software product is considered as the software life cycle and

consists of various phases such as planning, analysis, design, implementation, testing and

maintenance [1,2]. These phases are implemented sequentially through a model. The software

development model expresses the strategy for the realization of the software and this strategy

includes a set of activities, objects, transformations and events [3]. The software process

includes all activities involved in software development. All activities of specification,

development, verification and evolution are part of all software processes. In addition to the

functionality and performance that customers expect, a good software product is expected to be

easily modifiable according to changing customer requirements. In other words, a good

software product should be maintainable, reliable, efficient and acceptable. In order for a

software product to be successful, all activities planned throughout the software lifecycle

process must be realized within the planned time and cost scope.

Today, a wide variety of software such as operating systems, mobile applications, web

applications, cloud-based applications are being developed. The developed software can appeal

to very different audiences. The software development process should be implemented by

choosing the right methodology according to the scope and scale of the software. In today's

digital world, it is of great importance to ensure that children use the internet safely, to provide

them with appropriate safe and educational content, and to enable parents to safely control their

children's internet use. For this reason, it is necessary to have applications that contain safe

content for children. At the same time, content producers should be guided in this area.

Managing the software processes required for the realization of such applications is also of

great importance in terms of both time and cost. For this reason, this study focuses on a medium-

sized mobile software application that contains safe content for children. In today's digital

world, it is of great importance to ensure that children use the internet safely, to provide them

with appropriate safe and educational content, and to enable parents to safely control their

children's internet use. For this reason, it is necessary to have applications that contain safe

content for children. At the same time, content producers should be guided in this area.

Managing the software processes required for the realization of such applications is also of

great importance in terms of both time and cost.

The term digital security is often used interchangeably with internet security, cyber security,

online security, information security and data security. While some researchers in the field of

early childhood education see the benefits of digital technology in supporting children's

learning and social interactions, others have concerns about its negative impacts on children's

health and development. Children growing up in the digital age from an early age are exposed

to digital technology and overshadowed by digital security threats. According to the OECD

(2021), digital security risks in children can be divided into 4Cs (concerning contact, content,

conduct, and contract risks). Children also have privacy risks, advanced technology risks, and

health and well-being risks. This often causes parental concern and tends to discourage

children's use of technology. There is an important need to raise parents' awareness about the

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

886

impact of digital devices on children's health and development and to ensure that they use the

internet safely [4].

Cyberbullying is increasingly recognized as a threat to the mental health of children and young

people. Children, young people and their families may not know how to stay safe online or how

to respond to unsafe online experiences. Child and Adolescent Mental Health Physicians

believe that new generations should be guided by education from a young age, but it is

impossible to reach everyone [5].

In this study, the software of a mobile application that will support children's learning,

development and entertainment processes while keeping them safe in the online environment

was realized within the framework of the Software Development Life Cycle (SDLC). This

process was carried out by progressing step by step with the principles of continuous

improvement within the framework of the software development life cycle. Within the scope

of the study, requirements determination, system design, development, testing and maintenance

phases are included.

2. Software Development Life Cycle

The Software Development Life Cycle (SDLC) is a systematic process that covers all phases

of software projects from planning to deployment and maintenance. Careful and meticulous

work at every stage of the software development lifecycle and the application of the right

methodologies contribute significantly to the successful completion of the project by improving

the quality of the software [6].

SDLC is used in the software industry to design, develop and produce high-quality, reliable,

cost-effective and timely software products. It is also called the software development process

model [6]. SDLC models form the backbone of software engineering practice by guiding a

systematic and structured approach to creating high quality software products. As technology

evolves and market demands become more dynamic, software development organizations are

faced with the challenge of selecting the most appropriate SDLC model to meet project

requirements efficiently and effectively. Developers, project managers, and quality engineers

should have a thorough understanding of the advantages, disadvantages, and applicability of

various SDLC models in the context of software quality engineering in order to make informed

decisions [7].

The SDLC is a fundamental framework that guides the process of building software

applications, including mobile applications. It consists of a series of well-defined phases

designed to ensure the development of high-quality software that meets or exceeds customer

expectations [7,8].

2.1 SDLC Methodology Phases

SDLC methodologies provide a structured framework that guides the process of designing,

developing and implementing software solutions. These methodologies are diverse and each

offers an approach tailored to a specific project needs, complexity and objectives. One of the

key aspects of the SDLC is its ability to adapt to the unique requirements and constraints of

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

887

different software projects, including mobile applications [10,11]. A visualized description of

the stages in the SDLC is presented in Figure 1 [9].

 Planning

1. Define project scope, objectives and requirements

2. Identify stakeholders and roles

3. Create a project plan, including timelines and resources

 Analysis

1. Collect and document detailed requirements from users and stakeholders

2. Analyze the information collected to understand the functional and non-functional

requirements of the system

3. Develop use cases, user stories or functional specifications

 Design

1. Create an architectural design that defines how software components interact

2. Develop detailed technical specifications

3. Designing the user interface

 Application (Coding)

1. Writing the actual code based on design and specifications

2. Perform unit tests to ensure that individual components function as intended

3. Integrate code modules as needed

 Testing and Merging

1. Conduct various tests, including integration testing, system testing and user testing

2. Identify and correct defects and problems

3. Verify that the software meets the completed requirements

 Maintenance and Sustainability

1. Monitoring and maintenance of the software

2. Addressing and correcting reported problems or defects

3. Make necessary updates, enhancements and patches

Figure 1. Software lifecycle.

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

888

2.2 Using Decision Support Matrix for Selection of SDLC Methodologies

In software development, selecting an appropriate SDLC methodology is a critical decision that

significantly impacts project outcomes [10]. To effectively carry out this decision-making

process, the use of a decision support matrix is invaluable. A decision support matrix provides

a structured approach to evaluate and compare various SDLC methodologies based on their

compatibility with project-specific factors, enabling stakeholders to make informed and

strategic choices [11].

A decision support matrix considers several key factors that influence the suitability of an SDLC

methodology for a given project:

Project Complexity: The complexity of a project's requirements, architecture and technology

stack can influence the choice of SDLC methodology. Projects with high complexity can benefit

from methodologies that allow iterative development and frequent adaptations [12].

Stability of Requirements: The stability of project requirements is a very important

consideration. Projects with well-defined and stable requirements may tend towards a linear

approach, while projects with evolving requirements may prefer Agile methodologies [6].

Customer Involvement: The extent to which customers or end users should be involved

throughout the development process plays an important role. Agile methodologies emphasize

regular customer feedback, while traditional methodologies may involve customers primarily

in the requirements phase [12].

Flexibility and Adaptability: The project's capacity to accommodate changes and adapt to

evolving needs is an important factor. Agile methodologies excel in providing flexibility, while

traditional methodologies may struggle to accommodate late-stage changes [6].

Timeline and Predictability: The timeline requirements of the project and the organization's

need for predictability in terms of project milestones and deadlines are considered. Traditional

methodologies offer a relatively predictable timeline, while Agile methodologies embrace

change and evolution [13].

Creation of Decision Support Matrix;

Factor Weighting: Assign relative weights to each factor based on its importance to the project

[14]. For example, if customer engagement is very important, it may receive a higher weight.

Scoring Criteria: For each factor, scoring criteria can be defined, usually on a scale from low to

high or inadequate to excellent [15,16].

Methodology Assessment: Evaluate each SDLC methodology against factors and criteria and

points are awarded based on compliance [17].

Calculation of Weighted Scores: Multiply the assigned weights by the scores for each factor for

each methodology. Sum these weighted scores for each methodology to obtain the total

weighted score [18,19].

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

889

Selection: The methodology with the highest overall weighted score is the recommended choice

[11].

The general structure of the decision support matrix is shown in Figure 2.

Figure 2. Decision support matrix.

2.3 Software Development with SDLC Methodologies

2.3.1 Traditional Software Development Methodologies

It is an approach that generally follows the planning, design, development, testing and

maintenance phases in a sequential and systematic way. It is used in complex projects where

requirements are clear, large teams are working and complex projects. The most common

traditional software development models include the cascade model, the V-process model and

the spiral model.

The cascade model is one of the oldest methods used in software development processes. It is

an approach in which project steps are sequential and progressive, one step is not completed

until the next step is completed, and it is difficult to go back to the previous step.

The V process model is considered an improved version of the waterfall model. The software

development process has a test phase corresponding to each development phase. Thus, each

phase is verified. It is preferred in projects with high quality requirements.

The spiral model places great emphasis on risk analysis and risk management, which are

ignored in the waterfall model. The project is divided into cycles and each cycle is detailed and

its risks are assessed separately. Therefore, it is suitable for high-risk projects. It is also close

to contemporary models.

2.3.2 Agile Software Development Methodologies

They are software development approaches that enable fast and effective response to customer

requirements and can easily adapt to all kinds of changes [20]. It allows software development

projects to be developed in short cycles by dividing them into small, manageable parts. It is

used in situations where it is difficult to predict the detailed roadmaps and designs of projects.

The most common agile software development methods include Scrum, Kanban, Extreme

Programming (XP) and Lean software development [21].

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

890

The Scrum model is an agile software development model and its general characteristic is that

it is observer, developer and iterative. The Scrum model is used when it is difficult and complex

to plan a software project completely from the beginning. According to this method, a team is

formed for the software development process and a scrum master responsible for the team is

determined. This enables teams to work faster and more efficiently. Scrum teams ensure the

progress of the project by holding sprint meetings at certain intervals [22].

Kanban is a visual management methodology that aims to make production processes and

workflows more efficient. It is used in software development processes in the form of

scheduling to control the phases [23].

XP is an agile software development methodology designed to improve software quality and

responsiveness to changing customer requirements. XP is particularly effective in dynamic

environments where requirements are likely to change because it encourages adaptability and

communication. Team roles in XP vary, but key positions include developers, customers (or

their representatives), coaches and monitors who collectively prioritize tasks, write user stories

and evaluate progress. XP increases productivity and fosters innovation by fostering a culture

of trust and shared responsibility, making it a valuable methodology for teams that want to

deliver high-quality software in a flexible, customer-centric way [24].

Lean software development is adapted from lean manufacturing principles and aims to make

software development processes more efficient and effective. It is a methodology used to

minimize waste in software development processes, maximize customer value and ensure

continuous improvement [25].

3. Mobile Application Project Management

Mobile application project management is the management of the processes and tools used in

the development of mobile applications. This enables both organizing software development

teams and achieving specific business goals. Successful mobile app project management

ensures that the development process is completed on time and within budget, ensuring that the

app meets the targeted quality and user experience standards.

In this project, a mobile application will be developed to create a clean platform for children

that is easy to use, has a high level of security and at the same time does not contain

inappropriate content. The application is designed to work on iOS and Android platforms. The

stages of the application within the scope of SDLC are presented below;

3.1 Software Methodology Selection

XP stands out as one of the agile software development methodologies. Developed by Kent

Beck in the 1990s, this methodology aims to maximize customer satisfaction, improve

teamwork and adapt to changing requirements in software projects. XP is a particularly suitable

approach for projects with frequently changing requirements and where fast deliveries are

critical [24]. XP is built on a set of fundamental principles. These principles include small and

frequent releases, test-driven development (TDD), pair programming, continuous integration,

simple design, continuous feedback, code standards and the 40-hour work week. These

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

891

principles are designed to make the software development process more efficient and agile. For

example, through small and frequent releases, software is delivered in such a way that

customers can provide early feedback [26]. TDD ensures that tests are written before the coding

process and bugs are detected early [27]. Pair programming improves code quality by

encouraging developers to work together [28]. Continuous integration ensures that new code is

continuously integrated into the main code base and that this process is tested [29]. Many

advantages are gained through the use of XP. These include fast feedback, quality coding and

flexibility to change. Frequent deliveries and customer involvement allow the software to be

improved in the early stages [30].

Agile software development methodologies include Scrum, Kanban and Feature-Driven

Development (FDD). A decision-making matrix was created to decide which software

development method to use for the application planned to be made within the scope of this

project, and as a result, it was deemed more appropriate to use the XP software development

process in our software project due to the different sections it contains. XP was chosen

especially because of its advantages of handling user feedback quickly, continuous

improvement of the system through frequent releases and maintaining high quality standards.

According to this software development process, each section is designed, coded and tested

separately. After the testing phases of the sections are completed, all sections are merged. This

user-oriented method contributed to the app providing an effective solution to ensure children's

digital safety.

3.2 Software Requirements Analysis

Requirements analysis is critical to the success or failure of a software project. Requirements

analysis should be performed in order to determine customer expectations in the initial phase

of software projects and to minimize the errors that may occur in the later stages of the software

project. The requirements determined in the early stages of the project may change as the project

progresses. Therefore, they are dynamic. They are divided into two as functional and non-

functional requirements. The steps of requirements analysis are as follows;

 Requirements Gathering: Gathering needs from users and stakeholders. This can be

done through surveys, interviews and observations.

 Requirements Definition: Analyzing the information collected and transforming it into

specific, measurable and achievable requirements.

 Requirements Documentation: Detailed documentation of requirements. These

documents serve as a guide for the project team.

 Requirements Verification and Validation: Checking the accuracy and completeness of

requirements and validation by stakeholders.

 Requirements Management: Monitoring requirements and managing changes

throughout the project [31,32].

These steps ensure that the project achieves its goals and meets user needs. Some common

techniques used in the requirements analysis process include flow diagrams and prototyping

[33].

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

892

For the development of the application, requirements were first analyzed. For this, the functional

and non-functional requirements that make up the software were identified. Then, a feasibility

study was conducted for the analysis and it was decided whether the project should be carried

out or not. Cost and time analysis were made within the scope of the feasibility study.

3.2.1 Functional Requirements

Requirements are expressed as services provided directly to the user in order to meet the user's

needs and expectations. It defines what the system should do. Some functional requirements of

the software developed in the study are presented below;

 Users should be able to register and login to the application with e-mail and password.

 Users should be able to create multiple child profiles and set age-appropriate content

filters for each profile.

 The system should be opened according to the authorization level of the logged in user.

 Users should be able to search for content in the system using the content search feature.

 The user should be able to update their profile information (name, profile photo, etc.).

 Users should be able to access detailed information about each content such as author,

publication date, age group.

 The user should be able to play the game of their choice within the app and track their

achievements in the games.

 Users should be able to play online multiplayer games with other players.

 The user should be able to watch the cartoon of their choice within the application.

 The user should be able to read the books they have selected within the application or

listen to them as audiobooks.

 The user should be able to add any content to their favorite list.

 Parents should be able to limit the usage time of the app and view viewing and reading

history.

 If there is a problem with the password, a password renewal link should be sent to the

e-mail address.

3.1.2 Non-Functional Requirements

It is a performance requirement that addresses the quality and correct operation of the software,

not the service provided directly to the user. It defines how the system should perform. Non-

functional requirements help to ensure that the user's needs are met, that it is reliable. It also

helps to make it easier to use and maintain.

 The system must be secure against unauthorized access. It should ask for member login.

 The application should scale to serve 100000 users at the same time.

 Access to the application should be provided via the internet.

 The app's response time to user requests should not exceed 2 seconds.

 Loading and playback of books, videos and games in the app should not exceed a

maximum of 3 seconds.

 Age verification mechanisms should be in place to control access to content.

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

893

 The user interface should be simple and colorful so that children can use it easily.

 There should be a feedback mechanism where users can easily report bugs in the

application.

 The application should work flawlessly on all operating systems.

 The application should be suitable for commonly used web browsers.

 If there is a problem with the password, a password renewal link should be sent to the

e-mail address.

 The app should be maintained on a monthly basis so that new content and updates can

be easily added.

 The application should be tested weekly for vulnerabilities.

3.3 Software Feasibility Analysis

In software projects, a feasibility analysis should be performed to evaluate the feasibility of the

project by taking into account all factors related to the project. This analysis aims to identify

resources, risks and opportunities to increase the chances of success of the project. In feasibility

analysis, evaluation is made from various angles and it is aimed to increase the efficiency of

the project. Within the scope of this project, cost analysis and time analysis were conducted.

3.3.1 Cost Analysis

In general, cost estimation is one of the most difficult steps in project management. It is very

important to accurately calculate the resources and schedule needed. The software costing

process includes calculating the size of the software to be produced, calculating the effort

required, developing the project schedule, and finally calculating the cost of the entire project

[34]. There is a wide variety of cost estimation methods for evaluating projects, and there are

quite a few studies that favor the COCOMO model for software projects. A study covering 115

different software projects highlighted that costs and timelines are often under- or

overestimated, often due to a lack of structured estimation methods. By applying COCOMO,

this study addressed common problems such as frequent changes made by users, missed tasks,

and inadequate analysis, and helped to improve estimation accuracy by considering complexity,

system size, and team capabilities [35]. In a study focused on creating an online bookstore, the

COCOMO model was used to estimate development efforts. The project included 14 web pages

written in HTML and JavaScript, and the application was categorized under the “organic” mode

using both the basic and intermediate COCOMO sub-models. This approach assisted in effort

estimation based on 2.9 KLOC (thousands of lines of code) and adjusted the predictions using

cost drivers such as reliability, database size, and team experience [36]. The COCOMO model

is used to estimate the cost, duration, and workforce requirements of a software project by

considering its size and complexity. It was developed by Barry W. Boehm in 1981, based on

the principle that the required effort is proportional to an exponential function of the program's

size [12]. COCOMO estimates workload in software projects by considering developers' skills,

software complexity, and the technologies used. The structure of the COCOMO model is

presented in Figure 3 [37].

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

894

Figure 3. COCOMO model.

The COCOMO model has three fundamental types based on different project types and

complexity levels: discrete, semi-detached, and embedded. The effort and duration formulas for

these three models are shown in Table 1 [37,38]. Discrete projects are those developed by

small, experienced teams, characterized by a well-understood scope and low complexity. Semi-

detached projects refer to projects of medium size and complexity, typically managed by expert

teams. Embedded projects are very large, complex projects that require specialized equipment

or hardware.

Table 1. COCOMO model effort and duration formulas.

The cost multiplier in the model is obtained from the product of 15 cost drivers.

COCOMO equations; E=a×(KLOC)b [12]

E: Effort, KLOC: Lines of Code, a ve b: Constants Determined by Model Type

The cost multiplier for the mobile application developed in the study has been determined as

shown in Table 2.

Table 2. Mobile application cost drivers

VERY LOW LOW NOMINAL HIGH VERY HIGH EXTRA HIGH

0,75 0,88 1 1,15 1,4 - 1

- 0,94 1 1,08 1,16 - 1,08

0,7 0,85 1 1,15 1,3 1,65 1

- - 1 1,11 1,3 1,66 1

- - 1 1,06 1,21 1,56 1

- 0,87 1 1,15 1,3 - 1

- 0,87 1 1,07 1,15 - 1,07

1,46 1,19 1 0,86 0,71 - 1

1,29 1,13 1 0,91 0,82 - 1

1,42 1,17 1 0,86 0,7 - 1,17

1,21 1,1 1 0,9 - - 1

1,14 1,07 1 0,95 - - 0,95

1,24 1,1 1 0,91 0,82 - 0,91

1,24 1,1 1 0,91 0,83 - 1,1

1,23 1,08 1 1,04 1,1 - 1

RATINGS
PROJECT

MODP : Application of software engineering methods

TOOL : Use of software tools

SCED : Required development schedule

TURN : Required turnabout time

PROJECT ATTRIBUTES

COST DRIVERS

PERSONNEL ATTRIBUTES

ACAP : Analyst capability

AEXP : Applications experience

PCAP : Software engineer capability

VEXP : Virtual machine experience

LEXP : Programlama dili deneyimi

PRODUCT ATTRIBUTES

RELY : Required software reliability

DATA : Size of application database

CPLX : Complexity of the product

HARDWARE ATTRIBUTES

TİME : Run time performans constraints

STOR : Memory constraints

VIRT : Volatility of the virtual macine environment

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

895

In this context, the effort coefficient for the software project has been calculated as follows;

C = C1*C2*C3*…*C15 = 1,28

The size of the software is approximately 15000 LOC=15 KLOC and it is evaluated as a semi-

detached application.;

Effort = 3 * 15^1.28 = 96 man/month

Duration = 2.5* 96^0.35 = 12,3 month

N = 96/12,3 = 7,8 = 8

Accordingly, it has been estimated that the project can be developed by a team of 8 people in

approximately 12 months.

3.3.2 Time Analysis

Time analysis is an evaluation that includes planning and monitoring the steps required to

complete a software project within the targeted duration, the time allocated for these steps, and

the business processes involved. Through time analysis, it helps determine when the project

will start and finish, identify critical paths, and recognize potential delays, contributing to the

timely and budget-compliant completion of the project. One of the most common methods for

time analysis is the Gantt chart. A Gantt chart visualizes the start and end dates of specified time

periods as horizontal bars. It is a simple and clear visual tool for tracking and managing project

progress. Considering the duration obtained for the project within the framework of the

COCOMO model, a time analysis has been conducted and is illustrated in Figure 4 using a

Gantt chart. The chart shows the time analysis for the 12 months required to complete the

project based on the planned tasks. Accordingly, customer meetings and target audience

analysis were completed in the first month, followed by the determination of requirements. A

cost analysis was performed based on the identified requirements, and immediately after that,

the design phase commenced. After the design, the implementation phase—the longest phase

of the project—began, during which testing was conducted for each unit as the application was

developed. Performance and security testing started after the application was developed, and

once these tests were completed, the software project was launched with a beta version.

Subsequently, the project entered the maintenance phase with feedback from end users and

requests for software updates, finalizing the software.

Figure 4. Gantt diagram for the developed application.

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 Month 7 Month 8 Month 9 Month 10 Month 11 Month 12

Adding new features

Customer meetings

Target audience analysis

Determination of the project team

Requirements identification

Cost analysis

Database design

Gantt Chart

Adding beta version

Updates

User interface design

Application development

Unit tests

User testing

Performance and security testing

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

896

3.4 Software Design

The software design phase is one of the most critical and important stages in the software

development process, occurring before the coding phase. There are three different software

design models: Architectural design, which involves designing program models using UML

(Unified Modeling Language) graphic language and GUI (Graphical User Interface) design.

Each model generates various sub-models. Architectural design is created by establishing the

foundations of the software and connecting these building blocks to form the design. This

involves determining how the software’s modules and sub-modules relate to the database and

other structures, thereby designing how the system will operate. Here, client-server architecture,

layered architecture, and repository architecture can be employed [39].

The study plans to develop the software for mobile platforms. Mobile software development

requires rapid updates and enhancements to meet the varying capacities of different customers

in a mobile environment, which is subject to failures and a series of constraints. The evolving

constraints also include existing limitations such as technology, resources, bandwidth, and

coverage area in the future [40].

In object-oriented design, specialized design tools are used. UML is a standard modeling

language commonly preferred for modeling systems where object-oriented programming

techniques are planned to be used. UML is employed to provide standards for complex

programs that require the consideration of both software and hardware, especially in situations

where the code will be developed by multiple developers [41].

UML diagrams are graphical representations that illustrate different aspects and features of a

system. When modeling a system, the appropriate diagram is selected and drawn based on the

specific aspect that needs to be examined. Depending on the specialized needs of the

developers, some programmers maintain a strict approach and take great care in using all the

diagrams and definitions from the Object Management Group (OMG), potentially wasting time

on unnecessary drawings. In contrast, others may settle for just using use case and class

diagrams [41]. Use Case diagrams are a sub-module of UML diagrams, and during the software

design development process, a use case diagram is used to model how a system interacts with

its users. This diagram aims to visualize the functions offered by the system, the users who will

utilize these functions, and the relationships between the functions. In software development

processes, use case diagrams help simplify the visualization of complex system functionalities,

enabling users to understand the system easily [42,43]. Accordingly, when creating the diagram,

the functions that the system will offer and the users who will utilize the system are determined.

Based on the functions provided by the system or the expectations of the users from the system,

use cases are created, visualizing the relationships between the users and the use cases.

A general use case diagram illustrating the actors and their permissions for the mobile

application developed in the study is displayed in Figure 5.

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

897

Figure 5. Use case diagram of the application.

Accordingly, a user with "Administrator" privileges can perform content compliance and

addition/deletion operations. The registration and list creation processes are carried out by the

"Parent" user, while the "Child" can access the created lists. This access helps prevent the child

from navigating inappropriate content.

3.5 Software Testing

The testing phase, which is a part of the software development process, is a crucial stage for

ensuring the functionality and quality of the software. The aim of the testing phase is to identify

and rectify any potential errors in the software beforehand. Some of the tests conducted during

the software development process include unit tests, integration tests, performance tests, user

tests, security tests, and acceptance tests [44].

When the testing process begins, it is essential to plan in advance which tests will be conducted,

how they will be performed, when they will take place, who will conduct them, and which tools

will be used. Tests should be executed, results recorded, and necessary improvements made.

Following these improvements, the tests should be repeated, and after all these testing stages,

the success of the system should be evaluated.

Within the scope of the study, it is planned to test each module of the application separately for

different content sections. For example, in the application's book list section, it will be tested

whether the pages of the books displayed change individually and within a specified time frame.

Based on the results, improvements will be made if necessary.

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

898

When the sections are integrated, it is essential to verify how the system works together and to

check the data flow and compatibility between them. Additionally, since further additions to the

created application are planned, it is intended to ensure the appropriateness of each content that

is considered for inclusion.

It is planned to test the response times of each content section of the application, assess its

performance under extreme conditions, identify any security vulnerabilities, and evaluate

whether it is user-friendly.

Finally, it is planned to test whether the entire system operates according to its requirements

across different devices, browsers, and operating systems. Each of these tests is critical to

ensuring the application's functionality. Additionally, it is necessary to carefully analyze the

results of these tests to manage the continuous improvement process with feedback at every

stage.

3.6 Software Maintenance

In software development projects, the maintenance phases encompass activities aimed at

ensuring the software operates effectively and reliably throughout its lifecycle after

development. The maintenance phases are critical for the sustainability and longevity of a

project. Specifically, regular maintenance activities lead to performance improvements and the

resolution of security vulnerabilities [45,46]. Types of maintenance to be implemented in the

study;

 Preventive Maintenance: Periodic security updates and system enhancements will be

performed to improve the application's security and performance. Preventive maintenance is

designed to prevent future issues with the software.

 Corrective Maintenance: Rapid identification and resolution of errors reported by users

will be ensured. This type of maintenance is critical for enhancing the software's user

experience. Additionally, regular updates will be planned based on user feedback.

 Performance Maintenance: Performance optimizations will be implemented to enhance

the speed and efficiency of the application. The software's response times, resource usage, and

other performance metrics will be regularly analyzed.

 Test Maintenance: This involves updating and maintaining software tests. Test scenarios

need to be updated to accommodate new features or changes in the software.

 Training Maintenance: Training processes and materials will be developed to enable

users to utilize the application most effectively. This aims to ensure that users are informed

about the system and can troubleshoot potential issues.

In the study, rapid identification and resolution of errors reported by users will be ensured.

Considering user feedback allows for updates to the system according to user needs, thereby

continuously enhancing the application's speed and efficiency. Regular updates will be released

to address security vulnerabilities and implement performance improvements. Conducting

regular updates ensures the platform's resilience and security against technological

advancements. Performance optimizations will be carried out to enhance the application's speed

and efficiency. User feedback will be collected and evaluated regularly. This will ensure that

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

899

the application remains a long-lasting and secure platform, adapting to user needs and

technological developments [45].

In a software lifecycle, the maintenance phase is continuous, meaning that every request (such

as software bugs, new plugin requests, etc.) leads the lifecycle back to the beginning, and the

software development process continues through the same stages. Therefore, this process takes

the form of a cycle.

4. Conclusion & Discussion

In the study, the software development phases of a mobile application that ensures children's

safety in the online environment while supporting their learning, development, and

entertainment processes have been managed. Within the framework of the software

development lifecycle, phases such as requirement identification, feasibility analysis, system

design, development, testing, and maintenance have been prepared.

In the initial phase of the project, the needs of children and parents were analyzed in detail to

determine requirements, leading to the design of a user-friendly, safe, and educational interface.

By adopting the XP methodology, a lifecycle process aimed at continuous improvement has

been implemented.

Security and performance tests of the application have been conducted to ensure smooth

operation across all systems. During the maintenance phase, quick responses to user feedback

have been provided to keep the application continuously updated and secure. Additionally, with

the chosen methodology, the mobile application developed in the study will continue to be

enhanced in line with the principles of continuous improvement, and updates will be planned

to incorporate new features based on user feedback.

In software development projects, the code development phase is often considered the most

important. However, the successful completion of a project relies on effective process

management throughout all phases, from the project's inception to its final stages. Continuing

the maintenance processes with the same steps after the project is completed enhances the

project's success.

Life cycle models need to be rigorously applied to ensure that software projects meet user

requirements [47]. He emphasized that digital security is a key element for developing more

reliable apps, especially for vulnerable user groups such as children [48].

Studies on SDLC and secure digital content development projects for children prove the

importance of security-focused SDLC methodologies. For example, threat modelling and

security testing applied in Microsoft's Secure Development Lifecycle (SDL) model helps teams

developing content for children to identify and eliminate security vulnerabilities at an early

stage [49].

Research by Snyk shows that security assessments integrated into each phase of the secure

SDLC improve the security of the software. As stated in Snyk's work on SDLC practices,

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

900

implementing security controls at the requirement and design stages significantly reduces the

cost of changes to be made at later stages and increases security. In addition, they emphasize

that the adaptation of SDLC in secure mobile applications for children is effective in protecting

children's online safety and privacy rights [50].

Existing research shows that providing safe content for children is not only a software

development issue, but also a critical issue for children's health and development. This study

contributes to this literature and argues that analyzing user requirements, enabling parental

control mechanisms and conducting digital security tests are necessary in the process of

developing safe content for children [6,47,48,51].

In the literature, there are similar studies on digital security, software development processes

and creating safe digital content for children. This study will contribute to the literature by

combining digital security and user experience in the field of safe mobile content development

for children. In the future, more comprehensive research on the personalization of applications

for different age groups, the development of parental control tools, and the integration of digital

safety tools with educational content can be recommended.

This study contributes to the literature by combining digital safety and user experience in the

field of developing safe mobile content for children. However, there are some limitations. First,

the study only addressed the development of a generic mobile application for children of a

certain age group. It is thought that personalized solutions for different age groups may be more

effective. Secondly, parental control mechanisms and digital safety tools could be expanded to

analyze children's interactions with different digital environments in more detail. Furthermore,

the methodology developed in this study has not been tested for its applicability to larger or

different scale projects. For future research, it is recommended to conduct more comprehensive

studies on customizing applications for different age groups, developing parental control tools,

and integrating digital safety tools with educational content. In addition, it would be useful to

conduct long-term studies to evaluate the impact of the developed applications on user

satisfaction and safety in the long term. Such studies will contribute to the improvement of both

software development processes and user experience.

Ethics in Publishing

 There are no ethical issues regarding the publication of this study

Author Contributions

In the preparation of the publication, the authors have acted jointly in all parts.

References

[1] Curtis, B., Krasner, H., Iscoe, N., (1988). A field study of the software design process

for large systems. Commun ACM; 31: 1268–1287.

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

901

[2] Rod S. BEGINNING Software Engineering, Second Edition, (2024). Beginning

Software Engineering, Second Edition; 1–685.

[3] Setyantoro A. Process Models in Software Engineering.

https://www.academia.edu/36272460/Process_Models_in_Software_Engineering.

[4] Sari, P.I., Rahmawati, I., Mariyana, R., Charmeida, N. (2024) The Correlation Between

Parental Awareness and Concern to The Early Childhoods’ Digital Safety. Kiddo:

Jurnal Pendidikan Islam Anak Usia Dini, 5, 310–326.

[5] Lonergan, A., Moriarty, A., McNicholas, F., Byrne, T. (2023) Cyberbullying and

internet safety: a survey of child and adolescent mental health practitioners. Ir J

Psychol Med; 40: 43–50.

[6] Pressman, R.S., Maxim, B.R. (2015) The Software Engineer’s Responsibility. Software

Engineering: A Practitioner’s Approach, 865–867.

[7] Software development life cycle methods | by Chathurika Dhananjani | Medium.

https://chathurikadhananjani97.medium.com/software-development-life-cycle-

methods-712be36f6aae.

[8] DevOps Puppet. In a simple word a Puppet is a… | by Sidhant Suryavansham |

Medium. https://sidhant-suryavansham.medium.com/devops-puppet-78400f04696b.

[9] Software Development Life Cycle | Benefits, Phases, Process & Models.

https://www.weetechsolution.com/blog/software-development-life-cycle.

[10] Comparative Analysis of Software Development Life Cycle Models

https://www.researchgate.net/publication/286134213_Comparative_Analysis_of_Softw

are_Development_Life_Cycle_Models.

[11] Wang, Y.M., Elhag, T.M.S. (2006) Fuzzy TOPSIS method based on alpha level sets

with an application to bridge risk assessment. Expert Syst Appl, 31, 309–319.

[12] Boehm, B.W. (1988) A Spiral Model of Software Development and Enhancement.

Computer (Long Beach Calif), 21,: 61–72.

[13] McConnell, S. R. (2010) Development: Taming Wild Software Schedules. Microsoft

Press, 6, 680.

[14] Saaty, T.L. (1990) How to make a decision: The analytic hierarchy process. Eur J Oper

Res, 48, 9–26.

[15] Liberatore, M.J., Nydick, R.L. (2008). The analytic hierarchy process in medical and

health care decision making: A literature review. Eur J Oper Res, 189, 194–207.

[16] Aniley, D.B., Jalew, E.A., Agegnehu, G.A. (2024) Selection of Software Development

Life Cycle Models using Machine Learning Approach. Int J Comput Appl, 186, 36–43.

[17] MIH (2023) Software Development Life Cycle (SDLC) Methodologies for Information

Systems Project Management. IJFMR - International Journal For Multidisciplinary

Research; 5.

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

902

[18] Brans, J.P., Vincke, P. (1985). Note—A Preference Ranking Organisation Method.

Manage Sci, 31, 647–656.

[19] Islam, A.K.M.Z., Ferworn, DrA. (2020). A Comparison between Agile and Traditional

Software Development Methodologies. Global Journal of Computer Science and

Technology; 20: 7–42.

[20] Keskinkılıç, M. & Kahveci, F. (2019) Yazılım Mühendisliğinde Çevik Yöntemler

Üzerine Kavramsal Bir İnceleme ve Sınıflandırma. Atatürk Üniversitesi Sosyal

Bilimler Enstitüsü Dergisi, 23(3), 1067-1091.

[21] Herdika, H.R., Budiardjo, E.K. (2020) Variability and Commonality Requirement

Specification on Agile Software Development: Scrum, XP, Lean, and Kanban.

International Conference on Computer and Informatics Engineering, 323–329.

[22] Schwaber, K., Sutherland, J. (2020) The Scrum Guide The Definitive Guide to Scrum:

The Rules of the Game.

[23] Ahmad, M.O., Markkula, J., Oivo, M. (2013) Kanban in software development: A

systematic literature review. Proceedings- 39th Euromicro Conference Series on

Software Engineering and Advanced Applications, SEAA, 9–16.

[24] Beck K. Praise for Extreme Programming Explained, Second Edition.

[25] Lean Software Development: An Agile Toolkit: Poppendieck, Mary, Poppendieck,

Tom: 0785342150780: Amazon.com: Books. https://www.amazon.com/Lean-Software-

Development-Agile-Toolkit/dp/0321150783.

[26] Fowler, M., Beck, K. (2018) Refactoring : Improving the Design of Existing Code,

Second Edition Fowler, Martin.

[27] Test Driven Development: By Example: Beck, Kent: 8601400403228: Amazon.com:

Books. https://www.amazon.com/Test-Driven-Development-Kent-

Beck/dp/0321146530.

[28] Williams, L., Kessler, R.R., (2003) Pair Programming Illuminated, 265.

[29] Continuous Integration: Improving Software Quality and Reducing Risk: Paul M.

Duvall, Steve Matyas, Andrew Glover: 9780321336385: Amazon.com: Books.

https://www.amazon.com/Continuous-Integration-Improving-Software-

Reducing/dp/0321336380.

[30] Cohn, M. (2009). What is a User Story? User Stories Applied, 4.

[31] Yazılım Gereksinim Analizi | AppMaster. https://appmaster.io/tr/blog/yazilim-

gereksinimleri-analizi.

[32] Mobil Uygulama Geliştirme Rehberi | Vayes. https://www.vayes.com.tr/tr/blog/mobil-

uygulama-gelistirme-rehberi.

[33] Gereksinim yönetimi - Vikipedi.

https://tr.wikipedia.org/wiki/Gereksinim_y%C3%B6netimi.

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

903

[34] Albrecht, A.J., Gaffney, J.E., (1983) Software Function, Source Lines of Code, and

Development Effort Prediction. IEEE Transactions on Software Engineering, SE-9,

639–648.

[35] Milicic, D. (2004) Applying COCOMO II- A case study.

[36] Albakri, M.M., Rizwan, M., Qureshi, J. Empirical Estimation of COCOMO I and

COCOMO II Using a Case Study.

[37] Yazılımcılar Dünyası: COCOMO (Constructive Costing Model).

https://www.yazilimcilardunyasi.com/2017/01/cocomo-constructive-costing-

model.html.

[38] Rush, C., Roy, R. (2023) Analysis of cost estimating processes used within a

concurrent engineering environment throughout a product life cycle. Advances in

Concurrent Engineering; 58–67.

[39] Baresi, L., Pezzè, M. (2006) An Introduction to Software Testing. Electron Notes Theor

Comput Sci, 148, 89–111.

[40] Corral, L., Sillitti, A., Succi, G. (2013) Agile Software Development Processes for

Mobile Systems: Accomplishment, Evidence and Evolution. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 8093 LNCS: 90–106.

[41] Dobing, B., Parsons, J. (2006) How UML is used. Commun ACM, 49109–113.

[42] Faitelson, D., Tyszberowicz, S. (2017) UML Diagram Refinement (Focusing on Class-

And Use Case Diagrams). Proceedings - International Conference on Software

Engineering; 735–745.

[43] Jayasiriwardene, S., Meedeniya, D. (2021) Architectural framework for an interactive

learning toolkit. Proceedings - International Research Conference on Smart Computing

and Systems Engineering; 14–21.

[44] Li, S., Lei, Y., Jia, Z., Boukhlif, M., Hanine, M., Kharmoum, N. (2023) A Decade of

Intelligent Software Testing Research: A Bibliometric Analysis. Electronics, 12.

[45] Umudova, S. (2019) Analysis of Software Maintenance Phases. Noble International

Journal of Scientific Research; 3: 62–66.

[46] The Unified Modeling Language Reference Manual, (2nd Edition): Rumbaugh, James,

Jacobson, Ivar, Booch, Grady: 9780321718952: Amazon.com: Books.

https://www.amazon.com/Unified-Modeling-Language-Reference-

paperback/dp/032171895X.

[47] Curtis, B., Krasner, H., Iscoe, N. (1988) A field study of the software design process for

large systems. Commun ACM, 31, 1268–1287.

[48] Setyantoro A. Process Models in Software Engineering.

https://www.academia.edu/36272460/Process_Models_in_Software_Engineering.

A Mobile Secure Content Development Application for Children in the Software Development Life Cycle

Framework

904

[49] Children’s online activities, risks and safety: A literature review by the UKCCIS

Evidence Group - GOV.UK. https://www.gov.uk/government/publications/childrens-

online-activities-risks-and-safety-a-literature-review-by-the-ukccis-evidence-group.

[50] Secure Development Lifecycle for App Security - AppSOC.

https://www.appsoc.com/blog/understanding-the-secure-development-lifecycle-sdlc-

for-app-security.

[51] Lonergan, A., Moriarty A, McNicholas F, Byrne T, (2023) Cyberbullying and internet

safety: a survey of child and adolescent mental health practitioners. Ir J Psychol Med;

40: 43–50.

