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Graphical/Tabular Abstract (Grafik Özet) 

In this study, the PV parameter extraction problem has been studied. The eleven unknown 

parameters of the four-diode model have been extracted using the FLA, PLO, MGO, WO, and ECO 

algorithms. The results have been evaluated using evaluation metrics and statistical tests. / Bu 

çalışmada, FV parametre çıkarımı problemi üzerinde çalışılmıştır. Dört diyotlu modelin bilinmeyen 

on bir parametresi FLA, PLO, MGO, WO ve ECO algoritmaları ile çıkartılmıştır. Sonuçlar, 

değerlendirme metrikleri ve istatistiksel testler ile değerlendirilmiştir. 

 

Figure A: PV parameter extraction process / Şekil A:. FV parametre çıkarımı süreci 

Highlights (Önemli noktalar)  

➢ The PV parameter extraction of the four-diode model has been performed. / Dört diyotlu 

modelin PV parametre çıkarımı yapılmıştır. 

➢ For the first time, the FLA, PLO, MGO, WO, and ECO algorithms have been used to 

solve this problem in this study. / Bu problemin çözümü için FLA, PLO, MGO, WO ve 

ECO algoritmaları ilk defa bu çalışmada kullanılmıştır. 

➢ The success of the FLA algorithm in PV parameter extraction has been statistically 

proven. / FLA algoritmasının PV parametre çıkarımında ki başarısı istatistiksel olarak 

kanıtlanmıştır. 

Aim (Amaç): This study aims to extract the unknown parameters of a PV cell and module. / Bu 

çalışma bir FV hücrenin ve modülün bilinmeyen parametrelerini çıkarmayı amaçlamaktadır. 

Originality (Özgünlük): When examining literature, it can be observed that single, double, and 

triple diode models are widely used, while four-diode model is included in very few studies. 

Motivated by this, this article focuses on PV parameter extraction for four-diode model using 

metaheuristic algorithms. FLA, PLO, MGO, WO, and ECO have been used for the first time to solve 

the defined problem and successful results have been obtained. / Literatür incelendiğinde, tek, çift 

ve üçlü diyot modellerinin yaygın olarak kullanıldığı, dört diyotlu modelin ise çok az çalışmada yer 

aldığı görülmektedir. Bu noktadan yola çıkılarak bu makale, meta sezgisel algoritmalar 

kullanılarak dört diyotlu model için PV parametre çıkarımına odaklanmaktadır. Tanımlanan 

problemin çözümünde FLA, PLO, MGO, WO ve ECO ilk kez kullanılmış ve başarılı sonuçlar elde 

edilmiştir. 

Results (Bulgular): The smallest minimum RMSE was obtained with FLA, calculated as 

9.8251385E-04 with FDM-C and 1.6884311E-03 with FDM-M. / En küçük minimum RMSE FLA 

ile elde edilmiş olup FDM-C ile 9.8251385E-04 ve FDM-M ile 1.6884311E-03 olarak 

hesaplanmıştır. 

Conclusion (Sonuç): According to evaluation metrics and statistical tests, FLA produced 

significantly better results than the other algorithms and outperformed them in pairwise 

comparisons. In conclusion, FLA has proven to be a successful and promising algorithm for PV 

parameter extraction, with its success statistically validated. / Değerlendirme metrikleri ve 

istatistiksel testlere göre; FLA diğer algoritmalardan daha önemli sonuçlar ürettiği ve ikili 

karşılaştırmalar neticesinde de diğer algoritmalardan daha başarılı olduğu görülmüştür. Sonuç 

olarak, FLA’nın FV parametre çıkarımında başarılı ve umut vaat eden bir algoritma olduğu 

görülmüş ve başarısı istatistiksel olarak kanıtlanmıştır. 
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Abstract 

Photovoltaic (PV) cells exhibit a nonlinear characteristic. Before modeling these cells, obtaining 

accurate parameters is essential. During the modeling phase, using these parameters is crucial for 

accurately characterizing and reflecting the behavior of PV structures. Therefore, this article 

focuses on PV parameter extraction. A PV cell and module were selected and modeled using the 

four-diode model (FDM). This problem, consisting of eleven unknown parameters related to the 

FDM, was solved with the flood algorithm (FLA). To compare the algorithm’s performance on 

the same problem, the polar lights optimizer (PLO), moss growth optimization (MGO), walrus 

optimizer (WO), and educational competition optimizer (ECO) were also employed. These five 

metaheuristic algorithms were used for the first time in this study, both for solving the PV 

parameter extraction problem and with the FDM. The objective function aimed at obtaining the 

smallest root mean square error (RMSE) was evaluated and compared through evaluation metrics, 

computational accuracy, computational time, and statistical methods. The smallest minimum 

RMSE was obtained with FLA, calculated as 9.8251385E-04 with FDM-C and 1.6884311E-03 

with FDM-M. To statistically demonstrate and reinforce FLA’s success over other algorithms, 

the Friedman test and Wilcoxon signed-rank test were utilized. According to these tests, FLA 

produced significantly better results than the other algorithms and outperformed them in pairwise 

comparisons. In conclusion, FLA has proven to be a successful and promising algorithm for PV 

parameter extraction, with its success statistically validated. 
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Öz 

Fotovoltaik (FV) hücreler doğrusal olmayan karakteristiğe sahiptir. Bu hücrelerin 

modellenmesinin öncesinde doğru parametrelerin elde edilmesi gereklidir. Modellenme 

aşamasında ise bu parametrelerin kullanımı FV yapıların davranışlarının doğru karakterize 

edilebilmesi ve yansıtılabilmesi açısından çok önemlidir. Bu sebeple bu makalede, FV parametre 

çıkarımı çalışılmıştır. Bir FV hücre ve modül seçilmiş ve dört diyotlu model (FDM) ile 

modellenmiştir. FDM’ye ilişkin bilinmeyen on bir parametreden oluşan bu problem taşkın 

algoritması (FLA) ile çözülmüştür. Aynı problemin çözümünde algoritmanın karşılaştırılması 

için, kutup ışıkları optimizasyonu (PLO), yosun büyüme optimizasyonu (MGO), mors 

optimizasyonu (WO) ve eğitim rekabeti optimizasyonu (ECO) kullanılmıştır. Bu beş meta 

sezgisel algoritma, hem FV parametre çıkarımı probleminin çözümü için hem de FDM ile ilk defa 

bu çalışmada kullanılmıştır. En küçük kök ortalama kare hatası (RMSE) elde edilmenin 

amaçlandığı amaç fonksiyonu; değerlendirme metrikleri, hesaplama doğruluğu, hesaplama 

zamanı ve istatistiksel metotlar ile değerlendirilmiş ve karşılaştırılmıştır. En küçük minimum 

RMSE FLA ile elde edilmiş olup FDM-C ile 9.8251385E-04 ve FDM-M ile 1.6884311E-03 

olarak hesaplanmıştır. FLA’nın diğer algoritmalara göre başarısını istatistiksel olarak kanıtlamak 

ve pekiştirmek için statistical tests kullanılmıştır. Bu testlere göre; FLA diğer algoritmalardan 

daha önemli sonuçlar ürettiği ve ikili karşılaştırmalar neticesinde de diğer algoritmalardan daha 

başarılı olduğu görülmüştür. Sonuç olarak, FLA’nın FV parametre çıkarımında başarılı ve umut 

vaat eden bir algoritma olduğu görülmüş ve başarısı istatistiksel olarak kanıtlanmıştır. 
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1. INTRODUCTION (GİRİŞ) 

According to the International Energy Agency data, 

PV and wind energy systems have doubled in both 

capacity increase and their share in electricity 

generation between 2018 and 2023. This significant 

development is expected to reflect as a cost 

reduction by 2030 [1]. Among renewable energy 

sources, PV systems play a key role in the clean 

energy transition due to their low cost. With their 

modular technological structure, they have a wide 

range of applications, from small residential-type 

installations to large-scale, gigawatt-level power 

plant applications [2], [3]. PV systems can convert 

sunlight directly into electrical energy without 

moving parts. These systems are a sustainable 

energy source through their various applications. 

Additionally, they stand out for their 

environmentally friendly approach and advantages 

[4]-[6]. 

Maximizing the benefit obtained from PV systems 

requires focusing on PV cells. The accurate 

characterization of the behavior of these cells is 

related to obtaining electrical models and extracting 

the fundamental parameters that form these models 

with the highest possible accuracy. Correctly 

modeling the current-voltage characteristics of PV 

cells, which have a nonlinear characteristic, forms 

the basis for many topics, including PV cell design, 

fault detection, energy forecasting, and maximum 

power point tracking. Furthermore, it directly 

affects the design and capacities of other 

components in PV systems, playing a decisive role 

in the operation and optimal energy management of 

the systems [7]-[9]. 

In PV parameter extraction studies, PV cells and 

modules are modeled as single diode, double diode, 

three diode, and four-diode models. Various 

approaches are used to improve computational 

accuracy and reduce computation time in obtaining 

the parameters of these models. Analytical and 

numerical/iterative methods [10], deterministic 

methods [11], modified deterministic methods [12], 

numerical/iterative and deterministic methods [13], 

metaheuristic algorithms and advanced / improved / 

enhanced bio-inspired techniques [14]-[25], and 

hybrid and adaptive methods [26]-[34] are among 

the many methods used. A total of 25 articles 

corresponding to these categories have been 

reviewed. The summary of this literature review is 

provided in Table 1, with column headings for 

algorithm/method, PV cell/module, PV model, and 

objective function. In studies where RMSE is used 

as the objective function for different algorithms 

and methods, PV cells and modules have been 

modeled as single diode model based cell (SDM-C), 

single diode model based module (SDM-M), double 

diode model based cell (DDM-C), double diode 

model based module (DDM-M), three diode model 

based cell (TDM-C), three diode model based 

module (TDM-M), four-diode model based cell 

(FDM-C), and four-diode model based module 

(FDM-M). 

Table 1. Literature review (Literatür incelemesi) 

Algorithm/Method PV Cell/Module 

PV Model Objective 

Function 

(RMSE) 

SDM DDM TDM FDM 

C M C M C M C M 

Analytical and numerical/iterative 

methods [10] 
SP70          

Lambert W-function [11] SP40, SP70, KC200GT          

Modified newton–raphson method [12] 
RTC France, CHL285P, 

PWP210 
         

Iterative method and the Lambert W 

function [13] 
SQ80, KC200GT, ST40          

Weighted leader search algorithm [14] 

R.T.C France, PVM 752, 

STM6-40/36, LSM 20, 

PWP201, STP6-120/36, 

KC200GT, ESP-160 

PPW 

         

INFO algorithm [15] 

RTC France, Photowatt-

PW201, STM6-40/36, 

STP6-120/36 

         

Artificial hummingbird algorithm [16] RTC France          

Puffer fish inspired optimization 

technique [17] 
RTC France          

Ranking teaching–learning-based 

optimization algorithm [18] 

R.T.C France, STM6-

40/36, STP6-120/36 
         

Diversity improvement-oriented 

differential evolution [19] 

PW201, STM6-40/36, 

STP6-120/36 

 
 

         
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Multi-strategy gaining-sharing 

knowledge-based algorithm [20] 

RTC France, PW201, 

STM6-40/36, STP6-

120/36 

         

Manta ray foraging optimization with 

dynamic fitness distance balance [21] 

STP6–120/36, PWP201, 

XKD-50W, XHYG-

10W 

         

Developed JAYA algorithm [22] RTC France, PWP201          

Multi-strategy-based tree seed algorithm 

[23] 

RTC France, PWP201, 

STM6-40/36 
         

Enhanced snake optimization algorithm 

[24] 

RTC France, PWP201, 

STM6-40/36 
         

Fractional order kepler optimization 

algorithm [25] 

RTC France, KC-200, 

Ultra-Power-85, SP-70 
         

Hybrid white shark optimizer and artificial 

rabbits optimization [26] 

R.T.C France, PVM 752, 

STM6-40/36, LSM 20, 

PWP 201, STP6-120/36, 

STE 4/100, KC200GT 

         

Hybrid particle swarm optimization and 

dingo optimizer [27] 
RTC France          

Enhanced chaotic JAYA algorithm [28] 
R.T.C France, STM6-

40/36, STP6-120/36 
         

Hybrid analytical/iterative method [29] 
R.T.C France, PVM 752, 

PWP201 
         

Micro adaptive fuzzy cuckoo search 

optimization [30] 
PWP201, STM6-40/36          

Improved grey wolf optimization [31] RTC France          

Fitness-guided particle swarm 

optimization with adaptive newton-

raphson [32] 

RTC France, SM55, 

KC200GT 
         

Multiagent system based cuckoo search 

optimization with lambert W-function 

[33] 

R.T.C France, PWP201          

Lambert w-function and newton-raphson 

method collaborated with spider wasp 

optimizer [34] 

R.T.C France, PWP201, 

KC200GT, STM6-40/36 
         

In addition to various methods, different 

metaheuristic algorithms have been used for PV 

parameter extraction. The solution of a problem 

with different metaheuristic algorithms can be 

explained using the no free lunch theorem. 

According to this theorem, no algorithm can solve 

all problems. Furthermore, the success of 

algorithms in problem-solving is not standard and 

may be either good or bad depending on the 

problem. There is no such thing as the best 

algorithm [35]. This is because each metaheuristic 

algorithm has its strengths and weaknesses. As a 

result, different success levels appear in different 

problems [36]. Additionally, when examining Table 

1, it can be observed that SDM, DDM, and TDM are 

widely used, while FDM is included in very few 

studies in the literature. Motivated by this, this 

article focuses on PV parameter extraction for FDM 

using metaheuristic algorithms. 

This article presents PV parameter extraction. The 

extraction of the eleven unknown parameters of a 

PV cell and module, modeled as FDM-C and FDM-

M, was obtained using FLA. This problem was also 

solved using the PLO, MGO, WO, and ECO 

algorithms. These five metaheuristic algorithms 

were used for the first time in this study to solve the 

parameter extraction problem. The objective 

function, aimed at obtaining the smallest RMSE, 

was compared using evaluation metrics and 

statistical methods.  

This article consists of five sections. Following the 

introduction, the second section defines the problem 

and objective function. The third section presents 

the FLA algorithm, the solution method for the 

problem, in detail. Additionally, the PLO, MGO, 

WO, and ECO algorithms are summarized. The 

fourth section examines the parameter extraction 

results in detail, and the fifth section presents the 

conclusions. 

2. DEFINITION OF THE PROBLEM 
(PROBLEMİN TANIMLANMASI) 

The problem of this article is PV parameter 

extraction for FDM. This section is presented under 

two subheadings: FDM of PV cell and module, and 

objective function. 
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2.1. Four-Diode Model (FDM) of PV Cell and 

Module (PV Hücre ve Modülün Dört Diyotlu Modeli 

(FDM)) 

FDM is a detailed approach for modeling PV cells 

and modules. Despite its high computational 

demand, parameter sensitivity, and complex 

implementation, it allows the nonlinear nature and 

behavior of PV to be reflected with higher accuracy 

under various conditions compared to single, 

double, and three-diode models. The electrical 

circuit of a PV cell and module with FDM is shown 

in Figure 1(a) and (b). It consists of a photo-

generated source (𝐼𝑝ℎ), four diodes connected in 

parallel (𝐷1, 𝐷2, 𝐷3, 𝐷4), a parallel/shunt resistance 

(𝑅𝑠ℎ), and a series resistance (𝑅𝑠). The diffusion 

current is represented by the first diode, 

recombination in the depletion region by the second 

diode, recombination in other regions by the third 

diode, and leakage currents due to structural 

imperfections by the fourth diode. The general 

current representation for FDM, obtained by 

subtracting the diode currents and shunt current 

from the photo-generated current, is given for FDM-

C and FDM-M in Equation (1) [9], [30], [37]-[38]. 

 

 
a) FDM-C b) FDM-M 

Figure 1. Electrical circuit of PV cell and module with FDM (FDM ile FV hücre ve modülün elektriksel devresi) 

𝐼𝐹𝐷𝑀 =

{
 
 
 
 
 
 

 
 
 
 
 
 
𝐼𝐹𝐷𝑀 = 𝐼𝑝ℎ − 𝐼𝑑1 − 𝐼𝑑2 − 𝐼𝑑3 − 𝐼𝑑4 − 𝐼𝑠ℎ

𝐼𝐹𝐷𝑀−𝐶 =

[
 
 
 
 𝐼𝑝ℎ − 𝐼𝑜1 [𝑒

(
𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝛼1 𝑉𝑡
)
− 1] − 𝐼𝑜2 [𝑒

(
𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝛼2 𝑉𝑡
)
− 1] − ⋯

𝐼𝑜3 [𝑒
(
𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝛼3 𝑉𝑡
)
− 1] − 𝐼𝑜4 [𝑒

(
𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝛼4 𝑉𝑡
)
− 1] −

𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝑅𝑠ℎ

𝐼𝐹𝐷𝑀−𝑀 =

[
 
 
 
 
 
 𝐼𝑝ℎ − 𝐼𝑜1 [𝑒

(
𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝛼1 𝑉𝑡 𝑁𝑠
)
− 1] − 𝐼𝑜2 [𝑒

(
𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝛼2 𝑉𝑡 𝑁𝑠
)
− 1] − ⋯

𝐼𝑜3 [𝑒
(
𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝛼3 𝑉𝑡 𝑁𝑠
)
− 1] − 𝐼𝑜4 [𝑒

(
𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝛼4 𝑉𝑡 𝑁𝑠
)
− 1] − ⋯

𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝑅𝑠ℎ 𝑁𝑠

           (1) 

Where, 𝐼𝐹𝐷𝑀 is the output current of FDM, 𝐼𝑝ℎ is the 

photo-generated current, 𝐼𝑑1 is the 1st diode current, 

𝐼𝑑2 is the 2nd diode current, 𝐼𝑑3 is the 3rd diode 

current, 𝐼𝑑4 is the 4th diode current, 𝐼𝑠ℎ shunt 

resistance current, 𝐼𝑜1 is the 1st diode reverse 

saturation current, 𝑉𝐹𝐷𝑀−𝐶 are the output voltage of 

PV cell, 𝑅𝑠 is the series resistance, 𝐼𝐹𝐷𝑀−𝐶 are the 

output current of PV cell, 𝛼1 is the 1st diode ideality 

factor, 𝑉𝑡 is the junction thermal voltage, 𝐼𝑜2 is the 

2nd diode reverse saturation current, 𝛼2 is the 2nd 

diode ideality factor, 𝐼𝑜3 is the 3rd diode reverse 

saturation current, 𝛼3 is the 3rd diode ideality factor, 

𝐼𝑜4 is the 4th diode reverse saturation current, 𝛼4 is 

the 4th diode ideality factor, 𝑅𝑠ℎ is the shunt 

resistance, 𝑉𝐹𝐷𝑀−𝑀 are the output voltage of PV 

module, 𝑁𝑠 is the number of series-connected PV 

cells, and 𝐼𝐹𝐷𝑀−𝑀 are the output current of PV 

module. 

2.2. Objective Function (Amaç Fonksiyonu) 

The objective function of the PV parameter 

extraction problem to be solved with FLA, PLO, 

MGO, WO, and ECO algorithms is RMSE. To 

achieve this, the difference between the estimated 

and measured currents of the PV cell or module is 

minimized. The general representation of the 

function showing the difference between the 

estimated and measured current for FDM, the 

current function for FDM-C, the current function for 

FDM-M, and the decision variables of these 

functions are given in Equation (2). The RMSE used 

as the objective function is given in Equation (3) 

[15]. 
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𝑓𝐹𝐷𝑀(𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑓𝐹𝐷𝑀(𝑥) = (𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) − (𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

𝑓𝐹𝐷𝑀−𝐶(𝑥) =

(𝐼𝑝ℎ − 𝐼𝑜1 [𝑒
(
𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝛼1 𝑉𝑡
)
− 1] − 𝐼𝑜2 [𝑒

(
𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝛼2 𝑉𝑡
)
− 1] −⋯

𝐼𝑜3 [𝑒
(
𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝛼3 𝑉𝑡
)
− 1] − 𝐼𝑜4 [𝑒

(
𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝛼4 𝑉𝑡
)
− 1] −

𝑉𝐹𝐷𝑀−𝐶+𝑅𝑠 𝐼𝐹𝐷𝑀−𝐶

𝑅𝑠ℎ
) − (𝐼𝐹𝐷𝑀−𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

𝑓𝐹𝐷𝑀−𝑀(𝑥) =

(𝐼𝑝ℎ − 𝐼𝑜1 [𝑒
(
𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝛼1 𝑉𝑡 𝑁𝑠
)
− 1] − 𝐼𝑜2 [𝑒

(
𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝛼2 𝑉𝑡 𝑁𝑠
)
− 1] −⋯

𝐼𝑜3 [𝑒
(
𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝛼3 𝑉𝑡 𝑁𝑠
)
− 1] − 𝐼𝑜4 [𝑒

(
𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝛼4 𝑉𝑡 𝑁𝑠
)
− 1] −⋯

𝑉𝐹𝐷𝑀−𝑀+𝑁𝑠 𝑅𝑠 𝐼𝐹𝐷𝑀−𝑀

𝑅𝑠ℎ 𝑁𝑠
) − (𝐼𝐹𝐷𝑀−𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

𝑥 = {
𝑥𝐹𝐷𝑀−𝐶 = 𝐼𝑝ℎ , 𝐼𝑜1, 𝐼𝑜2, 𝐼𝑜3, 𝐼𝑜4, 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝑅𝑠, 𝑅𝑠ℎ
𝑥𝐹𝐷𝑀−𝑀 = 𝐼𝑝ℎ , 𝐼𝑜1, 𝐼𝑜2, 𝐼𝑜3, 𝐼𝑜4, 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝑅𝑠, 𝑅𝑠ℎ

            (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ [𝑓𝐹𝐷𝑀(𝑥)]

2𝑛
𝑖=1                                             (3) 

Where, 𝑓(𝑥) is the current function, 𝑥 is the 

decision variable, 𝑓𝐹𝐷𝑀(𝑥) is the current function of 

FDM, 𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the estimated current,  𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

is the measured current, 𝑓𝐹𝐷𝑀−𝐶(𝑥) is the current 

function of FDM-C, 𝐼𝐹𝐷𝑀−𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the measured 

current of FDM-C, 𝑓𝐹𝐷𝑀−𝑀(𝑥) is the current 

function of FDM-M, 𝐼𝐹𝐷𝑀−𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
 is the 

measured current of FDM-M,  𝑥𝐹𝐷𝑀−𝐶 is the 

decision variables of FDM-C, 𝑥𝐹𝐷𝑀−𝑀 is the 

decision variables of FDM-M, and 𝑅𝑀𝑆𝐸 is the root 

mean square error. 

3. FLOOD ALGORITHM (FLA) AND BRIEF 

SUMMARY OF PLO, MGO, WO, AND 

ECO ALGORITHMS (TAŞKIN ALGORİTMASI 

(FLA) VE PLO, MGO, WO VE ECO 

ALGORİTMALARININ KISA ÖZETİ) 

The PV parameter extraction problem has been 

solved using the FLA, PLO, MGO, WO, and ECO 

algorithms, and the details are provided in the 

subsections. 

3.1. Flood Algorithm (FLA) (Taşkın Algoritması 

(FLA)) 

FLA is a metaheuristic algorithm inspired by natural 

flood events in river basins and the movement of 

water masses during these events. The movement of 

water in natural flood events, the behavior of water 

in response to slopes, and changes in the flow 

velocity and levels of water have all been addressed 

and mathematically modeled. FLA operates in two 

phases: regular movement and flooding, and the 

flowchart and pseudocode of FLA are shown in 

Figure 2 and Algorithm 1, respectively. Here, the 

water mass corresponds to the population of the 

algorithm, which searches for the best solution. The 

movement of the water mass in the direction of the 

slope corresponds to moving toward a better 

solution. Flooding corresponds to increasing 

population diversity. 

3.1.1. Phase I: regular movement (Faz I: düzenli 

hareket) 

This phase involves the modeling of three stages. In 

the first stage, the population search represents the 

natural movement of water toward the slope or a 

better point for the defined problem size. In the 

second stage, the population representing the water 

flow is modeled. In the final stage, the soil 

impermeability coefficient and its effect on the 

flood are examined. The general movement inspired 

by the natural movement of the water mass is given 

in Equation (4). Floods can occur as the flow of 

water in the river increases. The flow of water is 

modeled with the water depletion coefficient in 

Equation (5). Floods are not planned events and 

occur based on many factors. This random situation 

is reflected by the random (𝑟𝑎𝑛𝑑) parameter and the 

motion of the water masses is given in Equation (6). 

Another factor affecting the flood is the water 

permeability, which expresses the relationship 

between water and soil and reduces the risk of 

flooding. The soil permeability coefficient is given 

in Equation (7). There is an inverse relationship 

between this value and water flooding. A high soil 

permeability coefficient reduces the probability of 

water flooding, while the opposite increases the 

likelihood of flooding. As a result, the motion of the 

water masses or the position of the new swarm is 

determined by the rule given in Equation (8). 

𝑆𝑖
𝑛𝑒𝑤 =

𝑆𝑏𝑒𝑠𝑡 + 𝑟𝑎𝑛𝑑 × (𝑆𝑗 − 𝑆𝑖)

𝑗 = 1:𝐷
                                      (4) 

𝑃𝑘 = (1.2 𝑡⁄ ) × [√𝑇𝐹𝐿𝐴 × 𝑡
2 + 1 + ((1 (𝑇𝐹𝐿𝐴 4⁄ )⁄ × 𝑡) × ln (√𝑇𝐹𝐿𝐴 × 𝑡

2 + 1 + (𝑇𝐹𝐿𝐴 4⁄ )))]
−2 3⁄

        (5) 
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𝑆𝑖
𝑛𝑒𝑤 = 𝑆𝑖 + ((𝑃𝑘)

𝑟𝑎𝑛𝑑𝑛 𝑡⁄ ) × (𝑟𝑎𝑛𝑑 × (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛) + 𝑆𝑚𝑖𝑛)                                  (6) 

𝑃𝑒𝑖 = ((𝑓(𝑆𝑖) − 𝑓𝑚𝑖𝑛) (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)⁄ )2                        (7) 

𝑆𝑖
𝑛𝑒𝑤 = {

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑟𝑎𝑛𝑑 + 𝑃𝑒𝑖
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑟𝑎𝑛𝑑 + 𝑃𝑒𝑖

                        (8) 

Where, 𝑆𝑖
𝑛𝑒𝑤 is the motion of the water masses or 

ith position of new swarm, 𝑆𝑏𝑒𝑠𝑡 is the slope of the 

water path, 𝑟𝑎𝑛𝑑 is the random values between 0 

and 1, 𝑆𝑗 is the jth randomly member of the 

population, 𝑆𝑖 is the ith randomly member of the 

population, 𝐷 is the size of the problem, 𝑃𝑘 is the 

water depletion coefficient, 𝑇𝐹𝐿𝐴 is the maximum 

number of iterations, t is the current iteration, 

𝑟𝑎𝑛𝑑𝑛 is the normally distributed random number, 

𝑆𝑚𝑎𝑥 is the upper bound of the decision variable/s, 

𝑆𝑚𝑖𝑛 is the lower bound of the decision variable/s, 

𝑓𝑚𝑎𝑥 is the best value of the objective function, and 

𝑓𝑚𝑖𝑛 is the worst value of the objective function. 

3.1.2. Phase II: flooding (Faz II: taşkın) 

In real life, water can be added to the water basin by 

rain or melting snow, and some water can evaporate 

by evaporation. It is assumed that the probability of 

water being added or evaporating is equal, as 

expressed in Equation (9). The poor solutions will 

be displaced by the newly added particles, and the 

position of the new solutions is given in Equation 

(10). 

𝑃𝑡 = |sin(𝑟𝑎𝑛𝑑 𝑡⁄ )|                                  (9)  

𝑆𝑒
𝑛𝑒𝑤 =

𝑆𝑏𝑒𝑠𝑡 + 𝑟𝑎𝑛𝑑 × (𝑟𝑎𝑛𝑑 × (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛) + 𝑆𝑚𝑖𝑛)
𝑒 = 1:𝑁𝑒

                                             (10) 

Where, 𝑃𝑡 is the probability of occurrence of 

increase or decrease of water mass and 𝑁𝑒 is the 

number of water particles [39]. 

 
Figure 2. Flowchart of FLA (FLA’nın akış diyagramı) 
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Algorithm 1. Pseudocode of FLA (FLA’nın sözde kodu) 

3.2. Brief Summury Of PLO, MGO, WO, And 

ECO Algorithms (PLO, MGO, WO ve ECO 

Algoritmalarının Kısa Özeti) 

In addition to FLA, the PLO, MGO, WO, and ECO 

algorithms were also used in solving this problem. 

These algorithms are summarized in Table 2 with 

the column headings algorithm, inspiration source, 

control/key parameter, and value. As seen in the 

table, these five algorithms have different operating 

scenarios and mathematical infrastructures due to 

their inspiration sources. FLA is inspired by water 

dynamics and flood behavior, PLO by aurora 

phenomena and light movement, MGO by growth 

and expansion patterns of moss, WO by social 

behavior and foraging of walruses, and ECO by 

competitive learning in educational settings. FLA, 

MGO, and ECO have one, PLO has two, and WO 

has three control/key parameters, which influence 

the performance of the algorithms [39]-[43]. 

Table 2. Inspiration and control parameters of FLA, PLO, MGO, WO, and ECO algorithms (FLA, PLO, 

MGO, WO ve ECO algoritmalarının ilham ve kontrol parametreleri) 

Algorithm Inspiration Source 
Control/Key 

Parameter 
Value 

Flood algorithm (FLA) [39] Water dynamics and flood behavior 𝑁𝑒 5 

Polar lights optimizer (PLO) [40] Aurora phenomena and light movement 
𝑚 

𝛼 

100 

[1,1.5] 

Moss growth optimization (MGO) [41] Growth and expansion patterns of moss 𝑤 2 

Walrus optimizer (WO) [42] Social behavior and foraging of walruses 

𝑁𝑊𝑂 

𝑇𝑊𝑂 

𝑝 

50 

10000 

0.4 

Educational competition optimizer (ECO) [43] Competitive learning in educational settings 𝑁𝐸𝐶𝑂 50 
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4. RESULTS OF PV PARAMETER 

EXTRACTION AND EVALUATION (FV 

PARAMETRE ÇIKARIMI SONUÇLARI VE 

DEĞERLENDİRME) 

In this section, the PV parameter extraction results 

for FDM-C and FDM-M using the FLA, PLO, 

MGO, WO, and ECO algorithms and their 

performance in solving this problem are presented. 

This section is provided under the subheadings of 

inputs, results, computational accuracy and 

computational time, statistical tests, and 

convergence curves. 

4.1. Inputs (Girdiler) 

MATLAB software has been used for the 

simulation of this article. The code has been written 

as an m-file. The specifications of the computer on 

which the algorithms were run are as follows: 

Intel(R) Core(TM) i7-4790 CPU@3.60GHz, 24GB 

RAM. The number of particles for all algorithms is 

50. One run consists of 10,000 iterations, and a total 

of 30 runs were performed. For the PV parameter 

extraction problem, one PV cell and one PV module 

have been selected. The real current and voltage 

data of RTC France [44] have been used for the PV 

cell, and the real current and voltage data of 

Schutten Solar STM6-40/36 [45] have been used for 

the PV module. The short-circuit current, open-

circuit voltage, current, and voltage at the maximum 

power point of the RTC France photovoltaic (PV) 

cell are 0.7603 A, 0.5728 V, 0.6894 A, and 0.4507 

V, respectively. The Schutten Solar STM6-40/36 

PV module consists of 36 series-connected cells. 

The short-circuit current, open-circuit voltage, 

current, and voltage at the maximum power point of 

this module are 1.663 A, 21.02 V, 1.50 A, and 16.98 

V, respectively. There are eleven parameters to be 

extracted for FDM-C and FDM-M. The lower and 

upper bounds of decision variables for FDM-C and 

FDM-M are provided in Table 3. 

Table 3. Lower and upper bounds of decision variables for FDM-C and FDM-M (FDM-C ve FDM-M için 

karar değişkenlerinin alt ve üst sınırları) 

PV 

Model 

Lower Bound Upper Bound 

𝐼𝑝ℎ 

(A) 

𝐼𝑜1, 𝐼𝑜2, 𝐼𝑜3, 𝐼𝑜4 

(µA) 

𝛼1, 𝛼2, 𝛼3, 𝛼4 

(-) 

𝑅𝑠 
() 

𝑅𝑠ℎ 

() 

𝐼𝑝ℎ 

(A) 

𝐼𝑜1, 𝐼𝑜2, 𝐼𝑜3, 𝐼𝑜4 

(µA) 

𝛼1, 𝛼2, 𝛼3, 𝛼4 

(-) 

𝑅𝑠 
() 

𝑅𝑠ℎ 

() 

FDM-C 0 0 1 0 0 1 10 2 1 1000 

FDM-M 0 0 1 0 0 2 50 60 0.36 1000 

 

4.2. Results Of PV Parameter Extraction (FV 

Parametre Çıkarımı Sonuçları) 

RTC France PV cell has been modeled with FDM. 

Then, its eleven parameters were estimated using 

the metaheuristic algorithms FLA, PLO, MGO, 

WO, and ECO. The PV parameter extraction results 

of FDM-C in the 30th run is provided in Table 4. The 

RMSE results are ranked from smallest to largest. 

When comparing the results of the algorithms, the 

smallest RMSE of 9.8259271E-04 was obtained by 

the FLA algorithm. FLA is followed by the MGO, 

WO, PLO, and ECO algorithms. The I-V and P-V 

curves plotted using the measured data of the RTC 

France PV cell and the estimated data by FLA are 

shown in Figure 3. When examining the graphs, it 

can be observed that the measured data and 

estimated data match and align successfully. This 

demonstrates the success of FLA in PV parameter 

extraction. 

Table 4. PV parameter extraction results of FDM-C in the 30th run (FDM-C'nin 30. çalışmasında ki FV parametre 

çıkarımı sonuçları) 

Parameter FLA PLO MGO WO ECO 

𝐼𝑝ℎ (A) 0.7607786 0.7618875 0.7620525 0.7607443 0.7644102 

𝐼𝑜1 (µA) 0.2367755 0.0000000 0.4379903 0.8278776 0.0028874 

𝐼𝑜2 (µA) 0.1753640 2.2315195 0.0001060 3.4578557 9.9999343 

𝐼𝑜3 (µA) 0.4295003 5.1182996 0.0000000 0.0165228 0.0000000 

𝐼𝑜4 (µA) 0.0514301 0.0771697 2.5467624 0.0208131 4.5437976 

𝛼1 (-) 1.4549103 1.9999474 1.5388396 1.6145120 2.0000000 

𝛼2 (-) 2.0000000 1.9725127 1.7562160 1.9989313 2.0000000 

𝛼3 (-) 2.0000000 1.9644260 1.9972460 1.9986554 1.9964226 

𝛼4 (-) 2.0000000 1.4314299 1.9527657 1.9402148 2.0000000 

𝑅𝑠 () 0.0366915 0.0264810 0.0315264 0.0278392 0.0142843 

𝑅𝑠ℎ () 55.2848811 999.9861154 904.8492791 1000.0000000 999.9999986 

RMSE 9.8259271E-04 5.3341190E-03 3.4425204E-03 4.1260695E-03 8.7908497E-03 

RMSE Rank 1 4 2 3 5 
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a) I-V b) P-V 

Figure 3. Measured data and estimated results by the FLA algorithm for FDM-C (FDM-C için ölçülen veriler 

ve FLA algoritması tarafından tahmin edilen sonuçlar) 

Schutten Solar STM6-40/36 PV module has been 

modeled with FDM. The unknown parameters were 

estimated using five algorithms. The PV parameter 

extraction results of FDM-M in the 30th run is 

provided in Table 5. When comparing the results, as 

in FDM-C, the smallest RMSE was obtained by the 

FLA algorithm. FLA, with an RMSE value of 

1.7298036E-03, is followed by WO, PLO, ECO, 

and MGO. The I-V and P-V curves plotted using the 

measured data of the PV module and the estimated 

data by FLA are shown in Figure 4. When 

examining the graphs, it can be observed that the 

measured data and estimated data successfully 

align. This further reinforces the success of FLA in 

PV parameter extraction. 

Table 5. PV parameter extraction results of FDM-M in the 30th run (FDM-M'nin 30. çalışmasında ki FV 

parametre çıkarımı sonuçları) 

Parameter FLA PLO MGO WO ECO 

𝐼𝑝ℎ (A) 1.6639045 1.6603123 1.5678745 1.6567446 1.6700870 

𝐼𝑜1 (µA) 50.0000000 37.2997289 4.8006234 47.1939470 43.3733815 

𝐼𝑜2 (µA) 1.7384783 12.4044569 0.7767664 7.2122661 21.0710384 

𝐼𝑜3 (µA) 50.0000000 49.9997600 3.1665514 48.5210498 31.3869353 

𝐼𝑜4 (µA) 0.0000006 18.8837222 7.4204936 3.0396871 49.5251575 

𝛼1 (-) 60.0000000 54.9375789 57.0870319 14.6349084 47.6637244 

𝛼2 (-) 1.5202937 1.7717246 1.4398523 1.6940785 1.8569793 

𝛼3 (-) 60.0000000 57.4100491 46.0022475 29.2704550 3.4923193 

𝛼4 (-) 60.0000000 56.9073724 48.3385472 28.3250795 58.8497972 

𝑅𝑠 () 0.0042740 0.0000007 0.0000000 0.0000001 0.0000015 

𝑅𝑠ℎ () 15.9451344 999.5697608 996.4024267 67.8580756 772.1200189 

RMSE 1.7298036E-03 9.5790451E-03 6.2579367E-02 4.4530579E-03 1.8810481E-02 

RMSE Rank 1 3 5 2 4 

 

  
a) I-V b) P-V 

Figure 4. Measured data and estimated results by the FLA algorithm for FDM-M (FDM-M için ölçülen veriler 

ve FLA algoritması tarafından tahmin edilen sonuçlar) 
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4.3. Computational Accuracy And 

Computational Time (Hesaplama Doğruluğu ve 

Hesaplama Zamanı) 

With the FLA, PLO, MGO, WO, and ECO 

metaheuristic algorithms, the eleven unknown 

parameters of FDM-C and FDM-M have been 

estimated. Among these algorithms, FLA has been 

the most successful algorithm with the smallest 

RMSE value. In addition, the results of 30 runs for 

FLA and the other four algorithms have been 

examined in terms of computational accuracy and 

computational time. The average, maximum, 

minimum, and standard deviation of RMSE results 

for each algorithm over 30 runs have been 

calculated. These values were considered as 

evaluation metrics and used in the comparison of the 

algorithms. The results of computational accuracy 

are presented in Table 6. When examining the mean 

rank and total rank obtained for FDM-C and FDM-

M, it is observed that FLA achieved the smallest 

average and smallest minimum RMSE in all 30 

runs. It can be seen that FLA was stable while 

obtaining these results. 

Table 6. Results of computational accuracy (Hesaplama doğruluğunun sonuçları) 

Model Algorithm Average Rank Maximum  Rank Minimum Rank 
Standard 

Deviation 
Rank 

FDM-C 

FLA 3.5935746E-03 1 1.9545185E-02 4 9.8251385E-04 1 4.0925274E-03 4 

PLO 5.3270909E-03 4 6.8654356E-03 1 2.9804325E-03 5 8.4791828E-04 1 

MGO 1.2313673E-02 5 8.1558691E-02 5 1.9179928E-03 4 1.4768313E-02 5 

WO 5.1329891E-03 3 7.7100840E-03 2 1.1112930E-03 3 1.6308073E-03 2 

ECO 3.6185213E-03 2 8.7908497E-03 3 9.8282486E-04 2 2.9561315E-03 3 

FDM-M 

FLA 2.0424885E-03 1 5.3526331E-03 1 1.6884311E-03 1 8.3286997E-04 1 

PLO 5.7040859E-03 3 9.5790451E-03 3 4.3762803E-03 5 1.0998252E-03 3 

MGO 5.8146164E-02 5 1.9412997E-01 5 2.3186272E-03 3 5.2869327E-02 5 

WO 4.3529314E-03 2 5.4001772E-03 2 1.7443232E-03 2 9.4028259E-04 2 

ECO 7.6413890E-03 4 1.8810481E-02 4 3.2180135E-03 4 3.8708561E-03 4 

Model Algorithm 
Mean 

Rank 

Total 

Rank 

Mean 

Rank 

Total 

Rank 

Mean 

Rank 

Total 

Rank 

Mean 

Rank 

Total 

Rank 

FDM-C 

and 

FDM-M 

FLA 1.000 1 2.500 3 1.000 1 2.500 3 

PLO 3.500 4 2.000 1 5.000 5 2.000 1 

MGO 5.000 5 5.000 5 3.500 4 5.000 5 

WO 2.500 2 2.000 2 2.500 2 2.000 2 

ECO 3.000 3 3.500 4 3.000 3 3.500 4 
 

Results of computational time in seconds are 

provided in Table 7. FLA is slower than the other 

algorithms in terms of computational time. This 

situation requires evaluating both computational 

accuracy and computational time together. When 

examining the mean rank and total rank obtained for 

FDM-C and FDM-M, the algorithm with the best 

speed in terms of average, maximum, and minimum 

is MGO. However, in terms of computational 

accuracy, it ranks last in both average and 

maximum, and fourth in minimum. In terms of 

standard deviation, ECO is ranked first. In 

computational accuracy, the most stable results 

were produced by FLA, which ranked fourth in 

stability. Detailed modeling studies are conducted 

for PV systems, and based on feasibility studies, a 

decision is made regarding whether the system is 

feasible or not. Since the initial investment cost is 

high and the system is planned for approximately 25 

years, it is not a correct choice to only reference 

computational time; computational accuracy should 

be considered as the reference. 

Table 7. Results of computational time in seconds (Saniye olarak hesaplama zamanının sonuçları) 

Model Algorithm Average Rank Maximum  Rank Minimum Rank 
Standard 

Deviation 
Rank 

FDM-C 

FLA 7.5228295E+01 4 8.8241180E+01 3 6.8833375E+01 5 4.4631682E+00 3 

PLO 8.1867098E+01 5 1.2522939E+02 5 6.3543348E+01 3 1.1831198E+01 5 

MGO 4.2401781E+01 1 5.1080383E+01 2 3.9898257E+01 1 3.0551056E+00 2 

WO 7.3454392E+01 3 1.0920248E+02 4 6.4644150E+01 4 9.1429877E+00 4 

ECO 4.2528322E+01 2 4.8869973E+01 1 4.0571758E+01 2 1.8302202E+00 1 

FDM-M 

FLA 1.0383685E+02 5 1.7047343E+02 5 5.9285478E+01 5 2.6327109E+01 5 

PLO 7.1289870E+01 3 1.0583865E+02 3 5.5181437E+01 4 1.0679184E+01 2 

MGO 6.3604604E+01 2 9.6735429E+01 2 3.9857680E+01 1 1.3012154E+01 4 

WO 6.1961489E+01 1 7.4850672E+01 1 4.9918176E+01 3 6.4269138E+00 1 

ECO 7.4966452E+01 4 1.0916227E+02 4 4.6934324E+01 2 1.2364525E+01 3 

Model Algorithm 
Mean 

Rank 

Total 

Rank 

Mean 

Rank 

Total 

Rank 

Mean 

Rank 

Total 

Rank 

Mean 

Rank 

Total 

Rank 

FDM-C 

and 

FDM-M 

FLA 4.500 5 4.000 4 5.000 5 4.000 5 

PLO 4.000 4 4.000 5 3.500 3 3.500 4 

MGO 1.500 1 2.000 1 1.000 1 3.000 3 

WO 2.000 2 2.500 2 3.500 4 2.500 2 

ECO 3.000 3 2.500 3 2.000 2 2.000 1 
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4.4. Friedman And Wilcoxon Statistical Tests 
(Friedman Ve Wilcoxon İstatistiksel Testleri) 

Among the FLA, PLO, MGO, WO, and ECO 

algorithms, FLA has achieved successful results in 

PV parameter extraction. These results were 

evaluated using two statistical tests, namely the 

Friedman test and the Wilcoxon signed-rank test. 

The first statistical test is the Friedman test. It is a 

test that tells whether there is a significant 

difference between the results computed by the 

algorithms in solving the PV parameter extraction 

problem for 30 runs and ranks the algorithms. For a 

0.05 significance level, the p-value is examined, and 

if this value is less than 0.05, it indicates a 

significant difference between the algorithms. The 

results of the Friedman test are provided in Table 8. 

The p-value for FDM-C was calculated as 

8.5587363E-07, and for FDM-M it was 

8.9032486E-19, showing a significant difference 

between the algorithms. In both models, the 

smallest mean rank, or the best results, were 

obtained with FLA. The results of the mean and 

total ranking of algorithms are presented in Table 9. 

Based on the ranking of the results obtained in these 

two models, the Friedman test proves that the most 

successful results were produced by FLA among the 

five algorithms. 

Table 8. Results of Friedman test (Friedman testinin sonuçları) 

Model Algorithm Mean Rank Rank P-value Conclusion 

FDM-C 

FLA 2.000                1 

8.5587363E-07 

P-value < 0.05 

There is significant difference among the performance 

of algorithms at 5% level of significance. 

PLO 3.167              4 

MGO 4.233              5 

WO 3.100              3 

ECO 2.500 2 

FDM-M 

FLA 1.033                     1 

8.9032486E-19 

P-value < 0.05 

There is significant difference among the performance 

of algorithms at 5% level of significance. 

PLO 3.333              3 

MGO 4.600                     5 

WO 2.300                     2 

ECO 3.733 4 

 

Table 9. Results of ranking of algorithms 
(Algoritmaların sıralanmasının sonuçları) 

Model FLA PLO MGO WO ECO 

FDM-C 1 4 5 3 2 

FDM-M 1 3 5 2 4 

Mean Rank 1.000 3.500 5.000 2.500 3.000 

Total Rank 1 4 5 2 3 

The second statistical test is the Wilcoxon signed-

rank test. According to the Friedman test, FLA is the 

most successful algorithm among the five. With the 

Wilcoxon signed-rank test, FLA was compared 

pairwise with the other four algorithms. As in the 

Friedman test, the p-value for a 0.05 significance 

level was examined. The results of the Wilcoxon 

signed-rank test are presented in Table 10. A total 

of 8 comparisons were made, with 4 in FDM-C and 

4 in FDM-M. In 7 of these 8 cases, it is evident that 

the results found by FLA are better than those of the 

other algorithms, as the p-value is less than 0.05. 

The results of the mean and total ranking of 

algorithms are provided in Table 11. According to 

the pairwise comparison of the results obtained in 

these two models, the algorithm closest to FLA in 

performance is ECO, followed by WO, PLO, and 

MGO. 

Table 10. Results of Wilcoxon signed-rank test (Wilcoxon işaretli sıra testinin sonuçları) 

Model FLA vs Compared Algorithm P-value Rank H Zval Ranksum IS/ IS NOT 

FDM-C 

 

PLO 4.0329776E-03 3 1 -2.8755707 720 IS 

MGO 2.8789721E-06 1 1 -4.6792706 598 IS 

WO 3.5011674E-03 2 1 -2.9199240 717 IS 

ECO 8.4999697E-02 4 0 -1.7223856 798 IS NOT 

FDM-M 

PLO 9.9186286E-11 2 1 -6.4681861 477 IS 

MGO 8.9934060E-11 1 1 -6.4829705 476 IS 

WO 1.6947245E-09 4 1 -6.0246534 507 IS 

ECO 1.3288512E-10 3 1 -6.4238328 480 IS 
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Table 11. Results of ranking of algorithms 
(Algoritmaların sıralanmasının sonuçları) 

Model PLO MGO WO ECO 

FDM-C 3 1 2 4 

FDM-M 2 1 4 3 

Mean Rank 2.500 1.000 3.000 3.500 

Total Rank 2 1 3 4 

4.5. Convergence Curves (Yakınsama Eğrileri) 

For 10,000 iterations, the solution finding process 

of FLA, PLO, MGO, WO, and ECO algorithms in 

PV parameter extraction can be shown with 

convergence curves in the 30th run. The 

convergence curves for FDM-C are shown in Figure 

5(a), and for FDM-M in Figure 5(b). As seen in the 

figures, the lowest RMSE value was obtained with 

the FLA algorithm compared to the other 

algorithms. 

 
a) FDM-C 

 
b) FDM-M 

Figure 5. Convergence curves in the 30th run (30. 

çalışmadaki yakınsama eğrileri) 

5. CONCLUSION (SONUÇLAR) 

The correct modeling of PV systems with the right 

parameters is required to accurately express their 

response to changing meteorological conditions. 

Accurately defining the current-voltage 

characteristics with the correct parameters is crucial 

for predicting and planning the performance of FV 

systems in real-world applications. In this article, 

PV parameter extraction of a PV cell and module 

was performed using FDM. The eleven unknown 

parameters of FDM were obtained using the meta-

heuristic algorithms FLA, PLO, MGO, WO, and 

ECO. These five algorithms were used for both 

solving the parameter extraction problem and for 

the first time in this study with FDM. RMSE was 

selected as the objective function. The RMSE was 

evaluated using assessment metrics, computational 

accuracy, computational time, and statistical 

methods. The smallest minimum RMSE was 

obtained with FLA, calculated as 9.8251385E-04 

for FDM-C and 1.6884311E-03 for FDM-M. To 

statistically prove and reinforce the success of FLA 

over the other algorithms, the Friedman test and 

Wilcoxon signed-rank test were used. According to 

these tests, FLA produced more significant results 

than the other algorithms, and, based on pairwise 

comparisons, it was shown to be more successful 

than the others. As a result, FLA was found to be a 

successful and promising algorithm for PV 

parameter extraction for FDM, and this was 

statistically proven. 
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