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In this study, the PV parameter extraction problem has been studied. The eleven unknown
parameters of the four-diode model have been extracted using the FLA, PLO, MGO, WO, and ECO
algorithms. The results have been evaluated using evaluation metrics and statistical tests. / Bu
calismada, FV parametre ¢tkarumi problemi iizerinde ¢alisilmigtir. Dort diyotlu modelin bilinmeyen
on bir parametresi FLA, PLO, MGO, WO ve ECO algoritmalar: ile ¢ikartilmigtir. Sonuglar,
degerlendirme metrikleri ve istatistiksel testler ile degerlendirilmigstir.
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Figure A: PV parameter extraction process / Sekil A:. FV parametre ¢ikarimi siireci

Highlights (Onemli noktalar)

»  The PV parameter extraction of the four-diode model has been performed. / Dort diyotiu
modelin PV parametre ¢ikarumi yapilmistir.

»  For the first time, the FLA, PLO, MGO, WO, and ECO algorithms have been used to
solve this problem in this study. / Bu problemin ¢éziimii icin FLA, PLO, MGO, WO ve
ECO algoritmalary ilk defa bu ¢alismada kullanilmigtir.

» The success of the FLA algorithm in PV parameter extraction has been statistically
proven. / FLA algoritmasimin PV parametre ¢ikariminda ki basarisi istatistiksel olarak
kanitlanmstir.

Aim (Amag): This study aims to extract the unknown parameters of a PV cell and module. / Bu
calisma bir FV hiicrenin ve modiiliin bilinmeyen parametrelerini ¢ikarmayr amaglamaktadir.

Originality (Ozgiinliik): When examining literature, it can be observed that single, double, and
triple diode models are widely used, while four-diode model is included in very few studies.
Motivated by this, this article focuses on PV parameter extraction for four-diode model using
metaheuristic algorithms. FLA, PLO, MGO, WO, and ECO have been used for the first time to solve
the defined problem and successful results have been obtained. / Literatiir incelendiginde, tek, ¢ift
ve ti¢lii diyot modellerinin yaygin olarak kullanildigi, dort diyotlu modelin ise ¢ok az ¢alismada yer
aldig1 goriilmektedir. Bu noktadan yola ¢ikilarak bu makale, meta sezgisel algoritmalar
kullamilarak dort diyotlu model igin PV parametre ¢ikarimina odaklanmaktadwr. Tanimlanan
problemin ¢éziimiinde FLA, PLO, MGO, WO ve ECO ilk kez kullanilmis ve basarili sonuglar elde
edilmigtir.

Results (Bulgular): The smallest minimum RMSE was obtained with FLA, calculated as
9.8251385E-04 with FDM-C and 1.6884311E-03 with FDM-M. / En kiigiik minimum RMSE FLA
ile elde edilmis olup FDM-C ile 9.8251385E-04 ve FDM-M ile 1.6884311E-03 olarak
hesaplanmustir.

Conclusion (Sonug): According to evaluation metrics and statistical tests, FLA produced
significantly better results than the other algorithms and outperformed them in pairwise
comparisons. In conclusion, FLA has proven to be a successful and promising algorithm for PV
parameter extraction, with its success statistically validated. / Degerlendirme metrikleri ve
istatistiksel testlere gére; FLA diger algoritmalardan daha onemli sonuglar iirettigi ve ikili
karsulagtirmalar neticesinde de diger algoritmalardan daha basarili oldugu gériilmiistiir. Sonug
olarak, FLA'min FV parametre ¢ikariminda basarii ve umut vaat eden bir algoritma oldugu
gortilmiis ve basarisi istatistiksel olarak kanitlanmigtir.

*Corresponding author, e-mail: ipekcetinbas@ogu.edu.tr

DOI: 10.29109/gujsc.1584147


https://orcid.org/0000-0002-5995-5050

GU J Sci, Part C, 12(4): 945-959 (2024)

Jourau GRGEEL

Gazi Universitesi Gazi University »
Fen Bilimleri Dergisi Journal of Science e ) TV 11 1)
BRRERE oo AR AR
PART C: TASARIM VE PART C: DESIGN AND mennns L L nannn
TEKNOLOJI TECHNOLOGY ro— P

http://dergipark.gov.tr/gujsc

Parameter Extraction of Photovoltaic Cell and Module with Four-Diode Model
Using Flood Algorithm

Ipek CETINBASY

Eskisehir Osmangazi University, Faculty of Engineering and Architecture, Department of Electrical and Electronics Engineering, Eskisehir,

Turkey

Article Info

Abstract

Research article

Received: 13/11/2024
Revision: 29/11/2024
Accepted: 05/12/2024

Keywords

Flood Algorithm
Four-Diode Model
Friedman Test
Parameter Extraction
Photovoltaic
Wilcoxon Signed-Rank
Test

Photovoltaic (PV) cells exhibit a nonlinear characteristic. Before modeling these cells, obtaining
accurate parameters is essential. During the modeling phase, using these parameters is crucial for
accurately characterizing and reflecting the behavior of PV structures. Therefore, this article
focuses on PV parameter extraction. A PV cell and module were selected and modeled using the
four-diode model (FDM). This problem, consisting of eleven unknown parameters related to the
FDM, was solved with the flood algorithm (FLA). To compare the algorithm’s performance on
the same problem, the polar lights optimizer (PLO), moss growth optimization (MGO), walrus
optimizer (WO), and educational competition optimizer (ECO) were also employed. These five
metaheuristic algorithms were used for the first time in this study, both for solving the PV
parameter extraction problem and with the FDM. The objective function aimed at obtaining the
smallest root mean square error (RMSE) was evaluated and compared through evaluation metrics,
computational accuracy, computational time, and statistical methods. The smallest minimum
RMSE was obtained with FLA, calculated as 9.8251385E-04 with FDM-C and 1.6884311E-03
with FDM-M. To statistically demonstrate and reinforce FLA’s success over other algorithms,
the Friedman test and Wilcoxon signed-rank test were utilized. According to these tests, FLA
produced significantly better results than the other algorithms and outperformed them in pairwise
comparisons. In conclusion, FLA has proven to be a successful and promising algorithm for PV
parameter extraction, with its success statistically validated.

Taskin Algoritmas1 Kullamlarak Dort Diyotlu Model ile Fotovoltaik Hiicre
ve Modiiliin Parametre Cikarim
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Fotovoltaik (FV) hiicreler dogrusal olmayan karakteristige sahiptir. Bu hiicrelerin
modellenmesinin 6ncesinde dogru parametrelerin elde edilmesi gereklidir. Modellenme
asamasinda ise bu parametrelerin kullanimi FV yapilarin davranislarinin dogru karakterize
edilebilmesi ve yansitilabilmesi agisindan ¢ok dnemlidir. Bu sebeple bu makalede, FV parametre
gikarimi ¢aligilmigtir. Bir FV hiicre ve modiil se¢ilmis ve dort diyotlu model (FDM) ile
modellenmistir. FDM’ye iliskin bilinmeyen on bir parametreden olusan bu problem taskin
algoritmasi (FLA) ile ¢oziilmiistiir. Ayni1 problemin ¢oziimiinde algoritmanin karsilagtirilmasi
icin, kutup 1siklart optimizasyonu (PLO), yosun biiylime optimizasyonu (MGO), mors
optimizasyonu (WO) ve egitim rekabeti optimizasyonu (ECO) kullanilmistir. Bu bes meta
sezgisel algoritma, hem FV parametre ¢ikarimi probleminin ¢6ziimii i¢in hem de FDM ile ilk defa
bu caligmada kullanmilmigtir. En kiigiik kok ortalama kare hatast (RMSE) elde edilmenin
amaclandigi amag¢ fonksiyonu; degerlendirme metrikleri, hesaplama dogrulugu, hesaplama
zamani ve istatistiksel metotlar ile degerlendirilmis ve karsilagtirilmistir. En kiigiik minimum
RMSE FLA ile elde edilmis olup FDM-C ile 9.8251385E-04 ve FDM-M ile 1.6884311E-03
olarak hesaplanmistir. FLA nin diger algoritmalara gore basarisini istatistiksel olarak kanitlamak
ve pekistirmek i¢in statistical tests kullanilmistir. Bu testlere gore; FLA diger algoritmalardan
daha 6nemli sonuglar iirettigi ve ikili kargilastirmalar neticesinde de diger algoritmalardan daha
bagarili oldugu goriilmiistiir. Sonug olarak, FLA nin FV parametre ¢ikariminda basarili ve umut
vaat eden bir algoritma oldugu goriilmiis ve basaris istatistiksel olarak kanitlanmistir.
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1. INTRODUCTION (GIRiS)

According to the International Energy Agency data,
PV and wind energy systems have doubled in both
capacity increase and their share in electricity
generation between 2018 and 2023. This significant
development is expected to reflect as a cost
reduction by 2030 [1]. Among renewable energy
sources, PV systems play a key role in the clean
energy transition due to their low cost. With their
modular technological structure, they have a wide
range of applications, from small residential-type
installations to large-scale, gigawatt-level power
plant applications [2], [3]. PV systems can convert
sunlight directly into electrical energy without
moving parts. These systems are a sustainable
energy source through their various applications.
Additionally, they stand out for their
environmentally friendly approach and advantages

[4]-[6].

Maximizing the benefit obtained from PV systems
requires focusing on PV cells. The accurate
characterization of the behavior of these cells is
related to obtaining electrical models and extracting
the fundamental parameters that form these models
with the highest possible accuracy. Correctly
modeling the current-voltage characteristics of PV
cells, which have a nonlinear characteristic, forms
the basis for many topics, including PV cell design,
fault detection, energy forecasting, and maximum
power point tracking. Furthermore, it directly
affects the design and capacities of other

components in PV systems, playing a decisive role
in the operation and optimal energy management of
the systems [7]-[9].

In PV parameter extraction studies, PV cells and
modules are modeled as single diode, double diode,
three diode, and four-diode models. Various
approaches are used to improve computational
accuracy and reduce computation time in obtaining
the parameters of these models. Analytical and
numerical/iterative methods [10], deterministic
methods [11], modified deterministic methods [12],
numerical/iterative and deterministic methods [13],
metaheuristic algorithms and advanced / improved /
enhanced bio-inspired techniques [14]-[25], and
hybrid and adaptive methods [26]-[34] are among
the many methods used. A total of 25 articles
corresponding to these categories have been
reviewed. The summary of this literature review is
provided in Table 1, with column headings for
algorithm/method, PV cell/module, PV model, and
objective function. In studies where RMSE is used
as the objective function for different algorithms
and methods, PV cells and modules have been
modeled as single diode model based cell (SDM-C),
single diode model based module (SDM-M), double
diode model based cell (DDM-C), double diode
model based module (DDM-M), three diode model
based cell (TDM-C), three diode model based
module (TDM-M), four-diode model based cell
(FDM-C), and four-diode model based module
(FDM-M).

Table 1. Literature review (Literatiir incelemesi)

PV Model Objective
Algorithm/Method PV Cell/Module SDM DDM TDM FDM Function
C M C M C M C M (RMSE)
Analytical and numerical/iterative
methods [10] SP70 & &
Lambert W-function [11] SP40, SP70, KC200GT | |
- RTC France, CHL285P,
Modified newton—raphson method [12] PWP210 ¥ o “
]Icterat_lve method and the Lambert W SQ80, KC200GT, ST40 7 =
unction [13]
R.T.C France, PVM 752,
STM6-40/36, LSM 20,
Weighted leader search algorithm [14] PWP201, STP6-120/36, M M &M M M o |
KC200GT, ESP-160
PPW
RTC France, Photowatt-
INFO algorithm [15] PW201, STM6-40/36, M M M ™ |
STP6-120/36
Artificial hummingbird algorithm [16] RTC France ] ) ] [l
Puffe_r fish  inspired  optimization RTC France 7 =
technique [17]
Ranking teaching—learning-based R.T.C France, STM6- ¥ ¥ ¥ o =
optimization algorithm [18] 40/36, STP6-120/36
PW201, STM6-40/36,
Diversity improvement-oriented  STP6-120/36 ¥ ¥ o ¥ o

differential evolution [19]
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Multi-strategy gaining-sharing

RTC France, PW201,

. STM6-40/36, STP6- M M M ™ ]
knowledge-based algorithm [20] 120/36
. Lo . STP6-120/36, PWP201,
Manta'ray foragmg optimization with XKD-50W, XHYG. a
dynamic fitness distance balance [21] 10W
Developed JAYA algorithm [22] RTC France, PWP201 M 4 M 1l
Multi-strategy-based tree seed algorithrm RTC France, PWP201, g ¥ o a
[23] STM6-40/36
Enhanced snake optimization algorithrm RTC France, PWP201, v " o= =
[24] STM6-40/36
Fractional order kepler optimization RTC France, KC-200, g ¥ o a
algorithm [25] Ultra-Power-85, SP-70
R.T.C France, PVM 752,
Hybrid white shark optimizer and artificial STM®6-40/36, LSM 20, v ¥ o =
rabbits optimization [26] PWP 201, STP6-120/36,
STE 4/100, KC200GT
I—{ybnd pgrt!cle swarm optimization and RTC France a
dingo optimizer [27]
. . R.T.C France, STM6-
Enhanced chaotic JAYA algorithm [28] 40/36, STP6-120/36 M M H |
. - . R.T.C France, PVM 752,
Hybrid analytical/iterative method [29] PWP201 M o |
Micro adaptive fuzzy cuckoo search
optimization [30] PWP201, STM6-40/36 [} [}
Improved grey wolf optimization [31] RTC France M ]
Fitness-guided particle swarm
optimization with adaptive newton- RTC France, SMS5, ¥ o ]
KC200GT
raphson [32]
Multiagent system based cuckoo search
optimization with lambert W-function R.T.C France, PWP201 M o ™
[33]
Lambert w-function and newton-raphson
method collaborated with spider wasp R.T.C France, PWP201, M M M 4 M M |

optimizer [34]

KC200GT, STM6-40/36

In addition to wvarious methods, different
metaheuristic algorithms have been used for PV
parameter extraction. The solution of a problem
with different metaheuristic algorithms can be
explained using the no free lunch theorem.
According to this theorem, no algorithm can solve
all problems. Furthermore, the success of
algorithms in problem-solving is not standard and
may be either good or bad depending on the
problem. There is no such thing as the best
algorithm [35]. This is because each metaheuristic
algorithm has its strengths and weaknesses. As a
result, different success levels appear in different
problems [36]. Additionally, when examining Table
1, it can be observed that SDM, DDM, and TDM are
widely used, while FDM is included in very few
studies in the literature. Motivated by this, this
article focuses on PV parameter extraction for FDM
using metaheuristic algorithms.

This article presents PV parameter extraction. The
extraction of the eleven unknown parameters of a
PV cell and module, modeled as FDM-C and FDM-
M, was obtained using FLA. This problem was also
solved using the PLO, MGO, WO, and ECO
algorithms. These five metaheuristic algorithms

were used for the first time in this study to solve the
parameter extraction problem. The objective
function, aimed at obtaining the smallest RMSE,
was compared using evaluation metrics and
statistical methods.

This article consists of five sections. Following the
introduction, the second section defines the problem
and objective function. The third section presents
the FLA algorithm, the solution method for the
problem, in detail. Additionally, the PLO, MGO,
WO, and ECO algorithms are summarized. The
fourth section examines the parameter extraction
results in detail, and the fifth section presents the
conclusions.

2. DEFINITION OF THE PROBLEM
(PROBLEMIN TANIMLANMASI)

The problem of this article is PV parameter
extraction for FDM. This section is presented under
two subheadings: FDM of PV cell and module, and
objective function.
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2.1.Four-Diode Model (FDM) of PV Cell and

Module (PV Hiicre ve Modiiliin Dért Diyotlu Modeli
(FDM))

FDM is a detailed approach for modeling PV cells
and modules. Despite its high computational
demand, parameter sensitivity, and complex
implementation, it allows the nonlinear nature and
behavior of PV to be reflected with higher accuracy
under various conditions compared to single,
double, and three-diode models. The electrical
circuit of a PV cell and module with FDM is shown
in Figure 1(a) and (b). It consists of a photo-

r—
e

-+ 4
N R, lipnic
Ion D, D, D; Dy []R“h VrpM-C
a) FDM-C

generated source (I,y), four diodes connected in
parallel (D4, D,, D3, D,), a parallel/shunt resistance
(Rg), and a series resistance (R;). The diffusion
current is represented by the first diode,
recombination in the depletion region by the second
diode, recombination in other regions by the third
diode, and leakage currents due to structural
imperfections by the fourth diode. The general
current representation for FDM, obtained by
subtracting the diode currents and shunt current
from the photo-generated current, is given for FDM-
C and FDM-M in Equation (1) [9], [30], [37]-[38].

; =
R-.iR,'rlm wh

N
N_?‘ Ra]l A

FDM-M

b) FDM-M

Figure 1. Electrical circuit of PV cell and module with FDM (FDM ile FV hiicre ve modiiliin elektriksel devresi)

Iepy = Ipn = lar = laz = las = laa — Lsn

L

Ippy = §

VFpmM-M+Ns Rs IFDM-M
Rsn Ns

Where, Irpy, is the output current of FDM, I, is the
photo-generated current, I, is the 1st diode current,
14, is the 2nd diode current, I;5 is the 3rd diode
current, Iz, is the 4th diode current, Ig, shunt
resistance current, I,; is the 1st diode reverse
saturation current, Vepu—c are the output voltage of
PV cell, Ry is the series resistance, Irpy—_c are the
output current of PV cell, a, is the 1st diode ideality
factor, V; is the junction thermal voltage, I,, is the
2nd diode reverse saturation current, a, is the 2nd
diode ideality factor, 1,5 is the 3rd diode reverse
saturation current, a is the 3rd diode ideality factor,
1,4 is the 4th diode reverse saturation current, a, is
the 4th diode ideality factor, R, is the shunt
resistance, Vppy—p are the output voltage of PV
module, N, is the number of series-connected PV

(VFDM—C"‘RS IFDM—C) (VFDM—C"'RS IFDM—C)
n— o1 € Ve — 1] -1y [e %2Vt — 1] =

I _ =
FbM—C (VFDM—C+RS IFDM—C) (VFDM—C+RS IFDM—C) VEDM—C+Rs IFDM—C
_C+Rs _
I,5|e a3V —1|—=1I,l|e s Ve -] -

Rsh

(VFDM—M+Ns Rs IFDM—M) (VFDM—M"'NS Rs IFDM—M) (1)
[Iph_lol e ay V¢ Ng —1|=1,]e az Ve Ng 1] =

I _ (VFDM—M+NS Rs IFDM—M) (VFDM—M+NS Rs IFDM—M)
FDM-M — 103 e a3z V¢ Ng -1 - 0a € as Ve Ng -1 —---

cells, and Ippy—_p are the output current of PV
module.

2.2. Objective Function (Amag Fonksiyonu)

The objective function of the PV parameter
extraction problem to be solved with FLA, PLO,
MGO, WO, and ECO algorithms is RMSE. To
achieve this, the difference between the estimated
and measured currents of the PV cell or module is
minimized. The general representation of the
function showing the difference between the
estimated and measured current for FDM, the
current function for FDM-C, the current function for
FDM-M, and the decision variables of these
functions are given in Equation (2). The RMSE used
as the objective function is given in Equation (3)
[15].
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From (0) = Uestimatea) — Umeasurea)

from—c(x) =
Iy3 [e(

az Ve

from(x) =

f, () = (VFDM—M+Ns Rs IFDM—M) (
FDM-M I,z e azViNs —1|—=1,|e
VEpM-m+Ns Rs IrpmM-m) _ (I )
Rsp Ns FDM—Mmeasured

{XFDM—C = Don Lo1, Lo2s Loz, Loar @y, @, 3, 0y, R, Ry

Xppm-m = Tpns o1, o2, Loz, Ioar @1, @2, @3, 04, R, Ry

RMSE = \/% Ziy [from (012

Where, f(x) is the current function, x is the
decision variable, frpa () is the current function of
FDM, Iostimateaq 1S the estimated current, L, cqasured
is the measured current, frppy—c(x) is the current
function of FDM-C, Ippy—c,,,pcureq 1S the measured
current of FDM-C, frpy—_m(x) is the current
function of FDM-M, IppM-m,,0emrea 1S the
measured current of FDM-M, xppy_c iS the
decision variables of FDM-C, xppy_y IS the
decision variables of FDM-M, and RMSE is the root
mean square error.

3. FLOOD ALGORITHM (FLA) AND BRIEF
SUMMARY OF PLO, MGO, WO, AND

ECO ALGORITHMS (TASKIN ALGORITMASI
(FLA) VE PLO, MGO, WO VE ECO
ALGORITMALARININ KISA OZETI)

The PV parameter extraction problem has been
solved using the FLA, PLO, MGO, WO, and ECO
algorithms, and the details are provided in the
subsections.

3.1.Flood Algorithm (FLA) (Taskin Algoritmas:
(FLA))

FLA is a metaheuristic algorithm inspired by natural
flood events in river basins and the movement of
water masses during these events. The movement of
water in natural flood events, the behavior of water
in response to slopes, and changes in the flow
velocity and levels of water have all been addressed
and mathematically modeled. FLA operates in two
phases: regular movement and flooding, and the
flowchart and pseudocode of FLA are shown in
Figure 2 and Algorithm 1, respectively. Here, the
water mass corresponds to the population of the

gnew _ Spest + rand X (Sj — Sl-)

' j=1D

(lph — o1 [JW) - 1] — 1y [e(

VEDM-c*RsIFDM-C VEDM-CtRsIFDM-C v +R.I
—1l=1,1le Ve — 1| = YrpmM-ctRslrpu-c) _ (1
04 FDM—Cmeasured

VEDM-C*Rs IFDM—C)
a Ve -1 =

Rsn

(VFDM—M+Ns Rs IFDM—M) (VFDM—M+N5 Rs ’FDM—M)
Iph_lal e ay V¢ Ng -1 = 2 |e az V¢ Ng -1 - (2)

ag Ve Ns

VEDM-M+Ns Rs IFDM—M)
S

3)

algorithm, which searches for the best solution. The
movement of the water mass in the direction of the
slope corresponds to moving toward a better
solution. Flooding corresponds to increasing
population diversity.

3.1.1. Phase I: regular movement (Faz I: diizenli
hareket)

This phase involves the modeling of three stages. In
the first stage, the population search represents the
natural movement of water toward the slope or a
better point for the defined problem size. In the
second stage, the population representing the water
flow is modeled. In the final stage, the soil
impermeability coefficient and its effect on the
flood are examined. The general movement inspired
by the natural movement of the water mass is given
in Equation (4). Floods can occur as the flow of
water in the river increases. The flow of water is
modeled with the water depletion coefficient in
Equation (5). Floods are not planned events and
occur based on many factors. This random situation
is reflected by the random (rand) parameter and the
motion of the water masses is given in Equation (6).
Another factor affecting the flood is the water
permeability, which expresses the relationship
between water and soil and reduces the risk of
flooding. The soil permeability coefficient is given
in Equation (7). There is an inverse relationship
between this value and water flooding. A high soil
permeability coefficient reduces the probability of
water flooding, while the opposite increases the
likelihood of flooding. As a result, the motion of the
water masses or the position of the new swarm is
determined by the rule given in Equation (8).

(4)

-2/3

Pk = (1.2/t) x [ Tppa Xt?2+1+ ((1/(TFLA/4) X t) X In (\/ TrLa X %+ 1+ (TFLA/4))>] ©)
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Sinew = Si + ((Pk)randn/t) X (rand X (Smax - Smin) + Smin) (6)

Pe; = ((f(Sp) — fmin)/(fmax - fmin))z

Equation 6
Equation 4

gnew _ { if rand > rand + Pe;

t if rand < rand + Pe;
Where, S**" is the motion of the water masses or
ith position of new swarm, S, .; is the slope of the
water path, rand is the random values between 0
and 1, §; is the jth randomly member of the
population, §; is the ith randomly member of the
population, D is the size of the problem, Pk is the
water depletion coefficient, Tr;, IS the maximum
number of iterations, t is the current iteration,
randn is the normally distributed random number,
Smax 1S the upper bound of the decision variable/s,
Smin 1S the lower bound of the decision variable/s,

Pt = |sin(rand/t)|

new _—_
Se

“e=1:N,

Where, Pt is the probability of occurrence of
increase or decrease of water mass and N, is the
number of water particles [39].

Start

v v

Sbest + rand X (Tand X (Smax - Smin) + Smin)

(")
(8)

fmax 1S the best value of the objective function, and
fmin 1S the worst value of the objective function.

3.1.2. Phase I1: flooding (Faz II: taskmn)

In real life, water can be added to the water basin by
rain or melting snow, and some water can evaporate
by evaporation. It is assumed that the probability of
water being added or evaporating is equal, as
expressed in Equation (9). The poor solutions will
be displaced by the newly added particles, and the
position of the new solutions is given in Equation
(10).

(9)

(10)

Is there a

Initialize FLA algorithm Run the FLA algorithm
I 3 recently
: added
Determine the control Assess the level of fitness of .
. — member that
parameters the initial swarm l

v

Create the initial swarm

Update the swarm using
+ Equations (4)-(10)

costs less
than the best
member?

¥

=

While
1 <Trr4

?

-

Does the new
menther have
a lower cost
compared to
the previous
member?

Return the best solution

v

End

1

—

Swap the position of the
previous member with that of

the new member

!

Swap the positions of the
recently added member and the
member who performs the best

v

v

Is stop
criterion
satisfied?

-

j
@

Figure 2. Flowchart of FLA (FLA’nmn akis diyagrami)
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Algorithm 1. Pseudocode of FLA (FLA’nin sézde kodu)

Phase Step FLA algorithm

Initialization

Parameter settings: N, Nppg. t, Trra

1 To create the accidental initial swarm/population Npp 4 (i = 1,-+, Ngp4)
2 Si = Smin + rand X (Smax — Smin)
3 To evaluate the fitness of initial random swarm
4 while t =0 < Tg 4 do
5 To arrange the generations t =t + 1
6 for i=11inNg, do
7 Pe; = ((F(5) — finin)/ Unax — fmin))z
8 if rand > rand + Pe; then
9 S =S+ ((Pk)™amdn /) x (rand x (Smax = Smin) + Smin)
10 else
11 SPW = Spest + rand x (S; — S;)
12 end if
13 it f(S7") < f(S;) then

Process 14 Si = SiTlEW and f(Sbest) = f(Sl)
15 end if
16 f(si) < f(sbest)
17 Spest = Si and f(Spese) = f(S;)
18
19 end for
20 it rand < P, Pt = |sin(rand/t)| then
21 for e= 1in N, do
22 SFEY = Spose +rand X (rand X (Spax — Smin) + Smin)
23 il f(S&Y) < f(Spest) then
24 Spest = Sg€ and f(Spese) = F(ST)
25 end if
26 end for
27 end if
28  end while

Output Return the optimum solution Sy, that has been optimized by FLA

3.2.Brief Summury Of PLO, MGO, WO, And

ECO A|gOI’itth (PLO, MGO, WO ve ECO
Algoritmalarinm Kisa Ozeti)

In addition to FLA, the PLO, MGO, WO, and ECO
algorithms were also used in solving this problem.
These algorithms are summarized in Table 2 with
the column headings algorithm, inspiration source,
control/key parameter, and value. As seen in the
table, these five algorithms have different operating

scenarios and mathematical infrastructures due to
their inspiration sources. FLA is inspired by water
dynamics and flood behavior, PLO by aurora
phenomena and light movement, MGO by growth
and expansion patterns of moss, WO by social
behavior and foraging of walruses, and ECO by
competitive learning in educational settings. FLA,
MGO, and ECO have one, PLO has two, and WO
has three control/key parameters, which influence
the performance of the algorithms [39]-[43].

Table 2. Inspiration and control parameters of FLA, PLO, MGO, WO, and ECO algorithms (FLA, PLO,
MGO, WO ve ECO algoritmalariin ilham ve kontrol parametreleri)

Control/Key

Algorithm Inspiration Source Value
Parameter
Flood algorithm (FLA) [39] Water dynamics and flood behavior N, 5
Polar lights optimizer (PLO) [40] Aurora phenomena and light movement 7; [11205]
Moss growth optimization (MGO) [41] Growth and expansion patterns of moss w 2
Walrus optimizer (WO) [42] Social behavior and foraging of walruses Two 10000
p 0.4
Educational competition optimizer (ECO) [43] Competitive learning in educational settings Ngco 50
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4. RESULTS OF PV  PARAMETER

EXTRACTION AND EVALUATION (v
PARAMETRE  GIKARIMI  SONUCLARI  VE
DEGERLENDIRME)

In this section, the PV parameter extraction results
for FDM-C and FDM-M using the FLA, PLO,
MGO, WO, and ECO algorithms and their
performance in solving this problem are presented.
This section is provided under the subheadings of
inputs, results, computational accuracy and
computational  time, statistical tests, and
convergence Curves.

4.1, Inputs (Girdiler)

MATLAB software has been used for the
simulation of this article. The code has been written
as an m-file. The specifications of the computer on
which the algorithms were run are as follows:
Intel(R) Core(TM) i7-4790 CPU@3.60GHz, 24GB
RAM. The number of particles for all algorithms is

50. One run consists of 10,000 iterations, and a total
of 30 runs were performed. For the PV parameter
extraction problem, one PV cell and one PV module
have been selected. The real current and voltage
data of RTC France [44] have been used for the PV
cell, and the real current and voltage data of
Schutten Solar STM6-40/36 [45] have been used for
the PV module. The short-circuit current, open-
circuit voltage, current, and voltage at the maximum
power point of the RTC France photovoltaic (PV)
cell are 0.7603 A, 0.5728 V, 0.6894 A, and 0.4507
V, respectively. The Schutten Solar STM6-40/36
PV module consists of 36 series-connected cells.
The short-circuit current, open-circuit voltage,
current, and voltage at the maximum power point of
this module are 1.663 A, 21.02 V, 1.50 A, and 16.98
V, respectively. There are eleven parameters to be
extracted for FDM-C and FDM-M. The lower and
upper bounds of decision variables for FDM-C and
FDM-M are provided in Table 3.

Table 3. Lower and upper bounds of decision variables for FDM-C and FDM-M (FDM-C ve FDM-M igin
karar degiskenlerinin alt ve list siirlart)

PV Lower Bound Upper Bound
Model In Iodog oz doa @1,0p,a3,04  Rs Ran | Ipn logdozloz loa @1, a5,a3,a4 R Rsn
(A) (nA) () @ © | ® (nA) () Q@ (©
FDM-C 0 0 1 0 0 1 10 2 1 1000
FDM-M 0 0 1 0 0 2 50 60 0.36 1000

4.2.Results Of PV Parameter Extraction (Fv
Parametre Cikarimi Sonuglari)

RTC France PV cell has been modeled with FDM.
Then, its eleven parameters were estimated using
the metaheuristic algorithms FLA, PLO, MGO,
WO, and ECO. The PV parameter extraction results
of FDM-C in the 30" run is provided in Table 4. The
RMSE results are ranked from smallest to largest.
When comparing the results of the algorithms, the

smallest RMSE of 9.8259271E-04 was obtained by
the FLA algorithm. FLA is followed by the MGO,
WO, PLO, and ECO algorithms. The I-V and P-V
curves plotted using the measured data of the RTC
France PV cell and the estimated data by FLA are
shown in Figure 3. When examining the graphs, it
can be observed that the measured data and
estimated data match and align successfully. This
demonstrates the success of FLA in PV parameter
extraction.

Table 4. PV parameter extraction results of FDM-C in the 30™ run (FDM-C'in 30. galismasinda ki FV parametre
¢ikarimi sonuglari)

Parameter FLA PLO MGO WO ECO
Ipyn (A) 0.7607786 0.7618875 0.7620525 0.7607443 0.7644102
Iy1 (RA) 0.2367755 0.0000000 0.4379903 0.8278776 0.0028874
I,z (MA) 0.1753640 2.2315195 0.0001060 3.4578557 9.9999343
Io3 (nA) 0.4295003 5.1182996 0.0000000 0.0165228 0.0000000
Ios (MA) 0.0514301 0.0771697 2.5467624 0.0208131 4.5437976

ay (-) 1.4549103 1.9999474 1.5388396 1.6145120 2.0000000
a, (-) 2.0000000 1.9725127 1.7562160 1.9989313 2.0000000
as (-) 2.0000000 1.9644260 1.9972460 1.9986554 1.9964226
ay (-) 2.0000000 1.4314299 1.9527657 1.9402148 2.0000000
R, () 0.0366915 0.0264810 0.0315264 0.0278392 0.0142843
Ry, (Q) 55.2848811 999.9861154 904.8492791 1000.0000000 999.9999986
RMSE 9.8259271E-04 5.3341190E-03 3.4425204E-03 4.1260695E-03 8.7908497E-03
RMSE Rank 1 4 2 3 5
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Figure 3. Measured data and estimated results by the FLA algorithm for FDM-C (FDM-C igin &lgiilen veriler
ve FLA algoritmasi tarafindan tahmin edilen sonuglar)

Schutten Solar STM6-40/36 PV module has been
modeled with FDM. The unknown parameters were
estimated using five algorithms. The PV parameter
extraction results of FDM-M in the 30" run is
provided in Table 5. When comparing the results, as
in FDM-C, the smallest RMSE was obtained by the
FLA algorithm. FLA, with an RMSE value of
1.7298036E-03, is followed by WO, PLO, ECO,

and MGO. The I-V and P-V curves plotted using the
measured data of the PV module and the estimated
data by FLA are shown in Figure 4. When
examining the graphs, it can be observed that the
measured data and estimated data successfully
align. This further reinforces the success of FLA in
PV parameter extraction.

Table 5. PV parameter extraction results of FDM-M in the 30" run (FDM-Min 30. calismasinda ki FV
parametre ¢ikarimi sonuglart)

Parameter FLA PLO MGO WO ECO
Ipn (A) 1.6639045 1.6603123 1.5678745 1.6567446 1.6700870
I,1 (LA) 50.0000000 37.2997289 4.8006234 47.1939470 43.3733815
Iyy (LA) 1.7384783 12.4044569 0.7767664 7.2122661 21.0710384
Io3 (LA) 50.0000000 49.9997600 3.1665514 48.5210498 31.3869353
Ioq (LA) 0.0000006 18.8837222 7.4204936 3.0396871 49.5251575
aq (-) 60.0000000 54.9375789 57.0870319 14.6349084 47.6637244
a, (-) 1.5202937 1.7717246 1.4398523 1.6940785 1.8569793
as (-) 60.0000000 57.4100491 46.0022475 29.2704550 3.4923193
ay (-) 60.0000000 56.9073724 48.3385472 28.3250795 58.8497972
R, (Q) 0.0042740 0.0000007 0.0000000 0.0000001 0.0000015
Ry, (QQ) 15.9451344 999.5697608 996.4024267 67.8580756 772.1200189
RMSE 1.7298036E-03 9.5790451E-03 6.2579367E-02 4.4530579E-03 1.8810481E-02
RMSE Rank 1 3 5 2 4
FDM-M FDM-M
m = = = : o =y
157 ‘. - \
—_ 207 o
Sl \ £ -
5 5 .
§ 0.5 1 n%. 101 - _
Measured-FLA Measured-FLA
® Estimated-FLA ol ® Estimated-FLA
0 ‘ ‘ ‘ 0 o ‘ ‘ .
0 5 10 15 20 0 10 15 20
Voltage (V) Voltage (V)
a) |-V b) P-V

Figure 4. Measured data and estimated results by the FLA algorithm for FDM-M (FDM-M igin 6lgiilen veriler
ve FLA algoritmasi tarafindan tahmin edilen sonuglar)
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4.3. Computational Accuracy And

Computational Time (Hesaplama Dogrulugu ve
Hesaplama Zamani)

With the FLA, PLO, MGO, WO, and ECO
metaheuristic algorithms, the eleven unknown
parameters of FDM-C and FDM-M have been
estimated. Among these algorithms, FLA has been
the most successful algorithm with the smallest
RMSE value. In addition, the results of 30 runs for
FLA and the other four algorithms have been
examined in terms of computational accuracy and

computational time. The average, maximum,
minimum, and standard deviation of RMSE results
for each algorithm over 30 runs have been
calculated. These values were considered as
evaluation metrics and used in the comparison of the
algorithms. The results of computational accuracy
are presented in Table 6. When examining the mean
rank and total rank obtained for FDM-C and FDM-
M, it is observed that FLA achieved the smallest
average and smallest minimum RMSE in all 30
runs. It can be seen that FLA was stable while
obtaining these results.

Table 6. Results of computational accuracy (Hesaplama dogrulugunun sonuglarr)

Standard

Model Algorithm Average Rank Maximum Rank Minimum Rank S Rank
Deviation
FLA 3.5935746E-03 1 1.9545185E-02 4 9.8251385E-04 1 4.0925274E-03 4
PLO 5.3270909E-03 4 6.8654356E-03 1 2.9804325E-03 5 8.4791828E-04 1
FDM-C MGO 1.2313673E-02 5 8.1558691E-02 5 1.9179928E-03 4 1.4768313E-02 5
\\Ye} 5.1329891E-03 3 7.7100840E-03 2 1.1112930E-03 3 1.6308073E-03 2
ECO 3.6185213E-03 2 8.7908497E-03 3 9.8282486E-04 2 2.9561315E-03 3
FLA 2.0424885E-03 1 5.3526331E-03 1 1.6884311E-03 1 8.3286997E-04 1
PLO 5.7040859E-03 3 9.5790451E-03 3 4.3762803E-03 5 1.0998252E-03 3
FDM-M MGO 5.8146164E-02 5 1.9412997E-01 5 2.3186272E-03 3 5.2869327E-02 5
\WYe] 4.3529314E-03 2 5.4001772E-03 2 1.7443232E-03 2 9.4028259E-04 2
ECO 7.6413890E-03 4 1.8810481E-02 4 3.2180135E-03 4 3.8708561E-03 4
Model Algorithm Mean Total Mean Total Mean Total Mean Total
Rank Rank Rank Rank Rank Rank Rank Rank
FLA 1.000 1 2.500 3 1.000 1 2.500 3
FDM-C PLO 3.500 4 2.000 1 5.000 5 2.000 1
and MGO 5.000 5 5.000 5 3.500 4 5.000 5
FDM-M WO 2.500 2 2.000 2 2.500 2 2.000 2
ECO 3.000 3 3.500 4 3.000 3 3.500 4
Results of computational time in seconds are standard deviation, ECO is ranked first. In

provided in Table 7. FLA is slower than the other
algorithms in terms of computational time. This
situation requires evaluating both computational
accuracy and computational time together. When
examining the mean rank and total rank obtained for
FDM-C and FDM-M, the algorithm with the best
speed in terms of average, maximum, and minimum
is MGO. However, in terms of computational
accuracy, it ranks last in both average and
maximum, and fourth in minimum. In terms of

computational accuracy, the most stable results
were produced by FLA, which ranked fourth in
stability. Detailed modeling studies are conducted
for PV systems, and based on feasibility studies, a
decision is made regarding whether the system is
feasible or not. Since the initial investment cost is
high and the system is planned for approximately 25
years, it is not a correct choice to only reference
computational time; computational accuracy should
be considered as the reference.

Table 7. Results of computational time in seconds (Saniye olarak hesaplama zamaninin sonuglart)

Model Algorithm Average Rank Maximum Rank Minimum Rank Star?da_lrd Rank
Deviation
FLA 7.5228295E+01 4 8.8241180E+01 3 6.8833375E+01 5 4.4631682E+00 3
PLO 8.1867098E+01 5 1.2522939E+02 5 6.3543348E+01 3 1.1831198E+01 5
FDM-C MGO 4.2401781E+01 1 5.1080383E+01 2 3.9898257E+01 1 3.0551056E+00 2
\WYe} 7.3454392E+01 3 1.0920248E+02 4 6.4644150E+01 4 9.1429877E+00 4
ECO 4.2528322E+01 2 4.8869973E+01 1 4.0571758E+01 2 1.8302202E+00 1
FLA 1.0383685E+02 5 1.7047343E+02 5 5.9285478E+01 5 2.6327109E+01 5
PLO 7.1289870E+01 3 1.0583865E+02 3 5.5181437E+01 4 1.0679184E+01 2
FDM-M MGO 6.3604604E+01 2 9.6735429E+01 2 3.9857680E+01 1 1.3012154E+01 4
wo 6.1961489E+01 1 7.4850672E+01 1 4.9918176E+01 3 6.4269138E+00 1
ECO 7.4966452E+01 4 1.0916227E+02 4 4.6934324E+01 2 1.2364525E+01 3
Model Algorithm Mean Total Mean Total Mean Total Mean Total
Rank Rank Rank Rank Rank Rank Rank Rank
FLA 4.500 5 4.000 4 5.000 5 4.000 5
FDM-C PLO 4.000 4 4.000 5 3.500 3 3.500 4
and MGO 1.500 1 2.000 1 1.000 1 3.000 3
FDM-M (e} 2.000 2 2.500 2 3.500 4 2.500 2
ECO 3.000 3 2.500 3 2.000 2 2.000 1
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4.4, Friedman And Wilcoxon Statistical Tests

(Friedman Ve Wilcoxon Istatistiksel Testleri)

Among the FLA, PLO, MGO, WO, and ECO
algorithms, FLA has achieved successful results in
PV parameter extraction. These results were
evaluated using two statistical tests, namely the
Friedman test and the Wilcoxon signed-rank test.
The first statistical test is the Friedman test. It is a
test that tells whether there is a significant
difference between the results computed by the
algorithms in solving the PV parameter extraction
problem for 30 runs and ranks the algorithms. For a
0.05 significance level, the p-value is examined, and

if this value is less than 0.05, it indicates a
significant difference between the algorithms. The
results of the Friedman test are provided in Table 8.
The p-value for FDM-C was calculated as
8.5587363E-07, and for FDM-M it was
8.9032486E-19, showing a significant difference
between the algorithms. In both models, the
smallest mean rank, or the best results, were
obtained with FLA. The results of the mean and
total ranking of algorithms are presented in Table 9.
Based on the ranking of the results obtained in these
two models, the Friedman test proves that the most
successful results were produced by FLA among the
five algorithms.

Table 8. Results of Friedman test (Friedman testinin sonuglar)

Model  Algorithm Mean Rank Rank P-value Conclusion
FLA 2.000 1
PLO 3.167 4 P-value < 0.05

FDM-C MGO 4.233 5 8.5587363E-07  There is significant difference among the performance
WO 3.100 3 of algorithms at 5% level of significance.
ECO 2.500 2
FLA 1.033 1
PLO 3.333 3 P-value < 0.05

FDM-M MGO 4.600 5 8.9032486E-19  There is significant difference among the performance
WO 2.300 2 of algorithms at 5% level of significance.
ECO 3.733 4

Table 9. Results of ranking of algorithms
(Algoritmalarin siralanmasinin sonuglari)

Model FLA PLO MGO WO ECO
FDM-C 1 4 5 3 2
FDM-M 1 3 5 2 4

Mean Rank  1.000 3.500 5.000 2500 3.000
Total Rank 1 4 5 2 3

The second statistical test is the Wilcoxon signed-
rank test. According to the Friedman test, FLA is the
most successful algorithm among the five. With the
Wilcoxon signed-rank test, FLA was compared
pairwise with the other four algorithms. As in the

Friedman test, the p-value for a 0.05 significance
level was examined. The results of the Wilcoxon
signed-rank test are presented in Table 10. A total
of 8 comparisons were made, with 4 in FDM-C and
4 in FDM-M. In 7 of these 8 cases, it is evident that
the results found by FLA are better than those of the
other algorithms, as the p-value is less than 0.05.
The results of the mean and total ranking of
algorithms are provided in Table 11. According to
the pairwise comparison of the results obtained in
these two models, the algorithm closest to FLA in
performance is ECO, followed by WO, PLO, and
MGO.

Table 10. Results of Wilcoxon signed-rank test (Wilcoxon isaretli sira testinin sonuglari)

Model FLA vs Compared Algorithm P-value Rank H Zval Ranksum IS/ ISNOT
PLO 4.0329776E-03 3 1  -2.8755707 720 IS

FDM-C MGO 2.8789721E-06 1 1 -4.6792706 598 IS
WO 3.5011674E-03 2 1 -2.9199240 717 IS
ECO 8.4999697E-02 4 0 -1.7223856 798 IS NOT
PLO 9.9186286E-11 2 1  -6.4681861 477 IS

EDM-M MGO 8.9934060E-11 1 1  -6.4829705 476 IS
WO 1.6947245E-09 4 1  -6.0246534 507 IS
ECO 1.3288512E-10 3 1  -6.4238328 480 IS
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Table 11. Results of ranking of algorithms

(Algoritmalarin siralanmasinin sonuglari)

Model PLO MGO WO ECO
FDM-C 3 1 2 4
FDM-M 2 1 4 3

Mean Rank 2.500 1.000 3.000 3.500
Total Rank 2 1 3 4

4.5.Convergence Curves (Yakinsama Egrileri)

For 10,000 iterations, the solution finding process
of FLA, PLO, MGO, WO, and ECO algorithms in
PV parameter extraction can be shown with
convergence curves in the 30" run. The
convergence curves for FDM-C are shown in Figure
5(a), and for FDM-M in Figure 5(b). As seen in the
figures, the lowest RMSE value was obtained with
the FLA algorithm compared to the other
algorithms.

FDM-C
|—FLA — PLO — MGO — WO — ECO
Sl
w2
= 102 1

2000 4000 6000 8000 10000
Iteration

a) FDM-C
FDM-M

PLO MG(S—WOI

—FLA ECO

RMSE

2000 4000 6000 8000 10000

[teration
b) FDM-M
Figure 5. Convergence curves in the 30" run (3o.
calismadaki yakinsama egrileri)

5. CONCLUSION (SONUCLAR)

The correct modeling of PV systems with the right
parameters is required to accurately express their
response to changing meteorological conditions.
Accurately  defining  the  current-voltage
characteristics with the correct parameters is crucial
for predicting and planning the performance of FV
systems in real-world applications. In this article,
PV parameter extraction of a PV cell and module
was performed using FDM. The eleven unknown

parameters of FDM were obtained using the meta-
heuristic algorithms FLA, PLO, MGO, WO, and
ECO. These five algorithms were used for both
solving the parameter extraction problem and for
the first time in this study with FDM. RMSE was
selected as the objective function. The RMSE was
evaluated using assessment metrics, computational
accuracy, computational time, and statistical
methods. The smallest minimum RMSE was
obtained with FLA, calculated as 9.8251385E-04
for FDM-C and 1.6884311E-03 for FDM-M. To
statistically prove and reinforce the success of FLA
over the other algorithms, the Friedman test and
Wilcoxon signed-rank test were used. According to
these tests, FLA produced more significant results
than the other algorithms, and, based on pairwise
comparisons, it was shown to be more successful
than the others. As a result, FLA was found to be a
successful and promising algorithm for PV
parameter extraction for FDM, and this was
statistically proven.
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