ON THE PARANORMED TAYLOR SEQUENCE SPACES

HACER BILGIN ELLIDOKUZoğlu AND SERKAN DEMIRIZ

Abstract. In this paper, the sequence spaces $t_0^r(p)$, $t_1^r(p)$ and $t^r(p)$ of non-absolute type which are the generalization of the Maddox sequence spaces have been introduced and it is proved that the spaces $t_0^r(p)$, $t_1^r(p)$ and $t^r(p)$ are linearly isomorphic to spaces $c_0(p)$, $c(p)$ and $l(p)$, respectively. Furthermore, the α- and β- and γ-duals of the spaces $t_0^r(p)$, $t_1^r(p)$ and $t^r(p)$ have been computed and their bases have been constructed and some topological properties of these spaces have been investigated. Besides this, the class of matrices $(t_0^r(p) : \mu)$ has been characterized, where μ is one of the sequence spaces l_∞, c and c_0 and derives the other characterizations for the special cases of μ.

1. Introduction

By w, we shall denote the space of all real-valued sequences. Any vector subspace of w is called a sequence space. We shall write l_∞, c and c_0 for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, l_1 and l_p, we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively, where $1 < p < \infty$.

A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g : X \to \mathbb{R}$ such that $g(\theta) = 0$, $g(x) = g(-x)$ and scalar multiplication is continuous, i.e., $|\alpha_n - \alpha| \to 0$ and $g(x_n - x) \to 0$ imply $g(\alpha_n x_n - \alpha x) \to 0$ for all α’s in \mathbb{R} and all x’s in X, where θ is the zero vector in the linear space X.

Assume here and after that (p_k) be a bounded sequences of strictly positive real numbers with $\sup p_k = H$ and $L = \max\{1, H\}$. Then, the linear spaces $\ell_\infty(p), c(p), c_0(p)$ and $l(p)$ were defined by Maddox [12] (see also Simons [14] and
Nakano \[13\]) as follows:
\[
\ell_\infty(p) = \{x = (x_k) \in w : \sup_{k \in \mathbb{N}} |x_k|^{p_k} < \infty\},
\]
\[
c(p) = \{x = (x_k) \in w : \lim_{k \to \infty} |x_k - l_k|^{p_k} = 0 \text{ for some } l \in \mathbb{R}\},
\]
\[
c_0(p) = \{x = (x_k) \in w : \lim_{k \to \infty} |x_k|^{p_k} = 0\},
\]
\[
\ell(p) = \left\{x = (x_k) \in w : \sum_k |x_k|^{p_k} < \infty\right\},
\]
which are the complete spaces paranormed by
\[
g_1(x) = \sup_{k \in \mathbb{N}} |x_k|^{p_k/L} \iff \inf p_k > 0 \text{ and } g_2(x) = \left(\sum_k |x_k|^{p_k}\right)^{1/L},
\]
respectively. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to \(\infty\). By \(F\) and \(N_k\), we shall denote the collection of all finite subsets of \(\mathbb{N}\) and the set of all \(n \in \mathbb{N}\) such that \(n \geq k\), respectively. We shall assume throughout that \(p_k^{-1} + (p'_k)^{-1} = 1\) provided \(1 < \inf p_k \leq H < \infty\).

Let \(\lambda, \mu\) be any two sequence spaces and \(A = (a_{nk})\) be an infinite matrix of real numbers \(a_{nk}\), where \(n, k \in \mathbb{N}\). Then, we say that \(A\) defines a matrix mapping from \(\lambda\) into \(\mu\), and we denote it by \(A : \lambda \to \mu\), if for every sequence \(x = (x_k) \in \lambda\), the sequence \(Ax = \{(Ax)_n\}\), the \(A\)–transform of \(x\), is in \(\mu\), where
\[
(Ax)_n = \sum_k a_{nk}x_k, \quad (n \in \mathbb{N}).
\]

By \((\lambda : \mu)\), we denote the class of all matrices \(A\) such that \(A : \lambda \to \mu\). Thus, \(A \in (\lambda : \mu)\) if and only if the series on the right-hand side of (1.1) converges for each \(n \in \mathbb{N}\) and every \(x \in \lambda\), and we have \(Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \mu\) for all \(x \in \mu\). A sequence \(x\) is said to be \(A\)–summable to \(\alpha\) if \(Ax\) converges to \(\alpha\) which is called the \(A\)–limit of \(x\).

2. **The Sequence Spaces \(t_0^r(p)\), \(t_c^r(p)\) and \(t_f(p)\) of Non-Absolute Type**

In this section, we define the sequence spaces \(t_0^r(p)\), \(t_c^r(p)\) and \(t_f(p)\), and prove that \(t_0^r(p)\), \(t_c^r(p)\) and \(t_f(p)\) are the complete paranormed linear spaces.

For a sequence space \(\lambda\), the matrix domain \(\lambda_A\) of an infinite matrix \(A\) is defined by
\[
X_A = \{x = (x_k) \in w : Ax \in X\}.
\]

In [5], Choudhary and Mishra have defined the sequence space \(\overline{\ell}(p)\) which consists of all sequences such that \(S–\)transforms are in \(\ell(p)\), where \(S = (s_{nk})\) is defined by
\[
s_{nk} = \begin{cases}
1, & 0 \leq k \leq n, \\
0, & k > n.
\end{cases}
\]
Başar and Altay [3] have studied the space \(bs(p)\) which is formerly defined by Başar in [4] as the set of all series whose sequences of partial sums are in \(\ell_\infty(p)\).

More recently, Altay and Başar have studied the sequence spaces \(r^*\ell(p)\), \(r^{*\infty}(p)\) in [1] and \(r^*_c(p), r^{*\infty}_0(p)\) in [2] which are derived by the Riesz means from the sequence spaces \(\ell(p)\), \(\ell_\infty(p)\), \(c(p)\) and \(c_0(p)\) of Maddox, respectively.
With the notation of (2.1), the spaces $\ell(p), bs(p), r^t(p), r_0^t(p), r_0^c(p)$ and $r_0^e(p)$ may be redefined by

$$
\ell(p) = [\ell(p)]_S, bs(p) = [\ell_\infty(p)]_S, r^t(p) = [\ell(p)]_T^r,
$$

$$
r_0^t(p) = [\ell_\infty(p)]_T^r, r_0^c(p) = [c(p)]_T^r, r_0^e(p) = [c_0(p)]_T^r.
$$

In [6], Demiriz and Çakan have defined the sequence spaces $c_0^r(u, p)$ and $c^r(u, p)$ which consists of all sequences such that $E^{r,u}$- transforms are in $c_0(p)$ and $c(p)$, respectively

$$
e_{nk}^r(u) = \begin{cases}
\binom{n}{k}(1 - r)^{n-k}r^k u_k & (0 \leq k \leq n), \\
0 & (k > n)
\end{cases}
$$

for all $k, n \in \mathbb{N}$ and $0 < r < 1$.

In [9], the Taylor sequence spaces t_0^r and t^r of non-absolute type, which are the matrix domains of Taylor mean T^r of order r in the sequence spaces c_0 and c, respectively, are introduced, some inclusion relations and Schauder basis for the spaces t_0^r and t^r are given, and the $\alpha-, \beta-$ and $\gamma-$ duals of those spaces are determined. The main purpose of this paper is to introduce the sequence spaces $t_0^r(p), t^r_c(p)$ and $t^r(p) of nonabsolute type which are the set of all sequences whose T^r-transforms are in the spaces $c_0(p), c(p)$ and $\ell(p)$, respectively; where T^r denotes the matrix

$$
T^r = \{t_{nk}^r\}
$$

defined by

$$
t_{nk}^r = \begin{cases}
\binom{k}{n}(1 - r)^{n+1}r^k u_k & (k \geq n), \\
0 & (0 \leq k < n)
\end{cases}
$$

where $0 < r < 1$. Also, we have constructed the basis and computed the $\alpha-$, $\beta-$ and $\gamma-$duals and investigated some topological properties of the spaces $t_0^r(p), t^r_c(p)$ and $t^r(p)$.

Following Choudhary and Mishra [5], Başar and Altay [3], Altay and Başar [1, 2], Demiriz [6], Kirişçi [9], we define the sequence spaces $t_0^r(p), t^r_c(p)$ and $t^r(p)$, as the sets of all sequences such that T^r-transforms of them are in the spaces $c_0(p), c(p)$ and $\ell(p)$, respectively, that is,

$$
t_0^c(p) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \left| \sum_{k=n}^\infty \binom{k}{n}(1 - r)^{n+1}r^k x_k \right|^p_n = 0 \right\},
$$

$$
t^c_c(p) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \left| \sum_{k=n}^\infty \binom{k}{n}(1 - r)^{n+1}r^k x_k - l \right|^p_n = 0 \text{ for some } l \in \mathbb{R} \right\}
$$

and

$$
t^r(p) = \left\{ x = (x_k) \in w : \left| \sum_{k=n}^\infty \sum_{l=n}^\infty \binom{k}{n}(1 - r)^{n+1}r^k x_k \right|^p_n < \infty \right\}.
$$

In the case $(p_n) = e = (1, 1, 1, \ldots)$, the sequence spaces $t_0^c(p), t^c_c(p)$ and $t^r(p)$ are, respectively, reduced to the sequence spaces t_0^c, t^c_c which are introduced by Kirişçi [9] and $t^r(p)$ is reduced to the sequence space t^r_c. With the notation of (2.1), we may redefine the spaces $t_0^c(p), t^c_c(p)$ and $t^r(p)$ as follows:

$$
t_0^c(p) = [c_0(p)]_{T^r}, t^c_c(p) = [c(p)]_{T^r} \text{ and } t^r(p) = [\ell(p)]_{T^r}.
$$
Define the sequence \(y_k = \{y_k(r)\} \), which will be frequently used, as the \(T_r^{\tau} \)-transform of a sequence \(x = (x_k) \), i.e.,
\[
y_k := \sum_{k=n}^{\infty} \binom{k}{n} (1 - r)^{n+1} r^{k-n} x_k \quad \text{for all } k \in \mathbb{N}.
\]

(2.3)

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. \(t_0^r(p) \) and \(t_c^r(p) \) are the complete linear metric space paranormed by \(g \), defined by
\[
g(x) = \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} \binom{j}{k} (1 - r)^{k+1} r^{j-k} x_j \right|^{p_k/L}.
\]

Also, \(t_p^r(p) \) is the complete linear metric space paranormed by \(h \), defined by
\[
h(x) = \left(\left| \sum_{j=0}^{\infty} \binom{j}{k} (1 - r)^{k+1} r^{j-k} x_j \right|^{p_k} \right)^{1/M}.
\]

Proof. Since the proof is similar for \(t_0^r(p) \) and \(t_c^r(p) \), we give the proof only for the space \(t_0^r(p) \). The linearity of \(t_0^r(p) \) with respect to the co-ordinatewise addition and scalar multiplication follows from the following inequalities which are satisfied for \(x, z \in t_0^r(p) \) (see Maddox [11, p.30])
\[
\sup_{n \in \mathbb{N}} \left| \sum_{j=k}^{\infty} \binom{j}{k} (1 - r)^{k+1} r^{j-k} (x_j + z_j) \right|^{p_k/L} \leq \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} \binom{j}{k} (1 - r)^{k+1} r^{j-k} x_j \right|^{p_k/L} + \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} \binom{j}{k} (1 - r)^{k+1} r^{j-k} z_j \right|^{p_k/L}
\]

and for any \(\alpha \in \mathbb{R} \) (see [14])
\[
|\alpha|^{p_k} \leq \max \{1, |\alpha|^{L} \}.
\]

(2.6)

It is clear that \(g(\theta) = 0 \) and \(g(x) = g(-x) \) for all \(x \in t_0^r(p) \). Again the inequalities (2.5) and (2.6) yield the subadditivity of \(g \) and
\[
g(\alpha x) \leq \max \{1, |\alpha|^{L} \} g(x).
\]

Let \(\{x^n\} \) be any sequence of the points \(x^n \in t_0^r(p) \) such that \(g(x^n - x) \to 0 \) and \((\alpha_n) \) also be any sequence of scalars such that \(\alpha_n \to \alpha \). Then, since the inequality \(g(x^n) \leq g(x) + g(x^n - x) \)
holds by the subadditivity of \(g \), \(\{g(x^n)\} \) is bounded and we thus have
\[
g(\alpha^n x^n - \alpha x) = \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} \binom{j}{k} (1 - r)^{k+1} r^{j-k} (\alpha^n x^n_j - \alpha x_j) \right|^{p_k/L}
\]
\[
\leq |\alpha_n - \alpha| g(x^n) + |\alpha| g(x^n - x),
\]
which tends to zero as \(n \to \infty \). This means that the scalar multiplication is continuous. Hence, \(g \) is paranorm on the space \(t_0^r(p) \).
It remains to prove the completeness of the space $t_0^p(p)$. Let $\{x^i\}$ be any Cauchy sequence in the space $t_0^p(p)$, where $x^i = \{x_0^{(i)}, x_1^{(i)}, x_2^{(i)}, \ldots\}$. Then, for a given $\epsilon > 0$ there exists a positive integer $n_0(\epsilon)$ such that

$$g(x^i - x^j) < \frac{\epsilon}{2}$$

for all $i, j > n_0(\epsilon)$. Using the definition of g we obtain for each fixed $k \in \mathbb{N}$ that

$$(2.7) \quad |(T^r x^i)_k - (T^r x^j)_k|^{p_k/L} \leq \sup_{k \in \mathbb{N}} |(T^r x^i)_k - (T^r x^j)_k|^{p_k/L} < \frac{\epsilon}{2}$$

for every $i, j > n_0(\epsilon)$ which leads to the fact that $\{(T^r x^i)_k, (T^r x^j)_k, (T^r x^2)_k, \ldots\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say $(T^r x)_k \to (T^r x)_k$ as $i \to \infty$. Using these infinitely many limits $(T^r x)_0, (T^r x)_1, \ldots$, we define the sequence $\{(T^r x)_0, (T^r x)_1, \ldots\}$. From (2.7) with $j \to \infty$, we have

$$(2.8) \quad |(T^r x^i)_k - (T^r x)_k|^{p_k/L} \leq \frac{\epsilon}{2} (i, j > n_0(\epsilon))$$

for every fixed $k \in \mathbb{N}$. Since $x^i = \{x_k^{(i)}\} \in t_0^p(p)$ for each $i \in \mathbb{N}$, there exists $k_0(\epsilon) \in \mathbb{N}$ such that

$$(2.9) \quad |(T^r x^i)_k|^{p_k/L} < \frac{\epsilon}{2}$$

for every $k \geq k_0(\epsilon)$ and for each fixed $i \in \mathbb{N}$. Therefore, taking a fixed $i > n_0(\epsilon)$ we obtain by (2.8) and (2.9) that

$$|(T^r x)_k|^{p_k/L} \leq |(T^r x)_k - (T^r x^i)_k|^{p_k/L} + |(T^r x^i)_k|^{p_k/L} < \frac{\epsilon}{2}$$

for every $k > k_0(\epsilon)$. This shows that $x \in t_0^p(p)$. Since $\{x^i\}$ was an arbitrary Cauchy sequence, the space $t_0^p(p)$ is complete and this concludes the proof.

Now, $t'(p)$ is the complete linear metric space paranormed by h defined by (2.4). It is easy to see that the space $t'(p)$ is linear with respect to the coordinate-wise addition and scalar multiplication. Therefore, we first show that it is a paranormed space with the paranorm h defined by (2.4).

It is clear that $h(\theta) = 0$ where $\theta = (0, 0, 0, \ldots)$ and $h(x) = h(-x)$ for all $x \in t'(p)$.
Let $x, y \in t'(p)$; then by Minkowski’s inequality we have

$$h(x + y) = \left(\sum_{k=0}^{\infty} \left[\sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} (x_j + y_j) \right]^{p_k} \right)^{1/M}$$

$$= \left(\sum_{k=0}^{\infty} \left[\sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} x_j \right]^{p_k} \right)^{1/M}$$

$$\leq \left(\sum_{k=0}^{\infty} \left[\sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} x_j \right]^{p_k} \right)^{1/M}$$

$$+ \left(\sum_{k=0}^{\infty} \left[\sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} y_j \right]^{p_k} \right)^{1/M}$$

(2.10)

$$= h(x) + h(y)$$

Let $\{x^n\}$ be any sequence of the points $x^n \in t'(p)$ such that $h(x^n - x) \to 0$ and (λ_n) also be any sequence of scalars such that $\lambda_n \to \lambda$. We observe that

$$h(\lambda^n x^n - \lambda x) \leq h[(\lambda^n - \lambda)(x^n - x)]$$

(2.11)

$$+ h[\lambda(x^n - x)]$$

$$+ h[(\lambda^n - \lambda)x].$$

It follows from $\lambda_n \to \lambda (n \to \infty)$ that $|\lambda^n - \lambda| < 1$ for all sufficiently large n; hence

$$\lim_{n \to \infty} h[(\lambda_n - \lambda)(x^n - x)] \leq \lim_{n \to \infty} h(x^n - x) = 0.$$

(2.12)

Furthermore, we have

$$\lim_{n \to \infty} h[\lambda(x^n - x)] \leq \max\{1, |\lambda|^M\} \lim_{n \to \infty} h(x^n - x) = 0.$$

(2.13)

Also, we have

$$\lim_{n \to \infty} h[(\lambda_n - \lambda)x] \leq |\lambda_n - \lambda| h(x) = 0.$$

(2.14)

Then, we obtain from (2.11), (2.12), (2.13) and (2.14) that $h(\lambda^n x^n - \lambda x) \to 0$, as $n \to \infty$. This shows that h is a paranorm on $t'(p)$.

Furthermore, if $h(x) = 0$, then $\left(\sum_{k=0}^{\infty} \left[\sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} x_j \right]^{p_k} \right)^{1/M} = 0$.

Therefore $\left| \sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} x_j \right|^{p_k} = 0$ for each $k \in \mathbb{N}$. Since $0 < r < 1$, we have $\binom{j}{k} (1-r)^{k+1} r^{j-k} > 0$. Then, we obtain $x_k = 0$ for all $k \in \mathbb{N}$. That is, $x = \theta$. This shows that h is a total paranorm.

Now, we show that $t'(p)$ is complete. Let $\{x^n\}$ be any Cauchy sequence in the space $t'(p)$, where $x^n = \{x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, \ldots\}$. Then, for a given $\epsilon > 0$, there exists a positive integer $n_0(\epsilon)$ such that $h(x^n - x^m) < \epsilon$ for all $n, m > n_0(\epsilon)$. Since for
each fixed \(k \in \mathbb{N} \) that

\[
| (T^r x^n)_k - (T^r x^m)_k | \leq \left[\sum_k | (T^r x^n)_k - (T^r x^m)_k |^p \right]^{1/p} \\
= h(x^n - x^m) < \epsilon
\]

(2.15)

for every \(n, m > n_0(\epsilon) \), \(\{(T^r x^0)_k, (T^r x^1)_k, (T^r x^2)_k, \ldots\} \) is a Cauchy sequence of real numbers for every fixed \(k \in \mathbb{N} \). Since \(\mathbb{R} \) is complete, it converges, say \((T^r x^n)_k \to (T^r x)_k \) as \(n \to \infty \). Using these infinitely many limits \((T^r x)_0, (T^r x)_1, \ldots \), we define the sequence \(\{(T^r x)_0, (T^r x)_1, \ldots\} \). For each \(K \in \mathbb{N} \) and \(n, m > n_0(\epsilon) \)

(2.16)

\[
\left[\sum_{k=0}^{K} | (T^r x^n)_k - (T^r x^m)_k |^p \right]^{1/p} \leq h(x^n - x^m) < \epsilon.
\]

By letting \(m, K \to \infty \), we have for \(n > n_0(\epsilon) \) that

(2.17)

\[
h(x^n - x) = \left[\sum_k | (T^r x^n)_k - (T^r x)_k |^p \right]^{1/p} < \epsilon.
\]

This shows that \(x^n - x \in t^r(p) \). Since \(t^r(p) \) is a linear space, we conclude that \(x \in t^r(p) \); it follows that \(x^n \to x \), as \(n \to \infty \) in \(t^r(p) \), thus we have shown that \(t^r(p) \) is complete.

Note that the absolute property does not hold on the spaces \(t_0^r(p) \), \(t_c^r(p) \) and \(t^r(p) \), since there exists at least one sequence in the spaces \(t_0^r(p) \), \(t_c^r(p) \) and \(t^r(p) \) and such that \(g(x) \neq g(|x|) \), where \(|x| = (|x_k|) \). This says that \(t_0^r(p) \), \(t_c^r(p) \) and \(t^r(p) \) are the sequence spaces of non-absolute type.

Theorem 2.2. The sequence spaces \(t_0^r(p) \), \(t_c^r(p) \) and \(t^r(p) \) of non-absolute type are linearly isomorphic to the spaces \(c_0(p) \), \(c(p) \) and \(\ell(p) \), respectively, where \(0 < p_k \leq H < \infty \).

Proof. To avoid repetition of similar statements, we give the proof only for \(t_0^r(p) \). We should show the existence of a linear bijection between the spaces \(t_0^r(p) \) and \(c_0(p) \). With the notation of (2.3), define the transformation \(T \) from \(t_0^r(p) \) and \(c_0(p) \) by \(x \to y = Tx \). The linearity of \(T \) is trivial. Furthermore, it is obvious that \(x = \theta \) whenever \(Tx = \theta \), and hence \(T \) is injective.

Let \(y \in c_0(p) \) and define the sequence

\[
x_k(r) := \sum_{j=k}^{\infty} \binom{j}{k} (-r)^{-j} (1 - r)^{-j+1} y_j; \quad k \in \mathbb{N}.
\]

Then, we have

\[
g(x) = \sup_{k \in \mathbb{N}} \left[\sum_{j=k}^{\infty} \binom{j}{k} (1 - r)^{j+1} r^{-j} x_j \right]^{p_k/L} = \sup_{k \in \mathbb{N}} |y_k|^{p_k/L} = g_1(y) < \infty.
\]

Thus, we have that \(x \in t_0^r(p) \) and consequently \(T \) is surjective. Hence, \(T \) is a linear bijection and this says that the spaces \(t_0^r(p) \) and \(c_0(p) \) are linearly isomorphic, as was desired. \(\square \)

Theorem 2.3. Convergence in \(t^r(p) \) is stronger than coordinate-wise convergence.
Proof. First we show that \(h(x^n - x) \to 0 \), as \(n \to \infty \) implies \(x^n_k \to x_k \); as \(n \to \infty \) for every \(k \in \mathbb{N} \). We fix \(k \), then we have

\[
\lim_{n \to \infty} \left| \sum_{n=k}^{\infty} \binom{n}{k} (1 - r)^{k+1} r^{n-k} [x^{(n)}_k - x_k] \right|^p \\
\leq \lim_{n \to \infty} \sum_k \sum_{n=k}^{\infty} \binom{n}{k} (1 - r)^{k+1} r^{n-k} [x^{(n)}_k - x_k] \\
\leq \lim_{n \to \infty} [h(x^n - x)]^M = 0.
\]

(2.18)

Hence, we have for \(k = 0 \) that

\[
\lim_{n \to \infty} \left| \sum_{n=0}^{\infty} (1 - r)r^n [x^{(n)}_0 - x_0] \right| = 0
\]

which gives the fact that \(|x^{(n)}_0 - x_0| \to 0 \), as \(n \to \infty \). Similarly, for each \(k \in \mathbb{N} \), we have \(x^n_k \to x_k \); as \(n \to \infty \).

A sequence space \(\lambda \) with a linear topology is called a \(K \)-space provided each of the maps \(p_i : \lambda \to \mathbb{C} \) defined by \(p_i(x) = x_i \) is continuous for all \(i \in \mathbb{N} \), where \(\mathbb{C} \) denotes the complex field. A \(K \)-space \(\lambda \) is called an \(FK \)-space provided \(\lambda \) is complete linear metric space. An \(FK \)-space whose topology is normable is called a \(BK \)-space. Given a \(BK \)-space \(\lambda \supset \phi \), we denote the \(n \) th section of a sequence \(x = (x_k) \in \lambda \) by \(x^{[n]} := \sum_{k=0}^{n} x_k e^{(k)} \), and we say that \(x = (x_k) \) has the property \(AK \) if \(\lim_{n \to \infty} ||x - x^{[n]}||_\lambda = 0 \). If \(AK \) property holds for every \(x \in \lambda \), then we say that the space \(\lambda \) is called \(AK \)-space (cf. [7]). Now, we may give the following. \(\square \)

Theorem 2.4. The space \(t'(p) \) has \(AK \).

Proof. For each \(x = (x_k) \in t'(p) \), we put

\[
x^{<m>} = \sum_{k=0}^{m} x_k e^{(k)}, \forall m \in \{1, 2, \ldots \}.
\]

(2.19)

Let \(\epsilon > 0 \) and \(x \in t'(p) \) be given. Then, there is \(N = N(\epsilon) \in \mathbb{N} \) such that

\[
\sum_{k=N}^{\infty} \sum_{j=k}^{\infty} \binom{j}{k} (1 - r)^{k+1} r^{j-k} x_j \left| \right|^p < \epsilon^M.
\]

(2.20)

Then we have for all \(m \geq N \),

\[
\begin{aligned}
\sum_{k=m}^{\infty} x_k e^{(k)} &= \sum_{k=0}^{m} x_k e^{(k)} \\
&= h \left(x - \sum_{k=0}^{m} x_k e^{(k)} \right) \\
&= \left(\sum_{k=m+1}^{\infty} \sum_{j=k}^{\infty} \binom{j}{k} (1 - r)^{k+1} r^{j-k} x_j \right)^{p_k} \frac{1}{M} < \epsilon.
\end{aligned}
\]

(2.21)

This shows that \(x = \sum_k x_k e^{(k)} \).
Now, we have to show that this representation is unique. We assume that $x = \sum_k \lambda_k e^{(k)}$. Then for each k,

$$
\left(\sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} \lambda_j - \sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} x_j \right)^{p_k} \frac{1}{M} \leq \left(\sum_k \sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} \lambda_j - \sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} x_j \right)^{p_k} \frac{1}{M} $$

(2.22)

Hence, $\sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} x_j = \sum_{j=k}^{\infty} \binom{j}{k} (1-r)^{k+1} r^{j-k} x_j$ for each j. Then, $\lambda_j = x_j$ for each j. Therefore, the representation is unique. □

3. The Basis for the Spaces $t_0^r(p)$, $t_r^c(p)$ and $t^r(p)$

Let (λ, h) be a paranormed space. Recall that a sequence (b_k) of the elements of λ is called a basis for λ if and only if, for each $x \in \lambda$, there exists a unique sequence (α_k) of scalars such that

$$
h \left(x - \sum_{k=0}^{n} \alpha_k b_k \right) \to 0 \text{ as } n \to \infty.
$$

The series $\sum \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n), and written as $x = \sum \alpha_k b_k$. Since it is known that the matrix domain λ_A of a sequence space λ has a basis if and only if λ has a basis whenever $A = (a_{nk})$ is a triangle (cf. [8, Remark 2.4]), we have the following. Because of the isomorphism T is onto, defined in the proof of Theorem 2.2, the inverse image of the basis of those spaces $\ell_0^r(p)$, $c(p)$ and $\ell(p)$ are the basis of the new spaces $t_0^r(p)$, $t_r^c(p)$ and $t^r(p)$, respectively. Therefore, we have the following:

Theorem 3.1. Let $\lambda_k(r) = (T^r x)_k$ for all $k \in \mathbb{N}$ and $0 < p_k \leq H < \infty$. Define the sequence $b^{(k)}(r) = \{b^{(k)}(r)\}_{k \in \mathbb{N}}$ of the elements of the space $t_0^r(p)$, $t_r^c(p)$ and $t^r(p)$ by

$$
b^{(k)}(r) = \left\{ \begin{array}{ll}
\binom{k}{n}(1-r)^{-(k+1)}(-r)^{k-n} & , \quad k \geq n \\
0 & , \quad 0 \leq k < n
\end{array} \right.
$$

for every fixed $k \in \mathbb{N}$. Then

(a): The sequence $\{b^{(k)}(r)\}_{k \in \mathbb{N}}$ is a basis for the space $t_0^r(p)$, and any $x \in t_0^r(p)$ has a unique representation of the form

$$
x = \sum_k \lambda_k(r) b^{(k)}(r),
$$

(b): The set $e, b^{(1)}(r), b^{(2)}(r), \ldots$ is a basis for the space $t_r^c(p)$, and any $x \in t_r^c(p)$ has a unique representation of the form

$$
x = le + \sum_k [\lambda_k(r) - l] b^{(k)}(r),
$$

where $l = \lim_{k \to \infty} (T^r x)_k$.
(c): The sequence \(\{b^{(k)}(r)\}_{k \in \mathbb{N}} \) is a basis for the space \(t^r(p) \), and any \(x \in t^r(p) \) has a unique representation of the form
\[
x = \sum_{k} \lambda_k(r)b^{(k)}(r).
\]

4. The \(\alpha-, \beta- \) and \(\gamma- \) Duals of the Spaces \(t_0^r(p), t_0^r(p) \) and \(t^r(p) \)

In this section, we state and prove the theorems determining the \(\alpha-, \beta- \) and \(\gamma- \) duals of the sequence spaces \(t_0^r(p), t_0^r(p) \) and \(t^r(p) \) of non-absolute type.

We shall firstly give the definition of \(\alpha-, \beta- \) and \(\gamma- \) duals of sequence spaces and after quoting the lemmas which are needed in proving the theorems given in Section 4.

The set \(S(\lambda, \mu) \) defined by
\[
(4.1) \quad S(\lambda, \mu) = \{ z = (z_k) \in w : xz = (x_kz_k) \in \mu \text{ for all } x = (x_k) \in \lambda \}
\]
is called the multiplier space of the sequence spaces \(\lambda \) and \(\mu \). One can easily observe for a sequence space \(\nu \) with \(\lambda \supset \nu \supset \mu \) that the inclusions
\[
S(\lambda, \mu) \subset S(\nu, \mu) \text{ and } S(\lambda, \mu) \subset S(\lambda, \nu)
\]
hold. With the notation of (4.1), the alpha-, beta- and gamma-duals of a sequence space \(\lambda \), which are respectively denoted by \(\lambda^\alpha \), \(\lambda^\beta \) and \(\lambda^\gamma \) are defined by
\[
\lambda^\alpha = S(\lambda, \ell_1), \lambda^\beta = S(\lambda, \ell_2) \text{ and } \lambda^\gamma = S(\lambda, bs).
\]
The alpha-, beta- and gamma-duals of a sequence space are also referred as Köthe-Toeplitz dual, generalized Köthe-Toeplitz dual and Garling dual of a sequence space, respectively.

For to give the alpha-, beta- and gamma-duals of the spaces \(t_0^r(p), t_0^r(p) \) and \(t^r(p) \) of non-absolute type, we need the following Lemma:

Lemma 4.1. [7] Let \(A = (a_{nk}) \) be an infinite matrix. Then, the following statements hold

(i): \(A \in (c_0(p) : \ell(q)) \) if and only if
\[
(4.2) \quad \sup_{K \in \mathcal{F}} \sum_{n} \left| \sum_{k \in K} a_{nk} M^{-1/p_k} \right|^{q_n} < \infty, \ \exists M \in \mathbb{N}_2.
\]

(ii): \(A \in (c(p) : \ell(q)) \) if and only if \((4.2) \) holds and
\[
(4.3) \quad \left| \sum_{n} \left| \sum_{k} a_{nk} \right|^{q_n} < \infty.
\]

(iii): \(A \in (c_0(p) : c(q)) \) if and only if
\[
(4.4) \quad \sup_{n \in \mathbb{N}} \sum_{k} |a_{nk}| M^{-1/p_k} < \infty, \ \exists M \in \mathbb{N}_2,
\]
\[
(4.5) \quad \exists (a_{nk}) \subset \mathbb{R} \ni \lim_{n \to \infty} |a_{nk} - \alpha_k|^{q_n} = 0 \text{ for all } k \in \mathbb{N},
\]
\[
(4.6) \quad \exists (a_{nk}) \subset \mathbb{R} \ni \sup_{n \in \mathbb{N}} N^{1/q_n} \sum_{k} |a_{nk} - \alpha_k| M^{-1/p_k} < \infty, \ \exists M \in \mathbb{N}_2 \text{ and } \forall N \in \mathbb{N}_1.
\]
Let $A = (a_{nk})$ be an infinite matrix. Then, the following statements hold

(i): $A \in (c(p) : c(q))$ if and only if $(4.4), (4.5), (4.6)$ hold and

$$\exists \alpha \in \mathbb{R} \exists \lim_{n \to \infty} \sum_{k} a_{nk} - \alpha^{q_{n}} = 0. \tag{4.7}$$

(ii): $A \in (c_{0}(p) : \ell_{1})$ if and only if

$$\sup_{n \in \mathbb{N}} \left(\sum_{k} |a_{nk}| M^{-1/p_{k}} \right)^{q_{n}} < \infty, \exists M \in \mathbb{N}_{2}. \tag{4.8}$$

(iii): $A \in (c_{0}(p) : \ell_{\infty})$ if and only if

$$\sup_{a, \beta} \left(\sum_{k} |a_{nk}| M^{-1/p_{k}} \right) < \infty. \tag{4.9}$$

(iv): $A \in (c_{0}(p) : \ell_{1})$ if and only if

$$\sup_{n \in \mathbb{N}} \left(\sum_{k} |a_{nk}| M^{-1/p_{k}} \right)^{q_{n}} < \infty, \exists M \in \mathbb{N}_{2}. \tag{4.10}$$

Lemma 4.2. [10] Let $A = (a_{nk})$ be an infinite matrix. Then, the following statements hold

(i): $A \in (\ell(p) : \ell_{\infty})$ if and only if

(a): $0 < p_{k} \leq 1$ for all $k \in \mathbb{N}$. Then,

$$\sup_{n, k \in \mathbb{N}} |a_{nk}| p_{k} < \infty. \tag{4.11}$$

(b): $1 < p_{k} \leq H < \infty$ for all $k \in \mathbb{N}$. Then, there exists an integer $M > 1$ such that

$$\sup_{n \in \mathbb{N}} \sum_{k} |a_{nk} M^{-1/p_{k}}|^{p_{k}'} < \infty. \tag{4.12}$$

(ii): $0 < p_{k} \leq H < \infty$ for all $k \in \mathbb{N}$. Then, $A = (a_{nk}) \in (\ell(p) : c)$ if and only if (4.11) and (4.12) hold, and

$$\lim_{n \to \infty} a_{nk} = \beta_{k}, \forall k \in \mathbb{N}. \tag{4.13}$$

Theorem 4.1. Let $K \in \mathcal{F}$ and $K^{*} = \{ k \in \mathbb{N} : n \geq k \} \cap K$ for $K \in \mathcal{F}$. Define the sets $T_{1}^{1}(p), T_{2}^{1}, T_{3}(p)$ and $T_{4}(p)$ as follows:

$$T_{1}^{1}(p) = \bigcup_{M > 1} \left\{ a = (a_{k}) \in w : \sup_{K \in \mathcal{F}} \sum_{n} \left| \sum_{k \in K^{*}} c_{nk} M^{-1/p_{k}} \right|^{q_{n}} < \infty \right\},$$

$$T_{2}^{1} = \left\{ a = (a_{k}) \in w : \sum_{n} \left| \sum_{k=0}^{n} c_{nk} \right| \text{ exists for each } n \in \mathbb{N} \right\},$$

$$T_{3}(p) = \bigcup_{M > 1} \left\{ a = (a_{k}) \in w : \sup_{N \in \mathcal{F}} \sum_{k} \left| \sum_{n \in N} c_{nk} M^{-1/p_{k}'} \right|^{p_{k}'} < \infty \right\},$$

$$T_{4}(p) = \left\{ a = (a_{k}) \in w : \sup_{N \in \mathcal{F}} \sum_{k \in \mathbb{N}} \left| \sum_{n \in N} c_{nk} \right|^{p_{k}} < \infty \right\},$$
where the matrix $C(r) = (c_{nk}^r)$ defined by

$$
(4.14) \quad c_{nk}^r = \begin{cases}
\binom{n}{k} (-r)^{k-n} (1-r)^{-(k+1)} a_n, & (k \geq n), \\
0, & (0 \leq k < n).
\end{cases}
$$

Then, $[t_0^r(p)]^\alpha = T_1^r(p)$, $[t_0^r(p)]^\alpha = T_1^r(p) \cap T_2^r$ and

$$
(4.15) \quad [t^r(p)]^\alpha = \begin{cases}
T_3(p), & 1 < p_k \leq H < \infty, \forall k \in \mathbb{N}, \\
T_4(p), & 0 < p_k \leq 1, \forall k \in \mathbb{N}.
\end{cases}
$$

Proof. We chose the sequence $a = (a_k) \in w$. We can easily derive that with the (2.3) that

$$
(4.16) \quad a_n x_n = \sum_{k=n}^{\infty} \binom{n}{k} (-r)^{k-n} (1-r)^{-(k+1)} a_n y_k = (C^r y)_n, \quad (n \in \mathbb{N}).
$$

for all $k, n \in \mathbb{N}$, where $C^r = (c_{nk}^r)$ defined by (4.14). It follows from (4.16) that $ax = (a_n x_n) \in \ell_2$ whenever $x \in t_0^r(p)$ if and only if $Cy \in \ell_1$ whenever $y \in c_0(p)$. This means that $a = (a_n) \in [t_0^r(p)]^\alpha$ if and only if $C \in (c_0(p) : \ell_1)$. Then, we derive by (4.2) with $q_n = 1$ for all $n \in \mathbb{N}$ that $[t_0^r(p)]^\alpha = T_1^r(p)$.

Using the (4.3) with $q_n = 1$ for all $n \in \mathbb{N}$ and (4.16), the proof of the $[t_0^r(p)]^\alpha = T_1^r(p) \cap T_2$ can also be obtained in a similar way. Also, using the (4.9),(4.10) and (4.16), the proof of the

$$
[t^r(p)]^\alpha = \begin{cases}
T_3(p), & 1 < p_k \leq H < \infty, \forall k \in \mathbb{N}, \\
T_4(p), & 0 < p_k \leq 1, \forall k \in \mathbb{N},
\end{cases}
$$

can also be obtained in a similar way. \hfill \square

Theorem 4.2. The matrix $D(r) = (d_{nk}^r)$ is defined by

$$
(4.17) \quad d_{nk}^r = \begin{cases}
\sum_{k=0}^{n} \binom{n}{k} (-r)^{n-k} (1-r)^{-(n+1)} a_k, & (0 \leq k \leq n) \\
0, & (k > n)
\end{cases}
$$

for all $k, n \in \mathbb{N}$. Define the sets $T_5^r(p)$, T_6^r, T_7^r, $T_8(p)$, $T_9(p)$ and $T_{10}(p)$ as follows:

$$
T_5^r(p) = \bigcup_{M>1} \left\{ a = (a_k) \in w : \sum_{k=M}^{\infty} \left| d_{nk}^r M^{-1/p_k} \right| < \infty \right\},
$$

$$
T_6^r = \left\{ a = (a_k) \in w : \lim_{n \to \infty} |d_{nk}^r| \text{ exists for each } k \in \mathbb{N} \right\},
$$

$$
T_7^r = \left\{ a = (a_k) \in w : \lim_{n \to \infty} \sum_{k=0}^{n} |d_{nk}^r| \text{ exists} \right\},
$$

$$
T_8(p) = \bigcup_{M>1} \left\{ a = (a_k) \in w : \sup_{n \in \mathbb{N}} \sum_{k=0}^{n} |d_{nk}^r M^{-1/p_k} | < \infty \right\},
$$

$$
T_9(p) = \left\{ a = (a_k) \in w : d_{nk} < \infty \right\},
$$

$$
T_{10}(p) = \left\{ a = (a_k) \in w : \sup_{n, k \in \mathbb{N}} |d_{nk}^r|^{p_k} < \infty \right\}.
$$

Then, $[t_0^r(p)]^\beta = T_5^r(p) \cap T_6^r$, $[t_0^r(p)]^\beta = [t_0^r(p)]^\beta \cap T_7^r$ and

$$
(4.18) \quad [t^r(p)]^\beta = \begin{cases}
T_8(p) \cap T_9(p), & 1 < p_k \leq H < \infty, \forall k \in \mathbb{N}, \\
T_9(p) \cap T_{10}(p), & 0 < p_k \leq 1, \forall k \in \mathbb{N}.
\end{cases}
$$
Proof. We give the proof again only for the space $t_0^c(p)$. Consider the equation

$$
\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n} \left[\sum_{j=0}^{\infty} \binom{k}{j} (r)^{k-j}(1-r)^{-(k+1)} y_k \right] a_k
$$

(4.19)

$$
= \sum_{k=0}^{n} \left[\sum_{j=0}^{k} \binom{k}{j} (r)^{k-j}(1-r)^{-(k+1)} a_j \right] y_k = (D^r y)_n,
$$

where $D^r = (d_{nk}^r)$ defined by (4.17). Thus, we deduce from (4.19) that $ax = (a_k x_k) \in cs$ whenever $x = (x_k) \in t_0^c(p)$ if and only if $D^r y \in c$ whenever $y = (y_k) \in c_0(p)$. That is to say that $a = (a_k) \in [t_0^c(p)]^{\beta}$ if and only if $D^r \in (c_0(p) : c)$. Therefore, we derive from (4.4), (4.5) and (4.6) with $q_n = 1$ for all $n \in \mathbb{N}$ that $[t_0^c(p)]^{\beta} = T_0^c(u,p) \cap T_0^c(u)$.

Using the (4.4), (4.5), (4.6) and (4.7) with $q_n = 1$ for all $n \in \mathbb{N}$ and (4.19), the proofs of the $[t_0^c(p)]^{\beta} = [t_0^c(p)]^{\beta} \cap T_0^c$ can also be obtained in a similar way. Also, using the (4.11), (4.12), (4.13) and (4.19), the proofs of the

$$
[t^c(p)]^{\beta} = \begin{cases}
T_0^c(p) \cap T_0^c(p), & 1 < p_k \leq H < \infty, \forall k \in \mathbb{N}, \\
T_0^c(p) \cap T_10(p), & 0 < p_k \leq 1, \forall k \in \mathbb{N}
\end{cases}
$$

can also be obtained in a similar way. \hfill \Box

Theorem 4.3. Define the set $T_0^c(u)$ by

$$
T_0^c(u) = \left\{ a = (a_k) \in w : \left\{ \sum_{j=0}^{k} \binom{k}{j} (r)^{k-j}(1-r)^{-(k+1)} a_j \right\} \in bs \right\}.
$$

Then, $[t_0^c(p)]^{\gamma} = T_0^c(p) \cap T_0^c, [t_0^c(p)]^{\gamma} = [t_0^c(p)]^{\gamma} \cap T_{11}$ and

$$
[t^c(p)]^{\gamma} = \begin{cases}
T_0^c(p), & 1 < p_k \leq H < \infty, \forall k \in \mathbb{N}, \\
T_{10}(p), & 0 < p_k \leq 1, \forall k \in \mathbb{N}
\end{cases}
$$

Proof. This is obtained in the similar way used in the proof of Theorem 4.2. \hfill \Box

5. Certain Matrix Mappings on the Sequence Spaces $t_0^c(p)$, $t_0^c(p)$ and $t^c(p)$

In this section, we characterize some matrix mappings on the spaces $t_0^c(p), t_0^c(p)$ and $t^c(p)$.

We known that, if $t_0^c(p) \cong c_0(p), t_0^c(p) \cong c(p)$ and $t^c(p) \cong l(p)$, we can say: The equivalence “$x \in t_0^c(p), t_0^c(p)$ or $t^c(p)$ if and only if $y \in c_0(p), c(p)$ or $l(p)$” holds.

In what follows, for brevity, we write,

$$
\tilde{a}_{nk} := \sum_{k=0}^{n} \binom{n}{k} (r)^{n-k}(1-r)^{-(n+1)} a_{nk}
$$

for all $k, n \in \mathbb{N}$.

Theorem 5.1. Suppose that the entries of the infinite matrices $A = (a_{nk})$ and $E = (e_{nk})$ are connected with the relation

(5.1)

$$
e_{nk} := \tilde{a}_{nk}
$$

for all $k, n \in \mathbb{N}$ and μ be any given sequence space. Then,
(i): $A \in (t^*_0(p) : \mu)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t^*_0(p)\}^\beta$ for all $n \in \mathbb{N}$ and $E \in (c_0(p) : \mu)$.

(ii): $A \in (t^*_c(p) : \mu)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t^*_c(0)\}^\beta$ for all $n \in \mathbb{N}$ and $E \in (c(p) : \mu)$.

(iii): $A \in (t^*(p) : \mu)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t^*(p)\}^\beta$ for all $n \in \mathbb{N}$ and $E \in (\ell(p) : \mu)$.

Proof. We prove only part of (i). Let μ be any given sequence space. Suppose that (5.1) holds between $A = (a_{nk})$ and $E = (e_{nk})$, and take into account that the spaces $t^*_0(p)$ and $c_0(p)$ are linearly isomorphic.

Let $A \in (t^*_0(p) : \mu)$ and take any $y = (y_k) \in c_0(p)$. Then $ET(r)$ exists and $\{a_{nk}\}_{k \in \mathbb{N}} \in T^*_0(p) \cap T^*_0(p)$ which yields that $\{e_{nk}\}_{k \in \mathbb{N}} \in c_0(p)$ for each $n \in \mathbb{N}$. Hence, Ey exists and thus

$$\sum_k e_{nk}y_k = \sum_k a_{nk}x_k$$

for all $n \in \mathbb{N}$.

We have that $Ey = Ax$ which leads us to the consequence $E \in (c_0(p) : \mu)$.

Conversely, let $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t^*_0(p)\}^\beta$ for each $n \in \mathbb{N}$ and $E \in (c_0(p) : \mu)$ hold, and take any $x = (x_k) \in t^*_0(p)$. Then, Ax exists. Therefore, we obtain from the equality

$$\sum_{k=0}^\infty a_{nk}x_k = \sum_{k=0}^\infty \left[\sum_{j=0}^k \binom{j}{k} (-r)^{j-k}(1-r)^{-(j+1)}a_{nj} \right] y_k$$

for all $n \in \mathbb{N}$, so $Ey = Ax$ and this shows that $A \in (t^*_0(p) : \mu)$. This completes the proof of part of (i). \hfill \Box

Theorem 5.2. Suppose that the elements of the infinite matrices $A = (a_{nk})$ and $B = (b_{nk})$ are connected with the relation

$$(5.2) \quad b_{nk} := \sum_{j=n}^\infty \binom{j}{n} (1-r)^{n+1} r^{j-n} a_{jk} \quad \text{for all } k, n \in \mathbb{N}.$$

Let μ be any given sequence space. Then,

(i): $A \in (\mu : t^*_0(p))$ if and only if $B \in (\mu : c_0(p))$.

(ii): $A \in (\mu : t^*_c(p))$ if and only if $B \in (\mu : c(p))$.

(iii): $A \in (\mu : t^*(p))$ if and only if $B \in (\mu : \ell(p))$.

Proof. We prove only part of (i). Let $z = (z_k) \in \mu$ and consider the following equality.

$$\sum_{k=0}^m b_{nk}z_k = \sum_{j=n}^\infty \binom{j}{n} (1-r)^{n+1} r^{j-n} \left(\sum_{k=0}^m a_{jk}z_k \right) \quad \text{for all } m, n \in \mathbb{N}$$

which yields as $m \to \infty$ that $(Bz)_n = \{T(r)(Az)\}_n$ for all $n \in \mathbb{N}$. Therefore, one can observe from here that $Az \in t^*_0(p)$ whenever $z \in \mu$ if and only if $Bz \in c_0(p)$ whenever $z \in \mu$. This completes the proof of part of (i). \hfill \Box

Of course, Theorems 5.1 and 5.2 have several consequences depending on the choice of the sequence space μ. Whence by Theorem 5.1 and Theorem 5.2, the necessary and sufficient conditions for $(t^*_0(p) : \mu), (\mu : t^*_0(p)), (t^*_c(p) : \mu), (\mu : t^*_c(p))$ and $(t^*(p) : \mu), (\mu : t^*(p))$ may be derived by replacing the entries of C and A by those of the entries of $E = C(T(r))^{-1}$ and $B = T(r)A$, respectively; where
the necessary and sufficient conditions on the matrices \(E \) and \(B \) are read from the concerning results in the existing literature.

The necessary and sufficient conditions characterizing the matrix mappings between the sequence spaces of Maddox are determined by Grosse-Erdmann \([7]\). Let \(N \) and \(K \) denote the finite subset of \(N \), \(L \) and \(M \) also denote the natural numbers. Prior to giving the theorems, let us suppose that \((q_n)\) is a non-decreasing bounded sequence of positive numbers and consider the following conditions:

\[
\begin{align*}
(5.3) \quad & \lim_{n} |a_{nk}|^{q_n} = 0, \text{ for all } k \\
(5.4) \quad & \forall L, \exists M \ni \sup_{n} L^{1/q_n} \sum_{k} |a_{nk}| M^{-1/p_k} < \infty, \\
(5.5) \quad & \sup_{n} \sum_{k} a_{nk}^{q_n} < \infty, \\
(5.6) \quad & \lim_{n} \sum_{k} a_{nk}^{q_n} = 0, \\
(5.7) \quad & \forall L, \sup_{n \in K_1} |a_{nk} L^{1/q_n} p_k < \infty, \\
(5.8) \quad & \forall L, \exists M \ni \sum_{k \in K_2} |a_{nk} L^{1/q_n} M^{-1/p_k} | < \infty, \\
(5.9) \quad & \forall M, \lim_{n} \sum_{k} |a_{nk} M^{1/p_k} q_n = 0, \\
(5.10) \quad & \forall M, \sup_{n \in K_1} |a_{nk} M^{1/p_k} | < \infty, \\
(5.11) \quad & \forall M, \exists (\alpha_k) \ni \lim_{n} \sum_{k} |a_{nk} - \alpha_k| M^{1/p_k} q_n = 0, \\
(5.12) \quad & \forall M, \sup_{K} \sum_{n \in K} |\sum_{k \in K} a_{nk} M^{1/p_k} q_n < \infty.
\end{align*}
\]

Lemma 5.1. Let \(A = (a_{nk}) \) be an infinite matrix. Then

(i): \(A = (a_{nk}) \in (c_0(p) : \ell_\infty(q)) \) if and only if (4.8) holds.

(ii): \(A = (a_{nk}) \in (c(p) : \ell_\infty(q)) \) if and only if (4.8) and (5.5) hold.

(iii): \(A = \ell(p) \ni (a_{nk}) \) if and only if (4.11) and (4.12) hold.

(iv): \(A = (a_{nk}) \in (c_0(p) : c(q)) \) if and only if (4.4), (4.5) and (4.6) hold.

(v): \(A = (a_{nk}) \in (c(p) : c(q)) \) if and only if (4.4), (4.5), (4.6) and (4.7) hold.

(vi): \(A = (a_{nk}) \in (\ell(p) : c) \) if and only if (4.11), (4.12) and (4.13) hold.

(vii): \(A = (a_{nk}) \in (c_0(p) : c_0(q)) \) if and only if (5.3) and (5.4) hold.

(viii): \(A = (a_{nk}) \in (c(p) : c_0(q)) \) if and only if (5.3), (5.4) and (5.6) hold.

(ix): \(A = (a_{nk}) \in (\ell_\infty(p) : c_0(q)) \) if and only if (5.3), (5.7) and (5.8) hold.

(x): \(A = (a_{nk}) \in (\ell_\infty(p) : c_0(q)) \) if and only if (5.9) holds.

(xi): \(A = (a_{nk}) \in (\ell_\infty(p) : \ell(q)) \) if and only if (5.10) and (5.11) hold.

(xii): \(A = (a_{nk}) \in (\ell_\infty(p) : \ell(q)) \) if and only if (5.12) holds.

(xiii): \(A = (a_{nk}) \in (c(p) : \ell(q)) \) if and only if (4.2) holds.

(xiv): \(A = (a_{nk}) \in (c(p) : \ell(q)) \) if and only if (4.2) and (4.4) hold.

Corollary 5.1. Let \(A = (a_{nk}) \) be an infinite matrix. The following statements hold:
Corollary 5.2. Let \(A = (a_{nk}) \) be an infinite matrix. The following statements hold:

(i): \(A \in (t^r_c(p) : \ell_\infty(q)) \) if and only if \(\{a_{nk}\}_{k \in \mathbb{N}} \subseteq \{t^r_c(p)\}^\beta \) for all \(n \in \mathbb{N} \) and (4.8) holds with \(\tilde{a}_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(ii): \(A \in (t^r_c(p) : c_0(q)) \) if and only if \(\{a_{nk}\}_{k \in \mathbb{N}} \subseteq \{t^r_c(p)\}^\beta \) for all \(n \in \mathbb{N} \) and (5.3) and (5.4) hold with \(\tilde{a}_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(iii): \(A \in (t^r_c(p) : c(q)) \) if and only if \(\{a_{nk}\}_{k \in \mathbb{N}} \subseteq \{t^r_c(p)\}^\beta \) for all \(n \in \mathbb{N} \) and (4.4), (4.5) and (4.6) hold with \(\tilde{a}_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

Corollary 5.3. Let \(A = (a_{nk}) \) be an infinite matrix. The following statements hold:

(i): \(A \in (t^r(p) : \ell_\infty(q)) \) if and only if \(\{a_{nk}\}_{k \in \mathbb{N}} \subseteq \{t^r(p)\}^\beta \) for all \(n \in \mathbb{N} \) and (4.8) and (5.5) hold with \(\tilde{a}_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(ii): \(A \in (t^r(p) : c_0(q)) \) if and only if \(\{a_{nk}\}_{k \in \mathbb{N}} \subseteq \{t^r(p)\}^\beta \) for all \(n \in \mathbb{N} \) and (5.3), (5.4) and (5.6) hold with \(\tilde{a}_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(iii): \(A \in (t^r(p) : c(q)) \) if and only if \(\{a_{nk}\}_{k \in \mathbb{N}} \subseteq \{t^r(p)\}^\beta \) for all \(n \in \mathbb{N} \) and (4.4), (4.5), (4.6) and (4.7) hold with \(\tilde{a}_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

Corollary 5.4. Let \(A = (a_{nk}) \) be an infinite matrix and \(b_{nk} \) be defined by (5.2). Then, following statements hold:

(i): \(A \in (\ell_\infty(q) : t^r_0(p)) \) if and only if (5.9) holds with \(b_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(ii): \(A \in (c_0(q) : t^r_0(p)) \) if and only if (5.3) and (5.4) hold with \(b_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(iii): \(A \in (c(q) : t^r_0(p)) \) if and only if (5.3), (5.4) and (5.6) hold with \(b_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

Corollary 5.5. Let \(A = (a_{nk}) \) be an infinite matrix and \(b_{nk} \) be defined by (5.2). Then, following statements hold:

(i): \(A \in (\ell_\infty(q) : t^r_0(p)) \) if and only if (5.10) and (5.11) hold with \(b_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(ii): \(A \in (c_0(q) : t^r_0(p)) \) if and only if (4.4), (4.5) and (4.6) hold with \(b_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(iii): \(A \in (c(q) : t^r_0(p)) \) if and only if (4.4), (4.5), (4.6) and (4.7) hold with \(b_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

Corollary 5.6. Let \(A = (a_{nk}) \) be an infinite matrix and \(b_{nk} \) be defined by (5.2). Then, following statements hold:

(i): \(A \in (\ell_\infty(q) : t^r(p)) \) if and only if (5.12) holds with \(b_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(ii): \(A \in (c_0(q) : t^r(p)) \) if and only if (4.2) holds with \(b_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).

(iii): \(A \in (c(q) : t^r(p)) \) if and only if (4.2) and (4.4) hold with \(b_{nk} \) instead of \(a_{nk} \) with \(q = 1 \).
References

Recep Tayyip Erdoğan University, Science and Art Faculty, Department of Mathematics, Rize-TURKEY
E-mail address: hacerbilgin@erdogan.edu.tr

Gaziosmanpaşa University, Science and Art Faculty, Department of Mathematics, Tokat-TURKEY
E-mail address: serkandemiriz@gmail.com