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A B S T R A C T  

This paper presents a comprehensive examination of curvature theory through the lens of kinematic 
approaches, with a particular focus on the applications of Bobillier’s Theorem. In differential 
geometry, curvature theory serves as a foundation for understanding the behavior of curves and 
surfaces under transformations, providing insight into local and global geometric properties. 
Curvature measures, such as normal curvature and geodesic curvature, are critical in describing the 

bending and shape of curves and surfaces within a given space. By adopting a kinematic perspective, 
we interpret these curvature properties as functions of motion, allowing for a deeper analysis of 
dynamic systems where trajectories and curvature paths vary over time. This approach enables the 
exploration of curvature in contexts that extend beyond static geometric structures, encompassing 
dynamic applications in fields such as physics, engineering, and robotics, where the behavior of 
objects in motion is governed by the principles of differential geometry. By integrating Bobillier’s 

Theorem, we introduce a novel framework for understanding the interactions between curvature and 
kinematic properties, enhancing the classical curvature analysis.  This study employs a kinematic 
approach to curvature theory, emphasizing Bobillier’s Theorem to connect classical geometric 
analysis with dynamic applications. Our approach also extends classical curvature concepts by 
examining their implications in systems where velocity, acceleration, and angula r momentum 
interact with the geometric curvature of trajectories. By linking Bobillier's polar concepts with the 

path and directional properties of objects in motion, we can derive new insights into how curvature 
affects the stability and orientation of trajectories in dynamic environments. This is particularly 
valuable in applications where precise control over trajectory curvature is needed, such as in robotic 
path planning, spacecraft navigation, and automated vehicle steering systems. Here, the polar line, 
as defined by Bobillier's construction, corresponds to the optimal path of curvature, offering 

potential applications in the optimization of these systems. 
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1 Introduction 

Curvature theory is a fundamental aspect of differential geometry, serving as a critical tool in the study 

of geometric properties of curves and surfaces [1]-[12]. It has profound implications in various applied 

fields, from robotics to physics, where understanding the behavior of objects in motion is essential [13]. 

Classical studies on curvature primarily focus on intrinsic geometric properties, examining static aspects 

of curves and surfaces. However, incorporating kinematic approaches introduces a dynamic perspective, 
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allowing for a richer interpretation of curvature in real-world applications where motion and external 

forces play a significant role [14]. 

One of the pivotal concepts in curvature theory, especially in the study of trajectories and normal 

curvature relationships, is Bobillier’s Theorem. Originally formulated in the context of curve analysis, 

Bobillier’s Theorem establishes essential connections between the curvature center’s path and normal 

curvature properties. This theorem proves particularly valuable in kinematic analysis, as it links 

curvature behavior to object movement, providing insights into how external forces influence 

trajectories [15]. Such insights are indispensable in applications like path optimization in robotics and 

the design of curved surfaces in engineering [16]. 

In this paper, we adopt a kinematic approach to curvature theory, focusing on Bobillier’s Theorem to 

bridge classical geometric analysis and dynamic applications. By applying this theorem within the 

framework of kinematic analysis, we aim to enrich traditional interpretations of curvature and extend 

their applicability to contexts involving motion. This approach not only enhances the theoretical 

understanding of curvature but also opens up new perspectives in fields requiring precise curvature 

manipulation.

2 Preliminaries  

This section presents the foundational concepts necessary for an in-depth analysis of curvature theory 

from a kinematic perspective, with a particular focus on Bobillier’s Theorem and its geometric 

interpretations. By laying out these preliminaries, we aim to clarify the interplay between geometric 

properties of curvature and kinematic analyses, setting the stage for a comprehensive exploration of 

Bobillier’s Theorem within the broader context of curvature theory.  

Theorem 1 (Bobillier's Theorem). Consider a triangle ABC and a point P located on its circumcircle 

(the circle passing through the vertices A, B, and C). If we consider the polar of P with respect to a conic 

section defined by ABC (often a circumcircle or a special conic section with respect to the triangle), 

then this polar passes through the points where the tangents drawn from P meet the extensions of the 

sides of the triangle. 

Bobillier’s Theorem is a classical result in differential geometry that provides a relationship between 

the curvature and the properties of the evolute, or the center of curvature path, of a given curve. It gives 

conditions under which the center of curvature traces a specific trajectory relative to the original curve. 

A structured explanation of the theorem and its mathematical formulation as follows: 

2.1 Curve and Evolute 

Let γ(s) be a regular, smooth plane curve parameterized by arc length s, with curvature κ(s). For any 

point P(s) on γ, the center of curvature C(s) is located at a distance R = 1/κ(s) along the normal vector 

N(s) to the curve at s. The center of curvature C(s) traces out a new curve known as the evolute of γ(s). 

The position of the center of curvature C(s) can be represented as: 

C(s) = γ(s) + [1 / κ(s)] N(s)            (1) 

where N(s) is the unit normal vector to the curve at γ(s). The path traced by C(s) forms the evolute of 

γ(s). 
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2.2 Kinematic Interpretations of Curvature 

A kinematic perspective to Equation 1, curvature represents the rate of change in the direction 

of velocity along a path. For a particle moving along a curve with a velocity v = dγ / dt , the 

curvature κ can also be expressed in terms of the velocity and acceleration vectors:  

κ  = ∥v × a∥ / ∥v∥3           (2)  

where a = dv / dt  is the acceleration vector. This kinematic interpretation in Equation 2 is 

particularly useful in contexts where an object’s trajectory under the influence of forces is of 

interest, such as in robotics and mechanical engineering, allowing for a dynamic understanding 

of curvature. 

2.3 Bobillier’s Theorem 

Bobillier’s theorem states that the curvature of the evolute C(s) at any point s is given by: 

κC(s) = κ(s) / |κ′(s)∣            (3) 

where: 

 

κ(s) is the curvature of the original curve γ(s), 

κ′(s) is the derivative of κ(s) with respect to arc length s, 

κC(s) is the curvature of the evolute C(s) at the corresponding point. 

In other words, the curvature of the evolute at any given point is inversely proportional to the rate of 

change of curvature of the original curve. 

2.4 Proof and Geometric Interpretation 

We assume that the position vector is given by Equation 1 and compute the derivative of C(s) with 

respect to s: 

C′(s) = γ′(s) + (1 / κ(s))′ N(s) + [1 / κ(s)] N′(s). 

Since γ′(s) = T(s) (the tangent vector) and N′(s) = − κ(s) T(s), this expression can be simplified 

further by substituting these values. 

By further differentiation, we obtain an expression for the second derivative C′′(s) and thus for 

the curvature  

κC(s) = ∥C′(s) × C′′(s)∥ / ∥C′(s)∥3. 

Upon simplification of this result, it can be shown that Equation 3, confirming Bobillier’s Theorem.  

3 Geometric Interpretation of the Result Theory and Calculation 

The key geometric insight provided by Bobillier’s Theorem is that the trajectory of the curvature center 

can be analyzed similarly to the original curve’s geometry, allowing for a layered understanding of 

curvature behavior. For instance, if the curvature of the original curve changes smoothly, the curvature 

center’s trajectory forms a smooth path. However, if there are abrupt changes in the curvature of the 
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original curve, the curvature center’s path will reflect these discontinuities, providing insight into the 

overall dynamics of the motion. 

This geometric perspective is especially useful in kinematics, as it enables the prediction of how a 

moving point on the curve will respond under specific conditions of motion and force. In robotics, for 

example, understanding the path traced by the curvature center can inform path-planning algorithms, 

particularly in situations where smoothness and precision are required. 

Bobillier’s Theorem provides an elegant geometric insight into the relationship between a curve and its 

evolute. Specifically: 

Definition 1.   

a) When the curvature κ(s) of the original curve changes slowly (i.e., ∣κ′(s)| is small), the curvature of 

the evolute κC(s) becomes large, meaning the evolute is highly curved. 

b) Conversely, if the curvature κ(s) changes rapidly (i.e., |κ′(s)| is large), the curvature of the evolute 

κC(s) is small, and the evolute becomes flatter. 

3.1 Bobilier Design  

Theorem 2 (Bobillier’s Design). For a state of motion, if the centers of curvature of the pol points at A, 

B on the pol lines are known, then for the tangent t pol at QAB = ([AB][A* B*]), it holds that  

∢ [PA] t =  - ∢ [PB] [PQAB].            (4) 

Let points A, B, C and their corresponding curvature centers A*, B* be defined. We will utilize 

Bobillier’s theorem to ascertain the center of curvature of C in C*: 

Utilizing the Bobillier Design given by Equation 4 consecutively allows for the straightforward 

acquisition of C* by transferring the angle with the auxiliary points QAB for A, B and QAC for A, C 

(Figure 1).  

 

Figure 1: Bobillier design 
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3.2 Hartmann’s Rule 

Let P and P’s velocity vector P𝐯, A and A’s velocity vector A𝐯, be specified. Let us determine the center 

of curvature of the orbit of A*. 

Let us define P𝐯10
f , which is oriented perpendicularly to the pol lines [PA] originating from P𝐯. The line 

joining the endpoints of the vectors P𝐯10
f  and A𝐯 intersects at A*. The peaks of P𝐯10

f  for different polar 

lines lie on the Thales circle above P𝐯, the Hartmann circle. (Figure 2). 

 

Figure 2: Hartmann’s circle 

Thus, Bobillier’s Theorem reveals that the shape of the evolute is directly influenced by the rate at which 

the curvature of the original curve changes. This provides a deeper understanding of how curves evolve 

under geometric transformations, with significant implications in applications such as path optimization 

and motion analysis in fields like robotics and physics. 

4 Results and Discussion 

Bobillier’s Theorem has several practical applications, particularly in fields that require precise control 

over curvature and trajectory. Some notable applications are: 

In robotic motion planning, path smoothness is critical for efficiency and accuracy. Bobillier’s Theorem 

helps engineers analyze the curvature of a robot's path and its center of curvature, ensuring smooth 

transitions that avoid abrupt changes in direction. By understanding the curvature center’s path, 

roboticists can optimize movement to minimize energy consumption and avoid mechanical stress.  

In systems involving rotating or moving components, such as gears or levers, controlling curvature 

properties is essential for stability. Bobillier’s Theorem aids in designing components with predictable 

curvature dynamics, ensuring that motion remains smooth and controlled under varying loads.  
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In physics, especially in projectile motion and orbit mechanics, understanding curvature changes under 

force fields can provide accurate predictions about trajectories. Bobillier’s Theorem offers a framework 

to analyze the effects of forces on curvature behavior, helping physicists anticipate how objects will 

move in response to external forces. 
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