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1. INTRODUCTION 
 

Lung cancer is the most common type of cancer and the 

leading cause of cancer-related deaths worldwide [1]. 

According to the GLOBOCAN database, approximately 2.09 

million new cases were reported in 2018, with around 1.76 

million deaths attributed to the disease [2]. In recent years, 

both incidence and mortality rates have risen sharply [3]. 

 Lung cancer is classified into two main types: Non-

Small Cell Lung Cancer (NSCLC) and Small Cell Lung 

Cancer (SCLC) [4]. NSCLC accounts for 80%–85% of cases 

and includes three subtypes: adenocarcinoma, squamous cell 

carcinoma, and large cell carcinoma [5]. SCLC, on the other 

hand, represents about 10%–15% of cases. Although survival 

rates vary by clinical stage, the overall 5-year survival rate 

remains low at approximately 22% [6]. 

 Radiological imaging methods are frequently used to 

detect lung cancer early [7]. Chest radiography is one of the 

most basic methods [8]. It is both low-cost and widely used. 

However, the tumor's size and location can cause issues. It 

might be missed or mistaken for other lung diseases [9]. Due 

to these disadvantages, detecting small lesions or early-stage 

tumors on chest radiography is very challenging [10]. 

Computed tomography (CT) is a more sensitive method 

for lung cancer diagnosis [11]. It allows comprehensive 

volumetric images to be captured in a single breath-hold [12]. 

By scanning the lungs in thin sections, CT can detect both 

small nodules and the extent of tumor spread [13]. Several 

studies have shown that low-dose CT detects more nodules 

and early-stage lung cancers compared to chest radiography 

[14, 15]. However, interpreting lung CT scans is a particularly 

intensive task. It requires extensive experience to assess the 

malignancy risk accurately [16]. Without such experience, the 

risk of misinterpretation can increase, affecting the accuracy 

of diagnosis. 

To reduce these risks, deep learning-based computer-aided 

diagnosis (CAD) systems have been developed [17, 18]. 

These AI-powered systems enhance diagnostic efficiency, 

potentially reducing the workload on radiologists [19]. Li et 

al. introduced the Reconstruction-Assisted Feature Coding 

Network (RAFENet) model [20]. This model automatically 

classifies adenocarcinoma and squamous cell carcinoma in 

CT images. In their study, CT images from the Cancer 

Imaging Archive (TCIA) were utilized. Due to hardware 

limitations, each CT slice was cropped into a 128×128 pixel 

patch centered on the target structure. An early stopping 

function was used during training to stop the process if 

validation accuracy didn’t improve within 10 epochs. 

RAFENet achieved a classification accuracy of 79.70% on the 

test set. Pang et al. developed a model based on densely 

connected convolutional neural networks (CNNs) to 

automatically classify adenocarcinoma, squamous cell 
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carcinoma, and large cell carcinoma in CT images [21]. They 

used real patient data collected from Shandong Provincial 

Hospital for training and validation. Since the dataset was 

limited, they applied data augmentation techniques such as 

rotation, translation, and transformation to increase the 

variability in the training data. The model achieved an 

accuracy of 89.85% in detecting lung cancer. Han et al. 

employed the VGG-16 architecture for automatic 

classification of adenocarcinoma and squamous cell 

carcinoma [22]. Their model was trained using a dataset 

collected from Peking University Cancer Hospital. The 

dataset was split using a 10-fold cross-validation approach. 

The VGG-16 model reached an accuracy of 84.10% on the test 

set. Chaunzwa et al. also proposed a VGG-16 based model for 

classifying adenocarcinoma and squamous cell carcinoma 

from CT images [23]. The model was trained using a private 

dataset collected from 311 early-stage NSCLC patients treated 

at Massachusetts General Hospital. The model achieved an 

AUC of 0.71 (p = 0.018) in classifying these cancer types. 

Zhao et al. proposed a Vision Transformer-based (ViT) model 

for the classification of NSCLC subtypes [24]. Their model 

was trained on CT images obtained from the TCIA. To 

optimize performance, images were resized to 224×224 pixels 

before being fed into the network. A data augmentation 

strategy, including rotation and flipping, was applied to 

improve generalization. The model was trained using a cross-

entropy loss function, and an adaptive learning rate scheduler 

was employed. Experimental results demonstrated that the 

ViT model achieved a classification accuracy of 86.00%. 
Venkatesh et al. proposed a hybrid deep learning model for lung 

cancer detection, combining patch processing with CNN-based 

classification [25]. Using CT images from the LIDC and Kaggle 

datasets, the model automatically distinguishes between benign 

and malignant lung nodules. By extracting relevant features 

through CNN, the approach achieved an impressive classification 

accuracy of 99.96%. 
The experimental findings of these studies show that deep 

learning architectures hold great potential for automatically 

classifying NSCLC subtypes. However, these studies focus 

solely on NSCLC detection and exclude SCLC and normal 

findings. While NSCLC makes up about 85% of lung cancer 

cases, models that only detect this class are not enough. A 

reliable decision support system should also accurately 

classify SCLC and normal cases. However, we have not come 

across a publicly available lung CT dataset containing 

NSCLC, SCLC and normal images labelled for training deep 

learning models. In addition, when the studies are analyzed, it 

is seen that most of them use CNN-based architectures for 

lung cancer detection. However, CNNs heavily depend on 

local receptive fields and pooling operations, which limits 

their ability to capture long-range dependencies within an 

image. This limitation makes it harder to fully understand the 

input and identify complex relationships between different 

regions of the image. In contrast, transformer-based models, 

which use self-attention mechanisms to capture interactions 

between distant image regions, have the potential to enhance 

the accuracy of lung cancer classification. 

In this study, we compared the performance of 

transformer-based architectures for automatic lung cancer 

classification from CT images. Specifically, we evaluated 

three models commonly used in image classification: ViT, 

data-efficient image transformers (DeiT), and Swin 

Transformer. For this study, we collected a private lung cancer 

dataset, which includes CT images of patients with SCLC, 

NSCLC and normal findings. Then we trained each model 

with equal hyper-parameters. Using the weights obtained as a 

result of training, we examined the computational and 

statistical performance of the models on the test samples. 

The main contributions of this study are as follows: 

 We provided a thorough comparison of three 
state-of-the-art transformer-based models for the 
task of lung cancer classification from CT 
images. 

 We applied the transformer-based models to a 
real world lung cancer dataset. 

 We compared the computational efficiency of the 
models and assessed their potential for 
integration into diagnostic processes. 

 Our work contributes to the growing field of 
CAD by showcasing the potential of transformer-
based models. 

 

2. MATERIAL AND METHODS 
 

In this study, we utilized three different deep learning 

models for lung cancer classification. Our approach includes 

a pre-processing stage where input CT images are divided into 

patches that these models can process. Specifically, we used 

16×16 pixel patches for ViT and DeiT, while the Swin 

Transformer operates with 4×4 pixel patches. Each model 

leverages a transformer-based architecture to extract features 

from the images, and classifies them into one of three 

categories: SCLC, NSCLC, or normal. To evaluate and 

compare the performance of these models, we analyzed 

confusion matrices, training and validation curves, and epoch-

based duration. The block diagram of our used framework is 

given in Figure 1. 

 

 
Figure 1.  The block diagram of our framework.  

 

2.1. Lung cancer CT dataset  
In this study, we collected a private dataset with the 

approval of the non-interventional ethics committee from 

Firat University (Approval Number: 2024/13-38). The dataset 

contains 690 CT images, showing either lung cancer (SCLC 

or NSCLC) or normal findings. These scans were taken at 

Elazig Fethi Sekin City Hospital between 2020 and 2024. All 

CT scans were performed using a Philips Ingenuity-128 CT 

device. Our expert radiologist carefully reviewed and labeled 

each image. For images labeled as SCLC or NSCLC, a biopsy 

result confirmed the diagnosis.  

 
TABLE I  

DETAILS OF THE LUNG CANCER CT DATASET 

Class Label 
Image 

Resolution 
Number of 

Images 
Percentage 

Cancer 
SCLC 768×768×3 125 

54,35 % 
NSCLC 768×768×3 250 

Normal Normal 768×768×3 315 45,65 % 

 

CT images without finding of lung cancer were labeled as 

normal. The dataset comprises 125 images of SCLC, 250 
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images of NSCLC, and 315 images with no pathological 

findings. The SCLC and NSCLC images include diverse 

tumor sizes, locations, and densities to ensure clinical 

variability. Normal images include patients with no signs of 

nodules, masses, or other abnormalities. Further details about 

the dataset are given in Table 1. 
 

2.2. Transformer-based image classification models 
In recent years, transformer-based models have gained 

significant popularity in computer vision studies [26, 27]. 

These models have the ability to capture long-distance 

dependencies thanks to their self-attention mechanisms [28]. 

This capability sets them apart from traditional CNNs. In this 

study, we employed three different transformer-based models. 

Each of these models can be summarized as follows. 

In 2020, Dosovitskiy et al. introduced the ViT model, 

which marked a significant step in applying transformer-based 

architectures to image classification [29]. Unlike CNNs, ViT 

divides input images into fixed-size patches. These patches 

are treated like tokens in natural language processing tasks. 

Each patch is linearly embedded and passed through several 

layers of self-attention [30]. The model uses a specialized 

classification token (CLS token) to summarize the 

information gathered from the patches. The output of this 

token is converted into a class prediction through a small 

multilayer perceptron (MLP) using a tanh activation function 

in a single hidden layer. 

The DeiT model, developed by Touvron et al. in 2021, 

aims to make transformer-based architectures for image 

classification more efficient [31]. Similar to ViT, DeiT divides 

the input images into fixed-size patches and treats these 

patches as tokens. These patches are placed linearly and then 

passed through self-attention layers. One of the most 

important features of DeiT is that it uses a teacher model to 

improve performance even with less data. This approach, 

called knowledge distillation, involves transferring 

knowledge from a larger and well-trained teacher model to a 

smaller student model [32]. The model trained on a larger 

dataset not only provides accurate predictions, but also 

valuable information about the relationships between different 

classes. This additional information allows DeiT to be trained 

more efficiently even with limited data. 

In 2021, Liu et al. proposed the Swin Transformer model, 

which builds on transformer-based architectures for image 

classification [33]. This model addresses some of the 

challenges seen in ViT. While ViT processes an entire image 

at once, the Swin Transformer divides the image into fixed-

size patches called windows. Self-attention is applied within 

each window, focusing on local regions, which reduces the 

computational load. To connect information between 

windows, the model uses a shifting window mechanism that 

shifts the windows at different layers, allowing the model to 

gather features from across the image [34]. Swin Transformer 

also uses a hierarchical structure, where the patch size 

increases as the network progresses, letting it capture both 

detailed and broader features. This multi-scale processing 

helps the model handle both fine and coarse information 

effectively. 

 

2.3. Evaluation metrics  
We used confusion matrix based metrics to evaluate the 

performance of the models. Confusion matrix is a simple table 

showing the relationship between the actual and predicted 

classes. This matrix contains the number of true predictions 

and false predictions. These situations are represented by 4 

different elements. In a multi-class study, these elements are 

usually evaluated separately for each class. These elements 

can be summarized as follows. 

 True Positive (TP): The number of images whose 
labels are correctly predicted from the samples 
belonging to the target class. 

 True Negative (TN): The number of images 
whose labels are correctly predicted from 
samples of classes other than the target class. 

 False Positive (FP): The number of images whose 
labels are predicted as the target class although 
their actual labels are different from the target 
class. 

 False Negative (FN): The number of predicted 
images with labels different from the target class. 

When measuring the classification performance of deep 

learning models, four main metrics are typically used. 

Accuracy (Acc) measures how correctly the model predicts 

across all test data. It is calculated using Equation 1. 

 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
                            (1) 

 

Precision (Pre) assesses how accurate the model is in its 

positive classifications. It is calculated using Equation 2. 

 

𝑃𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                        (2) 

 

Recall (Rec) evaluates how well the model identifies true 

positives. It is calculated using Equation 3. 

 

𝑅𝑒𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                        (3) 

 

F-1 score provides a balance between precision and recall 

by calculating their harmonic mean. It is calculated using 

Equation 4. 

 

𝐹1 =  
2 ×  𝑃𝑟𝑒 ×  𝑅𝑒𝑐 

𝑃𝑟𝑒 + 𝑅𝑒𝑐
                                (4) 

 

3. EXPERIMENTS 
 

In this section, we present our experimental setup and 

results. First, we describe the training scenario and pre-

processing steps. Next, we detail the training and testing 

processes of the models used in the study. Finally, we compare 

the performance of the models using various metrics. 

 

3.1. Experimental setup  
In this study, we evaluated the performance of 

transformer-based models for classifying lung cancer from CT 

images. Each model was initialized with pre-trained weights. 

We fine-tuned these models on our lung cancer dataset. 

Randomly selected samples from the classes in our dataset are 

given in Figure 2. 

The models were trained to classify the CT images into 

one of three categories: SCLC, NSCLC, or normal. The 

collected CT images were first resized to a resolution of 

224×224 pixels. The dataset samples are randomly divided as 

follows: 60% for training, 20% for validation, and 20% for 
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testing. The distribution of the dataset samples is given in 

Table 2. 

 

Normal Images

SCLC Images

NSCLC Images

 
Figure 2.  Randomly selected samples from our dataset.  

 

 
TABLE II  

THE DISTRIBUTION OF THE DATASET SAMPLES 

Image 

Type 
Resolution 

Number of  

Train Images 

Number of  
Validation 

Images 

Number of  

Test Images 

PNG 224×224×3 

SCLC=75 

NSCLC=150 
Normal=189 

SCLC=25 

NSCLC=50 
Normal=63 

SCLC=25 

NSCLC=50 
Normal=63 

 

All models were implemented using the PyTorch 

framework (version 2.2.1). The training pipeline was managed 

using timm. We used the AdamW optimizer with an initial 

learning rate of 0.00002. A batch size of 16 was used for 

training. Each model was trained for a maximum of 100 

epochs. Early stopping function was used to prevent 

overfitting. The patience value was set to five, and validation 

loss was monitored at the end of each epoch. The performance 

of each model was evaluated using confusion matrix-based 

metrics. All experimental studies were carried out on RTX 

4090 24 GB GPU. 

 

3.2. Results 
This section presents the experimental results of 

transformer-based models for lung cancer classification. The 

evaluation includes accuracy, precision, recall, F1-score, and 

computational efficiency. A summary of the model-specific 

training processes is provided below. 

The training loss of the ViT model decreased steadily. It 

dropped from 1.12 in the first epoch to 0.14 in the final epoch 

(14th epoch). Training accuracy improved significantly, rising 

from 47.8% at the beginning to 93.4% in the final epoch. This 

shows that the model adapted well to the training data, and the 

learning process was successful. The continuous decrease in 

training loss correlated with an increase in accuracy. 

Accuracy, which started at lower levels, increased rapidly as 

the loss decreased. Validation loss followed a similar trend. It 

dropped from 1.07 at the beginning to 0.37 in the final epoch. 

Validation accuracy improved from 60.1% to 86.9%. Training 

times ranged between 3.03 and 3.23 seconds per epoch, while 

validation times were approximately 0.60 to 0.68 seconds. 

The training and validation curves, along with the epoch-

based time plot for the ViT model, are shown in Figure 3. 

The DeiT model also showed good results. Training loss 

decreased from 1.00 in the first epoch to 0.20 by the final 

epoch (29th epoch). Training accuracy rose from 49.8% to 

93.7%. The decrease in training loss was in line with the 

increase in accuracy. Although accuracy was low at first, it 

improved as the losses decreased. Validation loss showed a 

similar pattern. It dropped from 0.94 at the beginning to 0.34 

by the final epoch. Validation accuracy increased from 64.5% 

in the first epoch to 85.5% by the end of training. This 

indicates that the model performed well on unseen data. 

Training times ranged from 3.05 to 3.61 seconds per epoch, 

while validation times were approximately 0.64 to 0.72 

seconds. The training and validation curves, along with the 

epoch-based time plot for the DeiT model, are shown in 

Figure 4. 

The Swin Transformer model also demonstrated effective 

learning. Training loss decreased from 1.02 in the first epoch 

to 0.38 by the final epoch (21st epoch). Training accuracy 

improved from 46.9% to 84.7%. Validation loss followed a 

similar pattern. Validation accuracy increased from 56.5% in 

the first epoch to 85.5% by the final epoch. Training times 

averaged between 2.35 and 2.76 seconds per epoch, while 

validation times were approximately 0.53 to 0.58 seconds. 

The training and validation curves, along with the epoch-

based time plot for the Swin Transformer model, are shown in 

Figure 5. 
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Figure 3.  The performance of ViT Model: (a) Loss Graph, (b) Accuracy Graph and (c) Time Graph 
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(a) Loss Graph (b) Accuracy Graph (c) Time Graph

Epoch

0 5 10 15 20 25 30 35

Lo
s
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Training and Validation Loss per Epoch

Training Loss

Validation Loss

Epoch

0 5 10 15 20 25 30 35

A
c
c
u
ra

c
y

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Training and Validation Accuracy per Epoch

Training Accuracy

Validation Accuracy

Epoch

0 5 10 15 20 25 30 35

T
im

e
 (
s
e
c
o
n
d
s
)

3

3.2

3.4

3.6

3.8
Training Times per Epoch

Epoch

0 5 10 15 20 25 30 35

T
im

e
 (
s
e
c
o
n
d
s
)

0.6

0.65

0.7

0.75
Validation Times per Epoch

Early Stopping Point

(Final Epoch)

 
Figure 4.  The performance of DeiT Model: (a) Loss Graph, (b) Accuracy Graph and (c) Time Graph 
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Figure 5.  The performance of Swin Transformer Model: (a) Loss Graph, (b) Accuracy Graph and (c) Time Graph 

 

The performance of all models during the training and 

validation processes was generally successful. After 

completing these processes, each model was evaluated using 

the test images. The confusion matrices, generated from the 

predictions of each model on the test samples, are shown in 

Figure 6. 
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Figure 6.  Lung cancer classification results: (a) ViT Model, (b) DeiT 

Model and (c) Swin Transformer Model.  

 

The ViT model achieved a high prediction rate of 92.1% 

(58/63) in the Normal class. It correctly predicted 92% (46/50) 

in the NSCLC class and 88% (22/25) in the SCLC class. The 

model’s biggest challenge was misclassifying some Normal 

samples as NSCLC. Additionally, several SCLC samples were 

predicted as NSCLC. 

The DeiT model performed well in the Normal class with 

90.5% (57/63) prediction rate. However, it achieved 82% 

prediction rate (41/50) in the NSCLC class, with slightly more 

errors in this category. In the SCLC class, it performed worse, 

with a prediction rate of 72% (18/25). The NSCLC class was 

the most difficult for this model, as some samples were 

misclassified as Normal. 

The Swin Transformer model had the highest prediction 

rate in the Normal class, achieving 95.2% (60/63). However, 

its performance was lower in the NSCLC class, with 74% 

prediction rate (37/50), and even lower in the SCLC class, at 

56% (14/25). Misclassifications were particularly notable in 

the NSCLC class, with many samples predicted as Normal. The 

prediction rate in the SCLC class was also the lowest among 

the three models. 

Table 3 shows in detail the performance of each model on 

the test samples. 

 
TABLE III  

DETAIL THE PERFORMANCE OF EACH MODEL 

Model Class 
Pre  

(%) 

Rec  

(%) 

F-1  

(%) 

Acc 

(%) 

ViT 

Normal 

NSCLC 

SCLC 

95.08% 

85.19% 

95.65% 

92.06% 

92.00% 

88.00% 

93.55% 

88.46% 

91.67% 

91.30% 

DeiT 
Normal 
NSCLC 

SCLC 

86.36% 
80.39% 

85.71% 

90.48% 
82.00% 

72.00% 

88.37% 
81.19% 

78.26% 

84.06% 

Swin 

Transformer 

Normal 
NSCLC 

SCLC 

78.95% 
80.43% 

87.50% 

95.24% 
74.00% 

56.00% 

86.33% 
77.08% 

68.29% 

80.43% 

 

4. DISCUSSION 
 

The experimental results highlight the impressive ability of 

transformer-based models to effectively classify lung cancer 

from CT images. Among these models, ViT stood out, 

delivering the highest overall performance, especially in 

classifying NSCLC and SCLC cases. Its balanced accuracy 

across all three classes reflects its strong generalization 
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capability. However, minor misclassifications were observed, 

particularly between NSCLC and SCLC. The DeiT model, 

while performing well, showed slightly lower accuracy than 

ViT, particularly in distinguishing NSCLC from SCLC and 

normal cases. The Swin Transformer, on the other hand, 

achieved the best performance in classifying normal cases but 

faced challenges in accurately differentiating between NSCLC 

and SCLC. 

These differences in performance can be attributed to 

several factors. From an architectural standpoint, ViT uses 

global self-attention mechanisms that allow it to capture long-

range dependencies across the image, which is particularly 

effective for capturing complex patterns in medical imaging. 

DeiT, uses distillation-based training that can slightly limit its 

capacity in fine-grained classification. Swin Transformer 

adopts a hierarchical structure with shifted windows, which is 

more efficient but may lose some global contextual information 

potentially affecting performance on subtle differences 

between cancer subtypes. 

While the results are promising, several challenges remain. 

Dataset size and class imbalance continue to impact the models' 

performance. Transformer-based architectures require larger, 

more balanced datasets to improve robustness and prevent 

overfitting. Integrating widely-used public datasets, such as 

LIDC-IDRI, could further enhance the models' performance.  

As for the practical application of these models in clinical 

settings, we emphasize their potential to significantly reduce 

the workload of radiologists and assist in early diagnosis. The 

ViT model, with its strong generalization ability, offers a 

promising path toward faster, more accurate diagnoses. By 

automating the classification process, these models not only 

reduce the time and effort needed for manual analysis but also 

enable earlier detection, ultimately facilitating quicker 

treatment decisions. However, while these models show strong 

performance, their computational demands present a challenge 

for seamless integration into clinical workflows. The memory 

and processing power required by transformer-based models, 

particularly ViT, could limit their real-time application. 

Moreover, the need for thorough validation, regulatory 

approval, and interpretability further complicates clinical 

integration. Despite this, the continued advancement of 

hardware capabilities and optimization techniques such as 

model pruning, quantization, and distributed computing 

suggests that these models can be adapted for practical use in 

clinical environments. In future work, we aim to explore 

various model optimization strategies to improve inference 

times and reduce memory consumption, making these 

transformer-based models even more suitable for integration 

into clinical practice. Furthermore, explainability methods will 

be investigated to ensure that predictions are interpretable and 

clinically trustworthy. 

 

 

5. CONCLUSION 
 

This study demonstrated the potential of transformer-based 

models, specifically ViT, DeiT, and Swin Transformer, for 

lung cancer classification from CT images. These models were 

evaluated on a private dataset with images of NSCLC, SCLC, 

and normal lung. Their performance was compared using 

accuracy, precision, recall, and F1-score. The results showed 

that all three models were effective in detecting lung cancer. 

Each model excelled in different aspects. The ViT model 

achieved the highest overall accuracy. It showed strong 

performance across all categories, particularly in the Normal 

and NSCLC classes. The DeiT model also performed well, but 

it struggled more in the SCLC class. The Swin Transformer 

achieved the highest prediction rate for the Normal class. 

However, it had weaker results in distinguishing between 

NSCLC and SCLC. Despite their success, there is room for 

improvement, particularly in increasing the classification 

accuracy for more aggressive cancer types like SCLC. Future 

research could focus on improving the generalization of these 

models by incorporating larger and more diverse datasets. 

Additionally, hybrid approaches that combine the strengths of 

CNNs and transformers could be explored to enhance 

performance further. 
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