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This paper offers an overview of essential concepts in deep learning, one of 

the state of the art approaches in machine learning, in terms of its history 

and current applications as a brief introduction to the subject. Deep 

learning has shown great successes in many domains such as handwriting 

recognition, image recognition, object detection etc. We revisited the 

concepts and mechanisms of typical deep learning algorithms such as 

Convolutional Neural Networks, Recurrent Neural Networks, Restricted 

Boltzmann Machine, and Autoencoders. We provided an intuition to deep 

learning that does not rely heavily on its deep math or theoretical constructs. 
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1. Introduction  

Machine learning technology supports the modern society in many ways. This technology 

becomes widespread in many products such as cameras and smart phones and is also used in many 

applications such as content filtering in social network search. Moreover, it is especially beneficial for 

object recognition [1,2], speech recognition [3], edge detection [4], and many other areas as addressed 

in references [5,6,7].  

Deep learning is part of a broader family of machine learning methods based on learning data 

representations, as opposed to task-specific algorithms.  Deep learning has enabled many practical 

applications of machine learning and by extension the overall field of Artificial Intelligence. 

Compared to shallow learning deep learning has the advantage of building deep architectures to learn 

more abstract information. The most important property of deep learning methods is that it can 

automatically learn feature representations thus avoiding a lot of time-consuming engineering. Better 

chip processing abilities, considerable advances in the machine learning algorithms, and affordable 

cost of computing hardware are primarily crucial reasons for the booming of deep learning [8].  

Traditional machine learning relies on shallow networks which are composed of one input and 

one output layer, and no more than one hidden layer between input and output layers. Deep learning is 

qualified when more than three layers exist in a network including input and output layers. Therefore, 

the more the number of hidden layers is increased, the more the network gets deeper as shown in 

Fig.1.  

The remainder of this paper discusses typical deep learning algorithms which are Convolutional 

Neural Network (CNN), Recurrent Neural Network (RNN), Restricted Boltzmann Machine (RBM), 
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and Autoencoders respectively. We offer our paper in a way that each section can be read 

independently.  

 

 

 

 

 

 

 

 

 

 

 

2. Deep learning methods 

2.1. Convolutional Neural Network 

CNN was firstly introduced by Kunihiko Fukushima [9].   It was later proposed by Yann 

LeCun. He combined CNN with back-propagation theory to recognize handwritten digits and 

document recognition [10,11]. His system was eventually used to read hand-written checks and zip 

codes. CNN uses convolutional layers and pooling layers. Convolutional layers filter inputs for useful 

information. They have parameters that are learned so that filters are adjusted automatically to extract 

the most useful information for a certain task. Multiple convolutional layers are used that filter images 

for more and more abstract information after each layer. Pooling layers are used for limited translation 

and rotation invariance. Pooling also reduces the memory consumption and thus allows for the usage 

of more convolutional layers.  

 

2.1.1. Convolution Operation 

Convolution is just a mathematical operation that describes a rule of how to mix two functions 

and produces a third function. This third function is an integral that expresses the amount of overlap of 

one function as it is shifted over the other function. In other words, an input data and a convolution 

kernel are subjected to particular mathematical operation to generate a transformed feature map. 

Convolution is often interpreted as a filter, where the kernel filters the feature map for information of a 

certain kind. Convolution is described formally as follows:  

 

(1) 

                                                                                                 

 

CNN typically works with two-dimensional convolution operation as summarized in Fig. 2. The 

leftmost matrix is input data. The matrix in the middle is convolution kernel and the rightmost matrix 

Fig. 1.  An example of deep neural network 
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is a feature map. The feature map is calculated by sliding convolution kernel over the entire input 

matrix. The convolution process is an element-wise operation followed by a sum. For example, when 

the right upper 3×3 matrix is convoluted with convolution kernel, the result is 77. 

 

 

 

 

 

 

Fig. 2. A simple depiction of 2-dimensional convolutional operation 

 

The convolution operation is usually known as kernels. By different choices of kernels, different 

operations of the images can be obtained. Operations are typically including edge detection, blurring, 

sharpening etc. By introducing random matrices as convolution operator, some interesting properties 

might be discovered. As a result of convolution in neural networks, the image is split into perceptrons, 

creating local receptive fields and finally compressing the perceptrons in feature maps. All in all, 

learning a meaningful convolutional kernel is one of the central tasks in CNN when applied to 

computer vision tasks. 

 

2.1.2. Convolution Layers 

A typical CNN architecture consists of convolutional and pooling (or subsampling or 

downsampling) layers as depicted in Fig. 3. A convolutional layer is primarily a layer that performs 

convolution operation. Its main task is to map. The result of staging convolutional layers in 

conjunction with the following layers is that the information of the image is classified like in vision. 

That means that the pixels are assembled into edges, edges into motifs, motifs into parts, parts into 

objects, and objects into scenes. Convolutional layer introduces the Rectified Linear Unit (ReLU) the 

non-linearity transform after convolution to assist the simulation to be more successful. There are 

other non-linear functions such as Hyperbolic Tangent or Sigmoid that can also be used instead of 

ReLU, however ReLU has been found to perform better in most situations. ReLU is a special 

implementation that combines non-linearity and rectification layers in CNNs. It is a piecewise linear 

function defined as follows:  

 

                                                     ),0max()( xxf                                                           (2) 

 

which is a transform that replaces all negative pixel values in the feature map by zero  

and therefore solves the cancellation problem as well as results in a much more sparse activation 

volume at its output. The sparsity is useful for multiple reasons but mainly provides robustness to 

small changes in input such as noise [12]. 

The pooling layer is responsible for reducing the spacial size of the activation maps. Although it 

reduces the dimensionality of each feature map, it retains the most important information. There are 

different strategies of the pooling which are max-pooling, average-pooling and probabilistic pooling. 

Max-pooling takes the maximum of the input data. Average-pooling takes the averged value of the 

input data. Probabilistic pooling takes a random value of the input data [13].  Pooling makes the input 
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representations or feature dimension smaller and more manageable. It helps the network to be 

invariant to small transformations, distortions,and translations in the input image. It also reduces the 

number of parameters and computations in the network as well as minimizes the likelihood of 

overfitting.  

 

 

 

 

 

 

 

 

 

 

Fig. 3. A typical CNN architecture 

 

After several convolutional and max pooling layers, the high-level reasoning in the neural 

network is done via Fully Connected Layers (FCLs). A FCL takes all neurons in the previous layer 

and connects it to every single neuron it has. FCLs are not spatially located anymore, that means they 

can be visualized as one-dimensional. Therefore there can be no convolutional layers after an FCL. 

The output from the convolutional layers represents high-level features in the data. While that 

output could be flattened and connected to the output layer, adding a fully-connected layer is a cheap 

way of learning non-linear combinations of these features. The sum of output probabilities from the 

Fully Connected Layer is 1. This is ensured by using the Softmax as the activation function in the 

output layer of the Fully Connected Layer. The Softmax function takes a vector of arbitrary real-

valued scores and squashes it to a vector of values between zero and one that sum to one.  

 

2.1.3. CNN Architectures 

CNNs have recently enjoyed a great success in large-scale image and video recognition. The 

influential architectures of CNNs can be listed as below and are presented in chronological order with 

better accuracy from the earlier ones from LeNet to DenseNet.  

LeNet is a pioneering work was named LeNet-5 by Yann LeCun after previous successful 

iteration [14,15]. At that time the LeNet architecture was used mainly for character recognition tasks 

such as reading zip codes, digits, etc. With the introduction of LeNet, LeCun et al. [15] also introduced 

the MNIST database, which is known as the standard benchmark in digit recognition field. 

AlexNet made CNNs popular in Computer Vision. It is composed of 5 convolutional layers 

followed by 3 fully connected layers. It was developed by Alex Krizhevsky et al. and won ImageNet 

ILSVRC challenge in 2012 [16]. During this competition it produced the best results, top-1 and top-5 

error rates of 37.5% and 17.0%. 

ZFNet won the ILSVRC 2013. It was proposed by Matthew Zeiler and Rob Fergus [17]. It 

became known as the ZFNet. It was an improvement on AlexNet by tweaking the architecture hyper-

parameters, in particular by expanding the size of the middle convolutional layers and making the 

stride and filter size on the first layer smaller. 
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VGGNet was the runner-up in ILSVRC 2014 from VGG group, Oxford [18]. It makes the 

improvement over AlexNet and has 19 layers in total. Its main contribution was in showing that the 

depth of the network or the number of layers is a critical component for good performance. Although 

VGGNet achieves a phenomenal accuracy on ImageNet dataset, its deployment on even the most 

modest sized Graphics Pprocessing Units (GPUs) is a problem because of huge computational 

requirements, both in terms of memory and time. It becomes inefficient due to large width of 

convolutional layers.   

GoogLeNet was invented by Szegedy et al. from Google that was the winner of ILSVRC 2014 

[19]. Its main contribution was the development of an inception module that dramatically reduced the 

number of parameters in the network. Inception module approximates a sparse CNN with a normal 

dense construction. Since only a small number of neurons are effective as mentioned earlier, 

width/number of the convolutional filters of a particular kernel size is kept small. Additionally, it uses 

convolutions of different sizes to capture details at varied scales. Another salient point about the 

module is that it has a so-called bottleneck layer. It helps in massive reduction of the computation 

requirement. Another change that GoogLeNet made, was to replace the FCLs at the end with a simple 

global average pooling which averages out the channel values across the 2D feature map, after the last 

convolutional layer. This drastically reduces the total number of parameters. This can be understood 

from AlexNet, where FCLs contain approximately 90% of parameters. Use of a large network width 

and depth allows GoogLeNet to remove the FCLs without affecting the accuracy. It achieves 93.3% 

top-5 accuracy on ImageNet and is much faster than VGG.  

ResNet (Residual Network) developed by Kaiming He et al. was the winner of ILSVRC 2015 

[20]. ResNet is a 152 layer network, which was ten times deeper than what was usually seen during 

the time when it was invented It features special skip connections and a heavy use of batch 

normalization. It uses a global average pooling followed by the classification layer. It achieves better 

accuracy than VGGNet and GoogLeNet while being computationally more efficient than VGGNet. 

ResNet-152 achieves 95.51% top-5 accuracies. 

          DenseNet was published by Gao Huang et al and won best paper award in CVPR 2017 [21]. It 

has each layer directly connected to every other layer in a feed-forward fashion. The DenseNet has 

been shown to obtain significant improvements over previous state-of-the-art architectures on four 

highly competitive object recognition benchmark tasks(CIFAR-10, CIFAR-100, SVHN, and 

ImageNet). 

2.2. Recurrent Neural Network 

RNNs are a family of neural networks for processing sequential data. RNNs are popular models 

that have shown great promises in a variety of problems such as speech recognition, language 

modeling, translation, image captioning [22-26]. RNNs are called recurrent because they perform the 

same task for every element of a sequence, with the output being depended on the previous 

computations. In other words they have a memory which captures information about what has been 

calculated till the moment. In theory RNNs can make use of information in arbitrarily long sequences, 

but in practice they are limited to looking back only a few steps.  

A simple example of RNN was firstly proposed by Elman[27]. Its diagram is shown in Fig. 4.  

If RNN in Fig. 4 is unfolded, it turns out to be like in Fig. 5. A chunk of neural network looks at some 

inputs and outputs a value. A loop allows information to be passed from one step of the network to the 
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next. A RNN can be thought of as multiple copies of the same network, each passing a message to a 

successor. This chain-like nature reveals that RNNs are intimately related to sequences and lists.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A simple example of RNN 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Unfolding of a RNN in time of the computation involved in its forward computation  

 

The big deal about RNN is its memory capability for modeling sequential patterns. It was 

plagued with gradients that die after a few steps till Long Short Term Memory (LSTM), the most 

commonly used type of RNNs, was invented [28] . It was much better at capturing long-term 

dependencies than vanilla RNNs. LSTMs have a different way of computing the hidden state.  

An LSTM is an architecture that solves the vanishing gradient problem of plain vanilla RNN, so 

unless there are other considerations, there is no reason not to choose LSTM. The central idea behind 

the LSTM architecture is a memory cell which can maintain its state over time, and non-linear gating 

units which regulate the information flow into and out of the cell [29]. 

2.3. Restricted Boltzmann Machine 

Boltzmann machines have been proposed in 1985 [30]. Compared to the times when they were 

first introduced, RBMs can be applied to more interesting problems due to the increase in 

computational power and the development of new learning algorithms in many domains such as image 

classification, texture synthesis, medical image processing, and denoising  [31-36].  

An RBM is structually a shallow neural net with just two layers that are the visible layer (input 

layer) and the hidden layer [37] as shown in Fig. 6. It is a method that can automatically find patterns 
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in data by reconstructing the input. An RBM is considered restricted because of the fact that neurons 

in each layer have no connections between them and are connected to all other neurons in other layer. 

In RBM networks, connections between neurons are bidirectional and symmetric. This means that 

information flows in both directions during the training and during the usage of the network and those 

weights are the same in both directions. During forward pass, an RBM takes the inputs and translates 

them into a set of numbers that encode the inputs. In the backward pass, it takes this set of numbers 

and translates them back to form the reconstructed inputs. A well-trained RBM network is able to 

perform the backward translation with a high degree of accuracy. In both steps, the weights and biases 

have a crucial role. They allow the RBM to decipher the interrelationships among the input features 

and they also help RBM decide which input features are the most important when detecting patterns.  

Through several forward and backward passes, an RBM is trained to reconstruct the input data. 

There are three steps repeated over and over through the training process as below:   

 

 With a forward pass every input is combined with an individual weight and one overall 

bias, and the result is passed to the hidden layer which may or may not activate.  

 Each activation function is combined with an individual weight and an overall bias, and 

the result is passed to the visible layer for reconstruction in a backward pass. 

 In the last step, the construction is compared against the original input to determine the 

quality of the result. 

An interesting aspect of an RBM is that the data does not need to be labeled. This turns out to 

be very important for the real-world data sets like photos, videos, and sensor signals. These are all 

tending to be unlabeled. By reconstructing the input, the RBM must also decipher the building blocks 

and patterns that are inherent in the data. 

RBMs have received a lot of attention recently after being proposed as building blocks of multi-

layer learning architectures called Deep Belief Networks (DBNs) [31, 39].   

 

 

 

 

 

 

 

 

 

Fig. 6. The network graph of an RBM with n hidden and m visible units [38] 

 

DBNs are multi-layer belief networks. Each layer in DBN is an RBM and they are stacked each 

other to construct DBN.  DBNs were conceived by Hinton as an alternative to backpropagation. It 

showed that it is possible to learn a deep, densely connected, belief network one layer at a time. Their 

architecture demonstrated successful results on the MNIST dataset [40].  

The difference of a DBN from a multilayer perceptron comes from the way it is being trained. 

Training method of the DBN is the key factor that it can outperform its shallow counterparts. A DBN 
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can be viewed as a stack of RBMs, where the hidden layer of one RBM is the visible layer of the one 

above it. It can be illustrated as depicted in Fig. 7. A DBN is trained as follows:  

 RBM1 is trained to reconstruct its input as accurately as possible.  

 The hidden layer of RBM1 is treated as the visible layer for RBM2 and RBM2 is 

trained using the outputs from RBM1.  

 This process is repeated until output layer in the network is trained. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. An architecture of DBN 

 

An important point about a DBN is that each RBM layer learns the entire input. It works 

globally by fine tuning the entire input in succession as the model slowly improves. After initial 

training, the RBMs create a model that can detect inherent patterns in the data. However what those 

patterns are called is still unknown. To finish the training, it is required to introduce labels to the 

patterns and fine-tune the network with supervised learning. In order to do this, a small set of labeled 

samples is needed so that the features and patterns can be associated with a name. The weights and 

biases are changed slightly, resulting in a small change in the network’s perception of the patterns, and 

often a small increase in the total accuracy. 

All in all, an RBM can extract features and reconstruct features. However, the vanishing 

gradient problem is still waiting to be solved. A DBN only needs a small labeled data set, which is 

important for real-world applications. The training process can also be completed in a reasonable 

amount of time through the use of Graphical Processing Units (GPUs). Furthermore, the resulting 

network will be very accurate compared to a shallow network. Therefore a DBN can be regarded as a 

solution to the vanishing gradient problem. 

2.4. Autoencoders 

Autoencoders (also called Autoassociators) are a family of neural networks for which the input 

layer is the same as the output layer, as well as an unsupervised learning algorithm[41,42]. They work 

by compressing the input into a latent-space representation, and then reconstructing the output from 

this representation as illustrated in Fig. 8. In more terms, autoencoding is a data compression 

algorithm where the compression and decompression functions are data-specific, lossy and learn 

automatically from examples. They have been used as building blocks to build a deep multi-layer 

neural network [43] as well as reducing the dimensionality of the data [31]. An autoencoder takes a set 
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of typically unlabeled inputs, and after encoding them, tries to reconstruct them as accurately as 

possible. As a result of this, the network must decide which of the data features are the most 

important, essentially acting as a feature extraction engine. Autoencoders are typically very shallow, 

and are usually comprised of an input layer, an output layer and a hidden layer. Some of autoencoder 

networks have only two layers instead of three like the RBM. It can also be thought of as a 2-way 

translator like the RBM. Input signals are encoded along the path to the hidden layer, and these same 

signals are decoded along the path to the output layer. 

 
Fig. 8. Autoencoder architecture [44]  

 

Deep autoencoders are extremely useful tools for dimensionality reduction [31]. For example, 

these networks can transform an image containing 28x28 grid of pixels into a representation with only 

30 numbers. The image can then be reconstructed with the appropriate weights and bias. Additionally, 

some networks also add random noise at this stage in order to enhance the robustness of the 

discovered patterns. The reconstructed image would not be perfect. However the result would be a 

decent approximation depending on the strength of the network. The purpose of this compression is to 

reduce the input size on a set of data before feeding it to a deep classifier. Smaller inputs lead to large 

computational speedups, so this preprocessing step is worth the effort. 

Data denoising and dimensionality reduction for data visualization are considered as two main 

interesting practical applications of autoencoders. With appropriate dimensionality and sparsity 

constraints, autoencoders can learn data projections that are more interesting than Principal 

Component Analysis (PCA) or other basic techniques. 

3. Conclusions  

In this paper, we particularly consider deep models such as CNNs, RNNs, RBMs, and 

Autoencoders. Due to the prominence and more problem spaces of CNNs in recent years, we mainly 

focused on their structure and gave more details about their structures and architectures.  

Since deep learning inception, the last decade has been the blooming of Artificial Intelligence. 

Deep learning takes hand-crafted techniques out of the scene when there is enough data and good 

network architectures in order to learn abstract features. With recent improvements in GPU technology 

a lot of matrix computations can be done very efficiently in parallel and this helps training a deep 

network not consuming time as it used to be a decade ago. This is also one of the reasons why deep 

learning is growing to prominence. While still nascent, it is deep learning getting closer to the ultimate 

goal of Artificial Intelligence which is closed to a human intelligence level that helps solving harder 

and more significant problems that truly affect humanity.  
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