Dumlupınar Üniversitesi
Sayı 28, Ağustos 2012

Fen Bilimleri Enstitüsü Dergisi

ISSN - 1302 - 3055

QUADRATIC FORMULAS FOR GENERALIZED QUATERNIONS

Erhan ATA*, Yasemin KEMER, Ali ATASOY

Dumlupınar University, Faculty of Science and Arts, Department of Mathematics, KÜTAHYA E-mail: eata@dpu.edu.tr

ABSTRACT

In this paper, we aim to find basic methods for calculation of th eroots of a generalized quaternionic quadratic polynomial.

Keywords:*Generalizedquaternion, quadratic form.*

GENELLEŞTİRİLMİŞ KUATERNİYONLAR İÇİN KUADRATİK FORMÜLLER

ÖZET

Bu makalede, bir genelleştirilmiş kuaterniyonik kuadratik polinomun köklerini bulmak için temel yöntemleri bulmayı amaçlamaktayız.

1. INTRODUCTION

Let $\mathbb R$ be the set of real numbers and $K_{\alpha, \beta}$ be the set of generalized quaternions of the form

 $q = q_0 + q_1 i + q_2 j + q_3 k$ where set $q_0, q_1, q_2, q_3, \alpha, \beta \in \square$ and

$$
i2 = -\alpha, \quad j2 = -\beta, \quad k2 = -\alpha\beta
$$

\n
$$
ij = -ji = k
$$

\n
$$
jk = -kj = \beta i
$$

\n
$$
ki = -ik = \alpha j.
$$

For $q = q_0 + q_1 i + q_2 j + q_3 k$, the conjugate of q is $\overline{q} = q_0 - q_1 i - q_2 j - q_3 k$. Then norm, real part and imaginary part of *q* are defined as $N_q = qq = q_0^2 + \alpha q_1^2 + \beta q_2^2 + \alpha \beta q_3^2$, Re $q = (q + \overline{q})/2 = q_0$ and

 $\text{Im } q = q - \text{Re } q = q_1 i + q_2 j + q_3 k$, respectively. For $q, p \in K_{\alpha,\beta}$, we say that q is similar to p if there is a nonzero $a \in K_{\alpha,\beta}$ such that $q = a^{-1}pa$ or equivalently Re $q = \text{Re } p$ and $|q| = |p|$. For the basics of generalized quaternions, see [1].

In this paper, we are interested in explicit formulas for computing the roots of a quadratic polynomial of the form $x^2 + bx + c$

where
$$
b, c \in K_{\alpha,\beta}
$$
. Let $x = x_0 + x_1 i + x_2 j + x_3 k$, $b = b_0 + b_1 i + b_2 j + b_3 k$ and $c = c_0 + c_1 i + c_2 j + c_3 k$. Then $x^2 + bx + c = 0$

becomes the real system of nonlinear equations

$$
x_0^2 - \alpha x_1^2 - \beta x_2^2 - \alpha \beta x_3^2 + b_0 x_0 - \alpha b_1 x_1 - \beta b_2 x_2 - \alpha \beta b_3 x_3 + c_0 = 0
$$

$$
2x_0 x_1 + b_0 x_1 + b_1 x_0 + \beta b_2 x_3 - \beta b_3 x_2 + c_1 = 0
$$

$$
2x_0x_2 + b_0x_2 + b_2x_0 + \alpha b_1x_3 - \alpha b_3x_1 + c_2 = 0
$$

$$
2x_0x_3 + b_0x_3 + b_3x_0 + b_1x_2 - b_2x_1 + c_3 = 0.
$$

It is not obvious at all that this nonlinear system will have an explicitsolution. By solving a real linear system, Zhangand Mu proposed to compute some roots of a quadratic polynomial in [2]. But, they did not discuss how to find all the roots. In [3], Porter reduced solving a quadratic polynomial to a linear polynomial of the form $px+xp+r$ provided a root of the given quadratic polynomial is already known. However, he did not discuss how to find such root. In [4], given determined how many roots a quadratic polynomial can have, but he did not give the explicit formulas for computing the roots. In Section 2, we adopt the idea in [5] of Huang and So to compute the roots of a quadratic polynomial using explicit formulas in terms of itscoe cients. Then, we discuss some consequences and two applications of the generalized quaternionic quadratic formulas.

2. GENERALIZED QUATERNIONIC QUADRATIC FORMULAS

Firstly, we solve the monic standard quadratic equation

$$
x^2 + bx + c = 0
$$

where $b, c \in K_{\alpha,\beta}$. Now, we give two well-known lemmas about solutions of some special polynomials without their proofs.

Lemma2.1.Let *B*, *E*, and*D* be real numbers such that

i. $D \neq 0$ and

ii. $B \le 0$ implies $B^2 \le 4E$.

Then the cubic equation

$$
y^3 + 2By^2 + (B^2 - 4E)y - D^2 = 0
$$

Has exactly one positive solution *y*.

Lemma2.2. Let*B*, *E*, and*D* be real numbers such that

```
i. E>0 and
```
ii. $B < 0$ implies $B^2 < 4E$.

Then the real system

$$
N2 - (B + T2)N + E = 0
$$

$$
T3 + (B - 2N)T + D = 0
$$

has at most two solutions (T, N) satisfying $T \in \Box$ and $N > 0$ as follows.

- a. $T = 0, N = (B \pm \sqrt{B^2 4E})/2$ provided that $D = 0, B^2 \ge 4E$.
- b. $T = \pm \sqrt{2\sqrt{E} B}$, $N = \sqrt{E}$ provided that $D = 0$, $B^2 < 4E$.
- c. $T = \pm \sqrt{z}$, $N = (T^3 + BT + D)/2T$ provided that $D \neq 0$ and z is the unique positive root of the real polynomial $z^3 + 2Bz^2 + (B^2 - 4E)z - D^2$.

Theorem2.1. The solutions of the quadratic equation $x^2 + bx + c = 0$ can be obtained by formulas according to the following cases:

Case 1. If $b, c \in \square$ and $b^2 < 4c$, then

$$
x = \frac{1}{2} \left(-b + x_1 i + x_2 j + x_3 k \right)
$$

where $\alpha x_1^2 + \beta x_2^2 + \alpha \beta x_3^2 = \alpha (4c - b^2)$ and $x_1, x_2, x_3, \alpha, \beta \in \square$.

Case 2. If $b, c \in \square$ and $b^2 \ge 4c$, then

$$
x=\frac{-b\pm\sqrt{b^2-4c}}{2}.
$$

Case $3.Ifb \in \square$, $c \notin \square$ then

$$
x = -\frac{b}{2} \pm \frac{\rho}{2} \mp \frac{c_1}{\rho} i \mp \frac{c_2}{\rho} j \mp \frac{c_3}{\rho} k
$$

where $c = c_0 + c_1 i + c_2 j + c_3 k$ and $\rho = \sqrt{\left(b^2 - 4c_0 \pm \sqrt{\left(b^2 - 4c_0\right)^2 + 16\left(\alpha c_1^2 + \beta c_2^2 + \alpha \beta c_3^2\right)}\right)/2}.$

Case 4.If $b \notin \Box$ then

$$
x = \frac{-\text{Re}b}{2} - (b'+T)^{-1} (c'-N),
$$

where $b' = \text{Im } b, c' = c - \frac{\text{Re } b}{2} \left(b - \frac{\text{Re } b}{2} \right)$ and (T, N) is chosen as follows.

- 1. $T = 0, N = \left(B \pm \sqrt{B^2 4E}\right) / 2$ provided that $D = 0, B^2 \ge 4E$.
- 2. $T = \pm \sqrt{2\sqrt{E} B}$, $N = \sqrt{E}$ provided that $D = 0$, $B^2 < 4E$.
- 3. $T = \pm \sqrt{z}$, $N = (T^3 + BT + D)/2T$ provided that $D \neq 0$ and z is the unique positive root of the real polynomial $z^3 + 2Bz^2 + (B^2 - 4E)z - D^2$, where $B = b' \overline{b'} + \text{Re } c'$, $E = c' \overline{c'}$ and $D = 2 \text{Re } \overline{b'} c'$.

Proof:

Case 1. $b, c \in \mathbb{Z}$ and $b^2 < 4c$. Note that x_0 is a solution if and only if $q^{-1}x_0q$ is also a solution for $q \neq 0$, and there are at least two complex solutions

$$
\frac{-b\pm\sqrt{4c-b^2}i}{2}.
$$

Hence, thesolution set is

$$
\left\{q^{-1}\frac{-b\pm\sqrt{4c-b^2}i}{2}q:q\neq0\right\}=\left\{\frac{1}{2}(-b+x_1i+x_2j+x_3k):ax_1^{2}+\beta x_2^{2}+\alpha\beta x_3^{2}=\alpha(4c-b^2)\right\}.
$$

Case 2. $b, c \in \mathbb{Z}$ and $b^2 \ge 4c$. Note that x_0 is a solution if and onlyif $q^{-1}x_0q$ is also a solution for $q \ne 0$, and hence, there are at most two solutions, both are real

$$
x=\frac{-b\pm\sqrt{b^2-4c}}{2}.
$$

Case 3. $b \in \mathbb{Z}$, $c \notin \mathbb{Z}$. Let $x = x_0 + x_1 i + x_2 j + x_3 k$ and $c = c_0 + c_1 i + c_2 j + c_3 k$. Then $x^2 + bx + c = 0$ becomes the real system

$$
x_0^2 - \alpha x_1^2 - \beta x_2^2 - \alpha \beta x_3^2 + bx_0 + c_0 = 0
$$

$$
(2x_0 + b)x_1 = -c_1
$$

$$
(2x_0 + b)x_2 = -c_2
$$

$$
(2x_0 + b)x_3 = -c_3.
$$

Since $c \notin \mathbb{I}$, $2x_0 + b \neq 0$ andso x_1, x_2, x_3 can be expressed in terms of x_0 and be substituted into the first equation to obtain

 $(2x_0 + b)^4 + (4c_0 - b^2)(2x_0 + b)^2 - 4(\alpha c_1^2 + \beta c_2^2 + \alpha \beta c_3^2) = 0.$ It follows that $2x_0 + b = \pm \sqrt{b^2 - 4c_0 \pm \sqrt{(b^2 - 4c_0)^2 + 16(ac_1^2 + \beta c_2^2 + \alpha \beta c_3^2)}}$ / 2 and therefore $x_0 = (-b \pm \rho)/2$ where $\rho = \sqrt{\left(b^2 - 4c_0 \pm \sqrt{(b^2 - 4c_0)^2 + 16(\alpha c_1^2 + \beta c_2^2 + \alpha \beta c_3^2)}\right)}/2 \neq 0$ since

 $c \notin \square$. Finally

$$
x = x_0 - \frac{c_1}{2x_0 + b}i - \frac{c_2}{2x_0 + b}j - \frac{c_3}{2x_0 + b}k
$$

= $-\frac{b}{2} \pm \frac{\rho}{2} \mp \frac{c_1}{\rho}i \mp \frac{c_2}{\rho}j \mp \frac{c_3}{\rho}k$.

Case 4. $b \notin \Box$. Rewrite the equation $x^2 + bx + c = 0$ as

$$
y^2 + b'y + c' = 0,
$$

where $y = x + \frac{\text{Re } b}{2}$, $b' = \text{Im } b \notin \square$ and $c' = c - \frac{\text{Re } b}{2} \left(b - \frac{\text{Re } b}{2} \right)$.

Following the idea of [4], we observe that the solution of the quadratic equation $y^2 + b'y + c' = 0$ also satisfies

 $v^2 - Tv + N = 0$ where $N = \overline{y}y \ge 0$ and $T = y + \overline{y} \in \square$. Hence $(b'+T)(c'-N) = 0$, and so $y = (b'+T)^{-1} (c'-N)$

because $T \in \Box$ and $b' \notin \Box$ implies that $b' + T \neq 0$. To solve for *T* and *N*, we substitute *y* back into definitions $T = y + y$ and $N = yy$ and simplify to obtain the real system

$$
N^{2} - (B + T^{2})N + E = 0
$$

$$
T^{3} + (B - 2N)T + D = 0
$$

where $B = b' \overline{b'} + c' + \overline{c'} = b' \overline{b'} + \text{Re } c', E = c' \overline{c'}, D = \overline{b'} c' + \overline{c'} b' = 2 \text{Re } \overline{b'} c', D = 2 \text{Re } \overline{b'} c'$ are real numbers. Note that $E = c' \overline{c'} \geq 0$.

If*B*<0 then $c' + \overline{c'}$ < 0 and $B^2 - 4E = b'\overline{b'}B + b'\overline{b'}(c' + \overline{c'}) + (c' - \overline{c'})^2 \le 0$, that is

because $(c'-\overline{c'})^2 \le 0$. Then $B^2 - 4E < 0$, otherwise $B^2 - 4E = 0$ and therefore $b'\overline{b'B} = b'\overline{b'}(c'+\overline{c'}) = (c'-\overline{c'})^2 = 0$ i.e , $b' = 0 \in \mathbb{R}$, a contradiction. Hence by Lemma 2.2 such system can be solved explicitly as claimed. Consequently

$$
x = \frac{-\text{Re}\,b}{2} - (b' + T)^{-1} (c' - N).
$$

Corollary2.1.The quadratic equation $x^2 + bx + c = 0$ has infinitely many solutions if and only if $b, c \in \Box$ and $b^2 < 4c$.

Example2.1.For the quadratic equation $x^2 + 4 = 0$, i.e, $b = 0$ and $c = 4$. This is the Case 1 in Theorem 2.1. Then $x = (x_1 i + x_2 j + x_3 k)/2$ where $\alpha x_1^2 + \beta x_2^2 + \alpha \beta x_3^2 = 16\alpha$.

Corollary2.2.The quadratic equation $x^2 + bx + c = 0$ has a unique solution if and only if either

- *i. b* $c \in \mathbb{R}$ and $b^2 4c = 0$, or
- ii. $b \notin \Box$ and $D = 0 = B^2 4E$.

Example2.2. Consider the quadratic equation $x^2 - x + \frac{1}{4} = 0$, i.e, $b = -1$ and $c = 1/4$. This is the Case 2 in

Theorem 2.1. Then the unique solution is $x = 1/2$.

Example2.3.Consider the quadratic equation $x^2 + 2ix - \alpha = 0$, i.e, $b = 2i$ and $c = -\alpha$. This is the Case 4 in Theorem 2.1. Then $b' = 2i$ and $c' = -\alpha$. Moreover, $B = 2\alpha$, $E = \alpha^2$ and $D = 0$. It is Subcase 1 in Case 4. Hence $T = 0$, $N = \alpha$. Consequently $x = i$.

Corollary 2.3. The quadratic equation $x^2 + bx + c = 0$ has exactly two solutions if and only if either

- *i.* $b, c \in \mathbb{R}$ and $b^2 4c > 0$, or
- ii. $b \in \Box$ and $c \notin \Box$, or
- *iii.* $b \notin \Box$ and $D = 0, B^2 4E \neq 0$, or
- iv. $b \notin \Box$ and $D \neq 0$.

Example2.4. Consider the quadratic equation $x^2 + 3x - 4 = 0$, i.e, $b = 3$ and $c = -4$. This is the Case 2 in Theorem 2.1. Then the two solutions are $x = -4$ are $x = 1$.

Example2.5. Consider the quadratic equation $x^2 - x + i = 0$, i.e, $b = -1$ and $c = i$. This is the Case 3 in Theorem 2.1. Then $c_0 = c_2 = c_3 = 0, c_1 = 1$, and $\rho = \sqrt{\left(1 \pm \sqrt{1 + 16\alpha}\right)/2}$. Hence the two solutions are $x = (1 + \rho)/2 - i/\rho$

are
$$
x = (1 + \rho)/2 + i/\rho
$$
.

Example2.6.Consider the quadratic equation $x^2 + \alpha \beta x - \alpha^2 \beta^2 = 0$, i.e, $b = \alpha \beta k$ and $c = -\alpha^2 \beta^2$. This is the Case 4 in Theorem 2.1. Then $b' = \alpha \beta k$ and $c' = -\alpha^2 \beta^2$. Moreover, $B = -\alpha^2 \beta^2$, $E = \alpha^4 \beta^4$ and $D = 0$. It is Subcase 2 in Case 4. Hence $N = \alpha^2 \beta^2$, $T = \pm \alpha \beta \sqrt{3}$. Hence two solutions are $x = -2\alpha^2 \beta^2 (\alpha \beta k + \alpha \beta \sqrt{3})^{-1}$ and

$$
x = -2\alpha^2 \beta^2 \left(\alpha \beta k - \alpha \beta \sqrt{3} \right)^{-1}
$$

Theorem2.2. If the quadratic equation $x^2 + bx + c = 0$ has exactly two distinct solutions x_1 and x_2 , then $x_1 + b/2$ and $-(x_2 + b/2)$ are similar. Indeed, there exists nonzero $q \in K_{\alpha,\beta}$ such that $bq = qb$ and $q(x_1+b/2)q^{-1} = -(x_2+b/2).$

Proof: ByCorollary 3, wehaveseveralcasestodealwith.

- *i.* If $b, c \in \mathbb{D}$ and $b^2 > 4c$, by Case 2 in Theorem 1, it is clearthat $x_1 + b/2 = -(x_2 + b/2)$.
- ii. If $b \in \mathbb{Z}, c \notin \mathbb{Z}$ by Case 3 in Theorem 1, it is clearthat $x_1 + b/2 = -(x_2 + b/2)$.
- iii. a) If $b \notin \square$, $D = 0$ and $B^2 4E > 0$, then by Subcase 1 in Case 4 of Theorem 1, we have

$$
x_{1,2} = \frac{-\text{Re }b}{2} - (b')^{-1} \left(c' - \frac{B \pm \sqrt{B^2 - 4E}}{2} \right).
$$

Thus, it is easy to see that

$$
x_1 + \frac{b}{2} = -(b')^{-1} \left(\text{Im } c' - \frac{\sqrt{B^2 - 4E}}{2} \right) = \frac{b'}{b' \overline{b'}} \left(\text{Im } c' - \frac{\sqrt{B^2 - 4E}}{2} \right)
$$

and

$$
x_2 + \frac{b}{2} = -(b')^{-1} \left(\text{Im } c' + \frac{\sqrt{B^2 - 4E}}{2} \right) = \frac{b'}{b' \overline{b'}} \left(\text{Im } c' + \frac{\sqrt{B^2 - 4E}}{2} \right).
$$

Clearly, $\text{Re}(x_1 + b/2) = \text{Re}(-(x_2 + b/2)) = 0$ and $|x_1 + b/2|^2 = |-(x_2 + b/2)|^2$, thus $x_1 + b/2$ and $x_2 + b/2$ are also similar. Then it is easy to see that

$$
b'\left(x_1 + \frac{b}{2}\right)(b')^{-1} = -\left(x_2 + \frac{b}{2}\right).
$$

b) If
$$
b \notin \square
$$
, $D = 0$ and $B^2 - 4E < 0$, then by Subcase2 in Case 4 of Theorem 1, we have

$$
x_{1,2}=\frac{-\mathrm{Re}\,b}{2}-\left(b^{\,\prime}\pm\sqrt{2\sqrt{E}-B}\,\right)^{-1}\left(c^{\,\prime}-\sqrt{E}\,\right).
$$

Thus,

$$
x_{1} + \frac{b}{2} = \frac{b'}{2} - \frac{-b' + \sqrt{2\sqrt{E} - B}}{2(\sqrt{E} - \text{Rec}^{2})} \left(c' - \sqrt{E}\right)
$$

= $\frac{b'}{2} - \frac{-b' + \sqrt{2\sqrt{E} - B}}{2} \left(1 - \frac{\text{Im } c'}{\sqrt{E} - \text{Rec}^{2}}\right)$
= $\frac{\sqrt{2\sqrt{E} - B}}{2} - \frac{\left(-b' + \sqrt{2\sqrt{E} - B}\right)\text{Im } c'}{2(\sqrt{E} - \text{Rec}^{2})}$

Similarly, we have

$$
-\left(x_2+\frac{b}{2}\right)=\frac{\sqrt{2\sqrt{E}-B}}{2}+\frac{\left(-b-\sqrt{2\sqrt{E}-B}\right)\operatorname{Im} c'}{2\left(\sqrt{E}-\operatorname{Re} c'\right)}.
$$

Thus, it is clear that

$$
\operatorname{Re}\left(x_1 + \frac{b}{2}\right) = \operatorname{Re}\left(-\left(x_2 + \frac{b}{2}\right)\right) = \frac{\sqrt{2\sqrt{E} - B}}{2}
$$

and

$$
x_1 + \frac{b}{2}\bigg|^2 = \bigg| - \bigg(x_2 + \frac{b}{2}\bigg)\bigg|^2,
$$

Thus, $x_1 + b/2$ and $-(x_2 + b/2)$ are similar. Since

$$
\operatorname{Im}\left(x_1 + \frac{b}{2}\right) = -\left(b' + \sqrt{2\sqrt{E} - B}\right)^{-1} \operatorname{Im} c'
$$

and

Im
$$
\left(-\left(x_2 + \frac{b}{2}\right)\right) = (\text{Im } c')\left(b' + \sqrt{2\sqrt{E} - B}\right)^{-1}
$$
.

Note that $\text{Im}\left[-(x_2 + b/2) \right] = \text{Im}(x_2 + b/2)$, it is easy to prove that

$$
\left(b^{\prime}+\sqrt{2\sqrt{E}-B}\right)\operatorname{Im}\left(x_1+\frac{b}{2}\right)=\operatorname{Im}\left(-\left(x_2+\frac{b}{2}\right)\right)\left(b^{\prime}+\sqrt{2\sqrt{E}-B}\right).
$$

Thus, we have

$$
\left(b^{\prime}+\sqrt{2\sqrt{E}-B}\right)\left(x_1+\frac{b}{2}\right)\left(b^{\prime}+\sqrt{2\sqrt{E}-B}\right)^{-1}=-\left(x_2+\frac{b}{2}\right).
$$

iv. If $b \notin \Box$ and $D \neq 0$, from Theorem 2.1, Case 4, Subcase 3, we have

$$
x_1 = -\frac{\text{Re}b}{2} - (b' + T)^{-1} \left(c' - \frac{T^3 + BT + D}{2T} \right)
$$

and

$$
x_2 = -\frac{\text{Re}b}{2} - (b' + T)^{-1} \left(c' - \frac{T^3 + BT - D}{2T} \right)
$$

where $T = \sqrt{z}$ and z is the unique positive solution of the cubic equation $z^3 + 2Bz^2 + (B^2 - 4E)z - D^2 = 0$. By using $b' = \text{Im } b$ and $B = |b'|^2 + 2 \text{Re } c'$, we have

$$
x_{1} + \frac{b}{2} = \frac{T}{2} - \frac{T - b'}{T^{2} + |b'|^{2}} \left(\text{Im} \, c' - \frac{D}{2T} \right)
$$

And also the fact that $D = 2 \text{Re} \overline{b'}c'$, we have

$$
\operatorname{Re}\left\{ (T-b^{\prime}) \bigg(\operatorname{Im} c^{\prime} - \frac{D}{2T} \bigg) \right\} = 0.
$$

Hence, $\text{Re}(x_1 + b/2) = T/2$ and

$$
\operatorname{Im}\left(x_1+\frac{b}{2}\right)=-\frac{1}{T^2+\left|b'\right|^2}\left\{(T-b')\left(\operatorname{Im} c'-\frac{D}{2T}\right)\right\}.
$$

Similarly, we have

$$
x_2 + \frac{b}{2} = \frac{T}{2} - \frac{T - b'}{T^2 + |b'|^2} \left(\text{Im} \, c' + \frac{D}{2T} \right)
$$

 $Re(-(x, +b/2)) = T/2$ and

$$
\operatorname{Im}\left(-\left(x_2+\frac{b}{2}\right)\right)=-\frac{1}{T^2+\left|b\right|^2}\left\{(T-b^{\prime})\left(\operatorname{Im}c^{\prime}+\frac{D}{2T}\right)\right\}.
$$

3. CONCLUSION

The results obtained from quadratic formulas of generalized quaternions; in particular

- i. For $\alpha = \beta = 1$, are reduced to the results obtained from [5] for quadratic formulas of quaternions.
- ii. For $\alpha = -1$, $\beta = 1$, are reduced to the results obtained from quadratic formulas of split quaternions (see [4] and [6]).

REFERENCES

- [1] Olmez, O., "Generalized Quaternionsand Applications", Master Thesis,Ankara University, 2006
- [2] Zhang, S. Z., Mu, D. L., "Quadratic equations over noncommutative division rings", J. Math. Res. Exposition 14, 260-264, (1994)
- [3] R. Micheal Porter, " Quaternionic linear and quadratic equations", Journal of Natural Geometry 11, 101- 106, (1997)
- [4] Niven, I., "Equations in quaternions", American Math. Monthly 48, 654-661,(1941)
- [5] Huang, L.,So, W., "Quadratic formulas for quaternions", Applied Math.Letters, 15(2002) 533-540
- [6] Kula, L., "Split Quaternions and Geometric Applications", Ph. D. Thesis, Ankara University, 2003.

