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Abstract: This study aims to classify vibration data obtained from old CNC milling (brownfield) machines used in industrial production 
processes with machine learning algorithms. The analysis of data obtained from such machines is of critical importance in order to 
increase the efficiency of old production machines and optimize production processes. In the study, vibration data collected from three 
different CNC machines under real production conditions for two years were used. The collected data were analyzed with various 
machine learning algorithms, especially overfitting prevention techniques, and the performances of these algorithms were compared. 
The results showed that the proposed machine learning methods can classify the information obtained from vibration data with high 
accuracy rates. The algorithms used provided an effective solution for early detection of tool wear, operational errors and other 
production problems caused by vibration, thus enabling more efficient management of production processes. The study presents an 
innovative method for modernizing old machines in particular within the framework of Industry 4.0, and provides important practical 
contributions in terms of improving industrial processes, optimizing maintenance processes and increasing overall efficiency. 
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1. Introduction 
In production technologies, the longevity and durability of 
industrial equipment is one of the most important 
elements in terms of the sustainability of production 
processes. However, these equipment’s need to be 
modernized over time in order to meet modern 
production requirements. The rise of Industry 4.0 has 
brought about significant transformations in production 
technologies. In particular, the modernization of old 
(brownfield) production machines allows these machines 
to be transformed into more efficient and intelligent 
systems and provide a competitive advantage. These 
machines, which were not initially integrated with 
modern digital technologies such as the Internet of Things 
(IoT) and big data analysis, can be transformed into 
systems that can provide real-time data by adding sensors 
and data collection systems (Quatrano et al., 2017). The 
analysis of this data is of critical importance in terms of 
optimizing production processes, detecting faults in 
advance and improving overall production quality. One of 
the most notable examples of these machines, Computer 
Numerical Control (CNC) machines, holds a significant 
place in production processes (Lins et al., 2017). CNC 
machines are among the most reliable and long-lasting 
elements of production technologies and play a 
fundamental role in industrial production. However, due 

to their high-speed production capacities and complex 
operational structures, the vibrations that occur in these 
machines can negatively affect production processes by 
causing various problems such as tool wear and 
operational errors (Nath, 2020). Vibrations, especially 
observed in milling machines, can be associated with 
problems such as tool breakage, chip jamming and faulty 
tool clamping. Therefore, effective monitoring and 
analysis of vibration data is of great importance in terms 
of improving production quality and preventing possible 
failures. Early detection and prevention of such problems 
is possible with the application of process monitoring 
systems and machine learning algorithms. 
This study aims to classify vibration data collected from 
brownfield CNC milling machines. Vibration data recorded 
under various operating conditions will be analyzed using 
overfitting techniques to address the complexity and 
imbalances in the dataset. Overfitting methods are known 
to be effective tools to overcome class imbalances, data 
drifts, and other difficulties, especially in large and 
complex datasets. In this study, different machine learning 
algorithms were compared and the methods that will 
provide the most effective classification of vibration data 
were evaluated. The main objective of the study is to 
develop robust and generalizable classification models 
based on this dataset and to offer practical solution 
suggestions that can contribute to the optimization of 
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industrial processes. Correct classification of vibration 
data is critical for the early detection of tool wear, 
operational errors, and other production problems. 
Therefore, this study constitutes an important step for the 
improvement of industrial production processes and 
increasing machine efficiency. 
 
2. Materials and Methods 
2.1. Data Acquisition System 
Vibration data collected from three different CNC 
machines over a period of two years were used for 
analysis. These data were obtained under real production 
conditions and reflect long-term and various operational 
situations. The data used in this study consists of vibration 
data obtained from CNC machining centers through an 
experimental setup designed by Tnani et al., (2022). Thani 
and his team meticulously planned and implemented the 
data collection process for the classification of vibration 
data. In order to obtain results as close as possible to 
industrial production conditions, the data was collected in 
real time from four-axis horizontal CNC machining 
machines used in different operations. As shown in Figure 
1, acceleration data was recorded with the help of Bosch 
CISS sensors (Anon, 2020) while the machines were 
machining aluminum work pieces. The sensors were 
placed in the background of the machines, protected from 
the harsh conditions of the processing environment, 
especially from environmental factors such as coolants 
and chips (Hesser and Markert, 2019; Hui et al., 2019; Lu 
et al, 2019; Wszołek et al., 2020). This method provides an 
approach that facilitates the integration of the sensors into 
existing brownfield machines while ensuring reliable data 
collection without being adversely affected by 
environmental factors. This meticulous data collection 
process contributed to obtaining more reliable 
classification results and increasing the efficiency of 
machine learning algorithms. 
 

 
 

Figure 1. Schematic sketch of the experimental setup:4-
axis machining center with mounted sensor (Tnani et al., 
2022). 
 
During the data collection process, acceleration data was 
recorded at a sampling rate of 2 kHz using low-cost three-
axis Bosch CISS sensors. This sampling rate was 
determined to be the minimum rate required to reliably 
detect machine anomalies. The analysis conducted by 
Thani and his team revealed that the most critical 

frequency ranges in the machining process were between 
75 Hz and 1 kHz, which are low integer multiples of the 
spindle speed. Data collected in this critical frequency 
range generated an average of 4.14 GB of data per day 
across the three axes. However, such large data volumes 
create significant challenges in on-site storage and 
processing processes. Therefore, an intelligent data 
mining system was developed to collect, store, analyze 
and process the data (Tnani et al., 2022). As shown in 
Figure 2, this system enables the efficient management of 
high-volume data and allows the optimization of data 
analysis processes. The development of the system is an 
important step towards overcoming the difficulties 
encountered in processing and analyzing large data sets. 
 

 
 

Figure 2: Concept and interaction of containers in the 
edge stack (Tnani et al., 2022). 
 
The edge stack, shown in Figure 2, defines the various 
modules operating in the production line and the 
management of these modules by the cloud infrastructure. 
The Message Queuing Telemetry Transport (MQTT) 
protocol is used as a standard interface to communicate 
between local applications. The data collection system 
initiates the data flow by connecting to the accelerometer 
sensors, and this flow is published on the messaging bus. 
The machine learning (ML) module supports the quality 
control process for anomaly detection by subscribing to 
this data flow. 
While the data segments are stored in the edge time series 
database, the quality control process is subject to delayed 
annotations. The dashboard serves to visualize the 
machine learning labels and manual annotations. The data 
segments verified by domain experts are uploaded to the 
cloud environment, which strengthens the collaboration 
between data science experts and domain experts and 
supports the updating of ML modules. This architecture 
provides a modern solution for more effective monitoring 
and optimization of production processes. 
2.2. Extreme Learning Machines (ELM) 
Extreme learning algorithms stand out as powerful 
machine learning methods that have faster learning 
capacity and lower error rates compared to traditional 
artificial neural networks. The advantages of these 
algorithms can be listed as follows (Huang et al., 2006): 
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1. Traditional artificial neural networks have a slower 
learning process due to the presence of feedback loops. 
2. The use of techniques such as derivative-based methods 
and swarm optimization can negatively affect the learning 
speed and slow down the process. 
3. In extreme learning algorithms, the weights between 
the input and hidden layers are randomly assigned, while 
the weights between the hidden layer and the output layer 
are calculated using the least squares method. This 
approach provides a faster and more effective learning 
process by ensuring that the model is optimized with 
minimum error. 
These features make extreme learning algorithms 
advantageous, especially in terms of analyzing and 
classifying large and complex data sets. 
Developed by Huang et al. (2006), Extreme Learning 
Machines (ELM) are machine learning algorithms that 
stand out with their fast-learning capacity and low error 
rates. Unlike traditional artificial neural networks, the fact 
that they do not contain a feedback loop enables a more 
effective and faster learning process. In ELM algorithms, 
the weights between the hidden layer and the output layer 
are optimized by the least squares method, and thus the 
model reaches the lowest level in terms of root mean 
square error (RMSE). 
The number of neurons in the hidden layer plays a critical 
role in the success of the model. Using too many neurons 
leads to overfitting, while an insufficient number of 
neurons can negatively affect the learning performance of 
the model. ELM was developed to ensure that single-layer 
feedforward artificial neural networks can be trained 
quickly and efficiently. This algorithm offers faster 
learning with fewer parameters, and the weights of the 
neurons in the hidden layer are randomly assigned. These 
weights remain constant throughout the training process, 
which simplifies the computational process and increases 
the speed of the model. 
Fixed weights in the hidden layer allow the weights in the 
output layer to be calculated analytically, which provides 
high accuracy rates in regression and classification 
problems (Huang and Chen, 2007; Huang et al., 2014; Zhu 
at al., 2015; Xiao et al., 2017). The general structure of ELM 
is presented in Figure 3. 
 

 
 

Figure 3: The schematic diagram of ELM. 
 
The mathematical model of ELM is expressed by the input 
and output training samples (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)  ∈  ℝ𝑛𝑛  ×  ℝ𝑚𝑚 , (𝑖𝑖 =
 1,2, … ,𝑁𝑁). Here 𝑁𝑁�, represents the number of hidden 

neurons and g represents the activation function. This 
approach allows ELM to give successful results in terms of 
speed and accuracy and is formulated as follows equation 
1. 

 

�𝜑𝜑𝑖𝑖𝑔𝑔(𝑤𝑤𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖)
𝑁𝑁� 

𝑖𝑖=1

= Υ𝑗𝑗 (1) 

 

Here Υ𝑗𝑗, j indicates the jth output value and N is the 
training data number. 𝑤𝑤𝑖𝑖 ∈  ℝ𝑛𝑛 indicates the weight 
vector and 𝑏𝑏𝑖𝑖 bias values. In addition, 𝜑𝜑𝑖𝑖 =
[𝜑𝜑𝑖𝑖1,𝜑𝜑𝑖𝑖2, … ,𝜑𝜑𝑖𝑖𝑖𝑖] 𝑇𝑇 represents the parameter vector 
between the hidden node and the output nodes, while 
𝑤𝑤𝑖𝑖 = [𝑤𝑤𝑖𝑖1,𝑤𝑤𝑖𝑖2, … ,𝑤𝑤𝑖𝑖𝑖𝑖] 𝑇𝑇 are the randomly generated 
learning parameters between the input and hidden layers. 
The mathematical model of Single hidden layer 
feedforward neural networks (SLFN) approaching zero 
error is expressed as follows equation 1 and 2. 
 

��Υ𝑖𝑖 − 𝑡𝑡𝑗𝑗� = 0.
𝑁𝑁�

𝑗𝑗=1

 (2) 

 

�𝜑𝜑𝑖𝑖𝑔𝑔(𝑤𝑤𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖)
𝑁𝑁�

𝑖𝑖=1

= t𝑗𝑗, 𝑗𝑗 = 1,2 …𝑁𝑁 (3) 

 

This equation is explained as follows equation 4. 
 

𝐻𝐻𝐻𝐻 = 𝑇𝑇 (4) 
 

The left side of the equation Hα is expressed as f(x) = h(x)α 
where equation 5 and 6, 
 

𝐻𝐻 = �
𝑔𝑔(𝑤𝑤1𝑥𝑥1 + 𝑏𝑏1) ⋯ 𝑔𝑔(𝑤𝑤𝑁𝑁�𝑥𝑥1 + 𝑏𝑏𝑁𝑁�)

⋮ ⋱ ⋮
𝑔𝑔(𝑤𝑤1𝑥𝑥𝑁𝑁 + 𝑏𝑏1) ⋯ 𝑔𝑔(𝑤𝑤𝑁𝑁�𝑥𝑥𝑁𝑁 + 𝑏𝑏𝑁𝑁�)

�
𝑁𝑁𝑁𝑁𝑁𝑁�

 (5) 

 

𝛼𝛼 = �
𝛼𝛼1𝑇𝑇
⋮
𝛼𝛼𝑁𝑁�
𝑇𝑇
� ve 𝑇𝑇 = �

𝑡𝑡1𝑇𝑇
⋮
𝑡𝑡𝑁𝑁𝑇𝑇
� (6) 

 

H represents the output matrix of the hidden layer. In 
ELM, the weights in the output layer are calculated 
analytically, where the parameters 𝑤𝑤𝑗𝑗 and 𝑏𝑏𝑗𝑗 are randomly 
assigned. In order to find the parameters 𝑤𝑤𝑗𝑗 and 𝑏𝑏𝑗𝑗, the 
linear equation system given in equation 4 needs to be 
solved. Thus, the vector 𝛼𝛼 forms the solution set of the 
linear equation 7. 
 

𝛼𝛼� = 𝐻𝐻†𝑇𝑇  (7) 
 

In equation 7, 𝐻𝐻† is the Moore-Penrose inverse of H. In 
fact, it denotes the updated output parameters 𝛼𝛼� vector in 
the ELM structure. As a result, obtaining the output 
weights 𝛼𝛼� using ELM can be divided into three steps. 
Step 1. Choose random numerical values between 0 and 1 
to set the input weights 𝑎𝑎𝑖𝑖𝑖𝑖 and the hidden layer bias 𝑏𝑏𝑗𝑗. 
Step 2. Calculate the output matrix 𝐻𝐻. 
Step 3. Calculate the output weights 𝑉𝑉 equation 8: 
 

𝑉𝑉 = 𝐻𝐻†𝑌𝑌 (8) 
 

where 𝐻𝐻† represents the generalized inverse matrix of the 
output matrix 𝐻𝐻. 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Rasim ÇEKİK and Abdullah TURAN 4 
 

2.3. Other Methods 
ELM have attracted the attention of researchers due to 
their wide application area and extensive studies have 
been conducted on them. There are various versions of 
ELM developed to optimize its use in different problem 
areas. In this section of this study, brief information about 
the methods used is presented. The basic structure and 
implementation of the ELM algorithm will be discussed in 
detail, and the improved ELM approaches in the existing 
literature will also be discussed. Thus, it is aimed to 
provide a comprehensive understanding of the 
performance and suitability of the methods used. 
2.3.1. Multiple Hidden Layers Extreme Learning 
Machine (MELM) 
MELM is an algorithm proposed by Xiao et al. (2017), 
which uses a network with three hidden layers within the 
ELM structure. The MELM structure contains three hidden 
layers, each of which performs calculations related to 
weight matrices and activation functions. The basic steps 
of the algorithm include transmitting training data 
through the network, updating the weight and bias values 
for each layer, and calculating the output in the last layer. 
The performance of the MELM algorithm has been tested 
using different activation functions in regression and 
classification problems. The algorithm has a repeating 
calculation cycle depending on the number of hidden 
layers, and this cycle includes recalculating the formulas 
for each hidden layer. Thus, the calculations performed in 
each layer allow the network to learn more complex 
structures and produce more accurate results. In 
summary, the MELM algorithm expands the structure of 
the ELM with more hidden layers, and provides higher 
accuracy output by optimizing the parameters in each 
layer. 
2.3.2. Constrained ELM (CELM) 
CELM is a model developed by Zhu et al., (2014) to provide 
more effective classification performance while 
preserving the simplicity of ELM. The parameters in the 
hidden layer of traditional ELM are usually determined 
completely randomly; however, this randomness can lead 
to the parameters not being able to adequately represent 
the distinctive features of the data. As a result, a large 
number of hidden nodes must be used for the model to 
achieve the desired generalization performance. 
However, the use of too many hidden nodes can lead to 
increased processing time, more computational 
resources, and overfitting. Overfitting refers to the 
situation where the model loses its generalization ability 
as a result of excessive adaptation to the training data. The 
CELM is an approach developed to find solutions to these 
problems. In this model, it is suggested that the weight 
vectors in the hidden layer are selected from the 
difference vectors of the examples between classes 
instead of random values (Zhu et al., 2015). This approach 
allows the model to create more distinctive hidden nodes 
and therefore to have a more efficient classification 
structure. Thus, while preserving the simple structure and 
fast learning ability of ELM, a more effective classification 

performance is achieved without the need for excessive 
number of nodes. 
2.3.3. Sample Extreme Learning Machine (SELM) 
SELM is an algorithm that determines the weights from 
the input layer to the hidden layer using randomly 
selected sample vectors from the training set. These 
vectors are normalized and assigned as weights, and the 
bias values of SELM are obtained from a random uniform 
distribution as in ELM. SELM has the ability to cope with 
nonlinear situations by using polynomial kernel functions, 
which exhibits a similar approach to kernel-based 
methods. In this model, the sigmoid activation function 
helps linear classification by expanding the data mapped 
with the kernel. The main feature of SELM is that it 
restricts the hidden layer weights in the direction of the 
sample vectors instead of randomly determining them. 
This restriction allows the model to learn more effectively 
and increase its overall classification performance. Thus, 
SELM overcomes the limitations of traditional ELM and 
offers better generalization ability and performance. 
As a result, the CELM approach aims to eliminate the 
performance limitations of traditional ELM and provide a 
more efficient, computationally optimized and high 
generalization capacity model. In particular, the use of 
difference vectors of inter-class examples allows the 
model to better capture distinguishing features. 
2.3.4. The Constrained Sum Extreme Learning 
Machine (CSELM)  
CSELM is an algorithm that generates weights from the 
input layer to the hidden layer using the sums of within-
class sample vectors (Zhu et al., 2015). CSELM first selects 
two random sample vectors from the same class and 
obtains a new vector by summing these vectors. Then, the 
obtained total vector is normalized and this normalized 
sum is assigned as the weights of the hidden layer. 
The bias values used in CSELM are randomly generated 
from a uniform distribution, as in ELM. Total vectors are 
created by taking inspiration from difference vectors 
between classes and at the same time, they have the 
potential to reduce the effect of noise samples in CSELM 
by being considered as derivative samples. The basic 
principle of CSELM is to restrict the input connection 
weights of hidden neurons in accordance with the 
directions of the derivative and robust sample vectors. In 
this context, random weights are selected from a set 
consisting of the sums of within-class sample vectors. This 
approach allows the model to learn more discriminative 
features and increase the overall classification 
performance. 
2.3.5. Deep Extreme Learning Machine (DELM) 
DELM was developed to benefit from the advantages of 
ELM method such as fast computational ability, real-time 
estimation ability and simplicity of network structure 
(Zhang et al., 2023). Although ELM is a successful method 
in terms of generalization performance, it leads to 
disadvantages such as the limited representation learning 
capacity of traditional ELM and the inability to fully learn 
deep structures and hidden relationships in more complex 
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data sets. In order to overcome these limitations and 
obtain more effective results, DELM model was designed. 
DELM aims to show better performance on complex data 
sets by increasing the ability to learn deep features in data 
thanks to its multi-layered structure. This approach 
provides both more flexibility in representation learning 
and allows deeper relationships to be discovered. 
Therefore, DELM offers a suitable solution for more 
complex applications by expanding the potential of ELM. 
 
3. Experimental Studies 
3.1. Data Definition 
The data were collected at regular intervals from three 
different CNC machines (M01, M02, and M03) located in a 
specific production facility between October 2018 and 
August 2021 (Tnani et al., 2022). The time frame of this 
dataset is labeled in the "Month Year" format, with each 
label representing the six-month period before it. For 
example, the label "Aug 2019" represents the time period 
between February 2019 and August 2019. 
CNC machines perform various operations on aluminum 
parts using different tools to process a specific design. The 
variety of parts produced by the machines and the 
variability of their process flows over time are important 
factors to consider. The aim of the research was to 
examine the variability between machines and overtime, 
and for this purpose, the dataset was created with 15 
different tool operations. These operations are applied on 
three different CNC machines at various time periods. 
Table 1 provides an overview of the characteristics of 
these different operations. 
One of the common challenges encountered in industrial 
datasets, especially in process monitoring tasks, is a 
significant OK/NOK imbalance. Figure 4 shows the 
imbalance ratio between OK and NOK instances in the 
studied dataset as 816:35. In real production processes, 
the number of OK instances is considerably higher. In 
order to reduce the effects of this imbalance, a sample 
dataset was created by selecting a reasonable number of 
OK transactions from various time periods. This approach 
constitutes an important step towards reducing the class 
imbalance. 
 

 
 

Figure 4. Class distribution per process operation (Tnani 
et al., 2022). 
 
 
 

Table 1. Tools operations collected from M01, M02 and 
M03 (Tnani et al., 2022) 
 

Tool 
operation 

Description 
Speed 
(Hz) 

Feed 
(mm s-1) 

Duration 
(s) 

OP00 Step drill 250 ≈100 ≈132 
OP01 Step drill 250 ≈100 ≈29 
OP02 Drill 200 ≈50 ≈42 
OP03 Step drill 250 ≈330 ≈77 
OP04 Step drill 250 ≈100 ≈64 
OP05 Step drill 200 ≈50 ≈18 
OP06 Step drill 250 ≈50 ≈91 
OP07 Step drill 200 ≈50 ≈24 
OP08 Step drill 250 ≈50 ≈37 

OP09 
Straight 

flute 
250 ≈50 ≈102 

OP10 Step drill 250 ≈50 ≈45 
OP11 Step drill 250 ≈50 ≈59 
OP12 Step drill 250 ≈50 ≈46 

OP13 
T-slot 
cutter 

75 ≈25 ≈32 

OP14 Step drill 250 ≈100 ≈34 
 
An example is presented in Figure 5, where a comparison 
is made between OP07 and OP08 in the time and 
frequency domains. This analysis reveals that the effect of 
OP07 is more pronounced and severe than that of OP08, 
and that there is a clear separation between the two 
processes in the time and frequency domains. However, a 
common phenomenon observed is the tendency for the 
abnormality to be detected at integer multiples of the 
spindle speed. In the case of OP07, it is observed that the 
frequency characteristics in the 200 Hz and 400 Hz 
regions are of significantly higher amplitude than in the 
healthy process. This indicates the presence of an 
abnormal situation in the relevant processes. 
 

 
 

Figure 5. Comparison of 2 different tool operation: OP07, 
OP08 (Tnani et al., 2022). 
 
In order to obtain fast processing and non-invasive 
solutions, time series signals are usually segmented into 
fixed-length (WS) windows. This technique is widely used 
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as a data augmentation method, especially for NOK data. 
However, the disadvantage of segmenting NOK data is that 
the labeling of small segments may not be equivalent to 
the full processing. This situation is clearly observed in the 
first and last samples where anomalies have not yet been 
detected. In the data labeling process, the beginning and 
the last segments of OP from NOK samples are shortened. 
However, this problem can also occur in the middle of the 
process due to rapid position changes. This situation is 
clearly seen in Figure 6, where a small segment taken from 
the middle of OP08 is observed to show that OK and NOK 
classes match exactly. 
 

 
 

Figure 6. Data segmentation causing faulty labels (Tnani 
et al., 2022). 
 
To address this issue, a reasonable selection criterion of 
WS should be determined. The CNC machining dataset 
provides examples and classes with the necessary 
diversity and separation levels that allow the research 
community to systematically work on solutions and 
examine the robustness of data-driven methods to 
industrial challenges. In this context, the selection of an 
appropriate WS is critical to the effective use of the dataset 
and to increase the reliability of the results. 
3.2. Data Partitioning 
With the publication of this dataset, research on ML 
models and learning techniques for noisy time series data 
is encouraged. In order to realistically evaluate the 
performance in real-world challenges, three strategies are 
proposed for partitioning the CNC machining dataset.  
 

 
 

Figure 7. There are strategies for dataset partitioning 
(Tnani et al., 2022). 

As shown in Figure 7a, a machine-based partitioning 
evaluates the ability to perform on a new machine outside 
of the training set. Figure 7b demonstrates a time-based 
partitioning approach where certain time intervals are 
stored only for validation and testing to address data drift 
over time. These strategies aim to increase the 
effectiveness of ML models in industrial applications 
(Tnani et al., 2022). 
 
4. Experimental Results 
At this stage of this study, various experimental analyses 
were performed. In the experiments, in order to examine 
the effect of neuron numbers on classification 
performance, 100, 200, 400, 600, 800, 1000, 1300 and 
1500 neuron numbers were randomly determined. Using 
these determined neuron numbers, the performances of 
ELM, CELM, CSELM, DELM, MELM and SELM algorithms 
were evaluated under different activation functions. 
These analyses aim to comprehensively examine how 
each algorithm affects the classification accuracy 
depending on the number of neurons and the activation 
function used. Based on the experimental results, the 
differences between the performance and accuracy 
percentages of each algorithm with the determined 
neuron numbers were revealed. In this context, the effects 
of both the algorithms and the neuron numbers on the 
classification accuracy were evaluated comparatively. 
The obtained findings are presented in (Figure 1-5), and 
in these graphs, the results obtained by each algorithm 
with different activation functions depending on the 
number of neurons are shown in detail. The analyses 
highlight which methods provide more effective results by 
revealing the overall success of the algorithms, changes in 
accuracy percentages, and stability features. This study 
provides important data to understand the effects of the 
number of neurons and activation functions on the 
performance of machine learning-based classification 
algorithms. 
When Figure 8 is examined, it is observed that the ELM 
algorithm has the lowest accuracy rate compared to other 
methods. Although it is seen that the general accuracy 
increases with the increase in the number of neurons, 
there is a significant performance decrease especially 
around 400 neurons. The ELM algorithm exhibited a 
continuous loss of accuracy in the number of neurons 
between 100 and 400, which led to significant fluctuations 
in classification success. 
On the other hand, the CELM, CSELM, DELM, MELM and 
SELM algorithms exhibited quite consistent and constant 
accuracy rates regardless of the number of neurons. It is 
observed that the accuracy rates of these algorithms are 
fixed at around 95%, thus indicating that this performance 
provides more stable results regardless of the number of 
neurons. This situation reveals that these algorithms are 
more robust by maintaining their classification accuracy 
in a wider range of neurons. 
In addition, it was determined that the MELM algorithm 
gave slightly better results compared to other methods for 
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the sigmoid activation function. This superiority becomes 
especially evident in the number of neurons between 400 
and 1300; MELM managed to increase the classification 
accuracy slightly in this range of neuron numbers. Finally, 
it is noteworthy that CSELM and SELM algorithms give 
quite stable and consistent results across all neuron 
numbers. These findings contribute to a better 
understanding of the relationships between neuron 
numbers and algorithm performance and emphasize the 
importance of choosing the right algorithm in machine 
learning-based classification processes. 
 

 
 

Figure 8. Success of methods with different neuron 
numbers for sigmoid function 
 
Figure 9 shows the comparison of the accuracy rates of the 
ELM, CELM, CSELM, DELM, MELM and SELM algorithms 
with different neuron numbers (100, 200, 400, 600, 800, 
1000, 1300, 1500) according to the hardlim activation 
function. When the graph is examined, significant 
fluctuations are observed in the accuracy rate of the ELM 
algorithm. While a peak is observed around 100 neurons, 
a significant decrease is experienced around 600 neurons. 
Later, it is seen that the accuracy increases again around 
800 neurons, but it generally exhibits a more unstable 
performance compared to the other algorithms. 
Although the CELM algorithm exhibits a relatively more 
stable performance, it is noteworthy that it experiences a 
decrease around 400 neurons and then fluctuations up to 
the 800 neuron level. At the 1000 and 1300 neuron levels, 
the performance is more stable. The CSELM algorithm is 
one of the algorithms that exhibit the most stable 
performance in the graph; It has given relatively stable 
results with an accuracy of around 94-95% in all neuron 
numbers. It is less sensitive to changes in the number of 
neurons compared to other algorithms. 
DELM algorithm has exhibited significant fluctuations in 
accuracy rate. While it is observed that the accuracy 
increases around 400 and 1500 neurons, there are 
significant decreases around 800 and 1300 neurons. This 
situation shows the sensitivity of DELM algorithm to the 
number of neurons. MELM has achieved relatively good 
results compared to other algorithms; It has reached the 

highest accuracy rate by peaking around 400 neurons, 
while it has experienced a sudden decrease around 600 
neurons and significant fluctuations in accuracy have been 
observed. 
SELM is one of the algorithms with the most stable 
performance and provides stable results without 
changing accuracy rates in the range of 94-95%. It can be 
said that it is the algorithm that is least affected by changes 
in the number of neurons. In general, ELM and DELM 
algorithms have exhibited a more sensitive and 
fluctuating accuracy performance to the number of 
neurons. Performance decreases are especially noticeable 
around 400 and 600 neurons. CSELM and SELM, on the 
other hand, were not affected much by changes in the 
number of neurons and gave more stable results. MELM 
was one of the algorithms that achieved the best accuracy 
rate, peaking around 400 neurons, but it experienced 
fluctuations in other neuron numbers. Figure 9 clearly 
shows the effect of the number of neurons on the accuracy 
of the algorithms and shows that CSELM and SELM 
generally provide more stable results. 
 

 
 

Figure 9. Success of methods with different neuron 
numbers for the hardlim function. 
 
Figure 10 compares the accuracy performances of the 
determined machine learning algorithms according to the 
sin activation function depending on the number of 
neurons. When the graph is examined, it is observed that 
the ELM algorithm exhibits a significantly lower accuracy 
percentage compared to the other algorithms. Although 
the accuracy rate starts with 100 neurons and increases to 
75% around 600 neurons, there is a significant decrease 
starting from 800 neurons and the accuracy rate drops 
below 70%. However, an increase in the accuracy rate is 
observed again around 1500 neurons. There is a serious 
imbalance in the overall performance of the ELM 
algorithm, and the accuracy rate fluctuates significantly 
depending on the number of neurons. 
On the other hand, the CELM, CSELM, DELM, MELM and 
SELM algorithms exhibit a much higher and more stable 
accuracy rate compared to ELM. The accuracy rates of 
these algorithms are above 95% and show very little 
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fluctuation depending on the number of neurons. CELM 
and SELM stand out as the most stable algorithms with a 
constant 95% accuracy rate across all neuron numbers. In 
particular, SELM is the algorithm that is least affected by 
changes in the number of neurons. Although MELM shows 
a slight increase around 400 neurons, it generally shows a 
performance close to 95% accuracy. DELM, on the other 
hand, shows a more fluctuating performance compared to 
other algorithms; especially between 600 and 1000 
neurons, its accuracy decreases. However, its overall 
accuracy remains in the range of 94-96%. 
Figure 10 shows that the accuracy performance of the 
ELM algorithm is significantly lower and unstable 
compared to other algorithms. CELM, CSELM, DELM, 
MELM and SELM algorithms have higher and more stable 
accuracy rates and provide more reliable results 
regardless of the number of neurons. In particular, the 
constant high accuracy rates of the SELM and CELM 
algorithms show that these algorithms are minimally 
affected by changes in the number of neurons. These 
findings allow a better understanding of the performance 
of different neuron numbers and algorithms and 
emphasize the importance of choosing the right algorithm 
in machine learning applications. 
 

 
 

Figure 10. Success of methods for different neuron 
numbers for the sin function. 
 
Figure 11 compares the performance of the determined 
overfitting machine algorithms with different neuron 
numbers. The results obtained show that SELM, MELM 
and CSELM algorithms achieve consistent and high 
accuracy rates above 95% regardless of the number of 
neurons. This situation reveals that these algorithms can 
produce more stable results without being affected by 
changes in the number of neurons and are more resistant 
to overfitting. 
On the other hand, the ELM algorithm exhibits 
significantly lower accuracy rates and fluctuations are 
observed in its performance depending on the increase in 
the number of neurons. It is especially noteworthy that 
there are serious decreases in the accuracy of ELM at the 
number of 1000 neurons. This situation shows that the 

generalization ability of the ELM algorithm is limited and 
it becomes more prone to overlearning (overfitting). In 
addition, although there is an improvement in the 
accuracy rates of ELM when the number of neurons 
exceeds a certain limit, this improvement does not 
continue consistently. 
Generally, Figure 11 shows that there is an increase in the 
performance of the algorithms with the increase in the 
number of neurons, but after a certain point, this increase 
slows down or stops completely due to over-learning. 
While algorithms such as SELM, MELM and CSELM show 
more consistent and high performance in wide neuron 
ranges, the ELM algorithm requires more optimization 
and careful tuning to reach high accuracy rates. Moreover, 
it is understood that SELM and MELM algorithms show 
superior performance in this dataset, while ELM is not as 
effective as these algorithms and its performance needs to 
be optimized more carefully. This situation emphasizes 
once again the importance of making adjustments 
appropriate to the structure of the algorithm and the 
characteristics of the dataset in model selection. 
In conclusion, these findings show the importance of 
robustness against over-learning in addition to 
understanding the effects of algorithms and the number of 
neurons on performance in machine learning applications. 
In this context, it is necessary to select appropriate models 
and tunings to obtain more robust and stable results. 
 

 
 

Figure 11. Success of methods with different neuron 
numbers for the tribas function. 
 
Figure 12 compares the performances of various methods 
for the Radbas activation function. The findings show that 
the SELM method generally achieved the highest accuracy 
rates and exhibited stable and high performance together 
with CSELM. Although the MELM method showed a 
decrease up to the number of neurons 400, an increase in 
its performance was observed with increasing neuron 
numbers from this point onwards and reached the highest 
performance at 1500 neurons. The CELM method also 
exhibited a similar trend, showing the lowest performance 
at 1000 neurons and reaching the highest value at 1500 
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neurons. 
The DELM method experienced a decrease in performance 
with increasing neuron numbers, but reached the highest 
performance level at 1500 neurons. The ELM method 
exhibited an unstable performance at different neuron 
numbers; it is especially noteworthy that there was a 
significant performance decrease at the number of 1500 
neurons, unlike the other methods. 
As a result, the SELM and CSELM methods stand out with 
their high and stable performance for the Radbas function. 
MELM and CELM methods also showed significant 
performance increases after a certain number of neurons. 
However, the responses of ELM and DELM methods to 
increasing number of neurons are fluctuating, and 
especially the serious performance decrease experienced 
by ELM at 1500 neurons shows that this method does not 
provide a stable solution in the Radbas function. These 
findings provide an important perspective in 
understanding and optimizing the performance changes 
of machine learning algorithms depending on the number 
of neurons. 
 

 
 

Figure 12. Success of methods with different neuron 
numbers for the radbas function. 
 
5. Conclusion 
This study focuses on the analysis of vibration data 
obtained from old (brownfield) CNC milling machines 
using machine learning methods. Data collected from 
three different CNC machines under real production 
conditions for two years were classified using various 
machine learning algorithms. This process aims to 
optimize production processes and increase the efficiency 
of old machines. The results obtained provide important 
findings for the early detection and prevention of 
problems that occur in production processes, especially 
tool wear, operational errors and mechanical failures. 
Comparisons made on various machine learning 
algorithms have shown that these algorithms can 
successfully classify vibration data collected from CNC 
machines. In particular, it was observed that CSELM and 
SELM algorithms provided more stable and consistent 
results. MELM algorithm reached the highest accuracy 

rates at certain neuron numbers; this situation proves that 
these algorithms offer reliable classification methods in 
production processes. Unbalanced data distributions, 
which are commonly encountered in industrial data sets, 
were also observed in this study. Although the number of 
successful (OK) operations was significantly higher than 
the number of unsuccessful (NOK) operations, the 
classification accuracy was increased thanks to the 
applied extreme learning techniques and balancing 
methods. This is a critical stage for machine learning 
algorithms to obtain accurate results when working with 
class-imbalanced data sets. 
This study offers a solution for the modernization of old 
CNC machines with Industry 4.0 technologies. Analysis of 
data obtained from machines using sensors and data 
acquisition systems stands out as an important tool for 
monitoring machine performance and early detection of 
faults. In this way, it is possible to minimize production 
interruptions and costly faults. In addition, this approach 
can increase production efficiency and extend machine life 
by integrating old machines with digital technologies. 
Frequency analyses of vibration data have enabled the 
detection of anomalies occurring in certain frequency 
ranges, and anomalies at certain frequencies depending 
on the spindle speed have enabled early detection of tool 
wear and mechanical errors. Such frequency-based 
analyses are of critical importance in precision 
manufacturing processes. In addition, the study makes 
significant contributions to the digital transformation of 
old CNC machines within the scope of Industry 4.0. Many 
industrial organizations working with old machines can 
increase their efficiency and reduce maintenance costs 
through such analysis methods. In particular, applicable 
strategies are presented to increase the competitiveness 
of small and medium-sized enterprises (SMEs) in Turkey. 
In addition, these analysis methods can be adapted to 
other machine types and have a wide range of 
applications. 
The results obtained in this study have demonstrated the 
applicability of machine learning models based on the 
analysis of vibration data in industrial production. 
However, future studies should be tested on larger data 
sets and different industrial machines to increase the 
generalizability of these results. It is recommended to use 
more advanced sensor systems and machine learning 
models for real-time data analysis and anomaly detection. 
In addition, the application of more complex algorithms 
such as deep learning can provide higher accuracy rates, 
especially in large data sets. 
As a result, this study provides an important roadmap for 
the modernization and efficiency of old CNC machines. 
The analysis of vibration data enables early detection of 
machine failures and enables the optimization of 
production processes. The adoption of such technologies 
by industrial facilities will contribute to the formation of a 
more sustainable and competitive production 
environment in the future. 
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