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ABSTRACT 

In this paper, we construct codes which are an improvement on the previously known 
block-wise burst error correcting codes in terms of their error correcting capabilities. 
Along with different bursts in different sub-blocks, the given codes also correct 
overlapping bursts of a given length in two consecutive sub-blocks of a code word. 
Such codes are called mixed burst correcting (mbc) codes. 

Key words: mixed burst, fixed burst, overlapping burst, error pattern-syndromes, parity 
check matrix 

1. INTRODUCTION 

Burst is the most common error in many communication systems 
and block-wise burst error correcting codes are developed to deal 
with such errors. Correcting burst error in blocks has an 
additional benefit as one knows the pattern of errors in each sub-
block and when we consider error correction in such a system, we 
correct errors which occur in the same sub-block. 

Most of the studies in burst error correcting codes are with 
respect to the usual definition of burst according to which 'A 
burst of length b is a vector whose all the non zero components 
are confined to some b consecutive positions, the first and last of 
which is non zero'. 

There is another definition of burst due to Chein and Tang 
[2] with a modification due to Dass [3], known as CTD-burst, 
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according to which "A CTD-burst is a vector whose all the non 
zero components are confined to some b -consecutive positions, 
the first of which is non zero". 

According to this definition, (10000000) is a burst of length 
8 whereas (0001000) will be a burst of length at most 4. This 
definition has been found very useful in error analysis 
experiments on telephone lines [1] and in channels where error 
normally do not occur near the end of a vector particularly when 
the burst length is large. Such block wise burst error correcting 
codes were first introduced by Dass and Tyagi [4]. Recently, 
Tyagi and Sethi [6], have generalized this idea to three sub-
blocks of length n, n2 and n3, n1 + n2 + n3 = n and named them as 

, n
2 b , n

3 b ) linear codes, some of which turn out to be byte 
oriented [5]. 

Definition. An ( n ^ , n ^ ,n3^)code is an(n = « + n2 + n3,k) 
code that correct all bursts of length b (fixed) in the first sub-
block of length n , all bursts of length b (fixed) in the second 
sub-block of length n2 and all bursts of length b3 (fixed) in the 
third sub-block of length n3. 

In this communication, we modify (n^, n^ , n3h^) codes as 
mixed burst correcting codes, (mbc-codes) in such a way that 
along with fixed bursts of length h , h and h3 , the modified 
codes also correct over all burst of length b (fixed) in two 
consecutive sub-blocks, thereby improving upon their error 
correcting capabilities. The paper is divided into two sections. In 
section 1, we present necessary condition where as in section 2 
we give sufficient condition. 

1.1 Necessary Condition 
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Theorem 1. The number of parity check digits required for an 
(n = n1 + n2 + n3, k) linear code that correct all fixed bursts of 

length b , b and b3 in first n , next n and last n -components 
along with the overlapping burst of length b, b > bx + b2 and 
b > b2 + b3 ( b = b + b , b = b2 + b3 only when « = b, i = 1,2 ), in 
any two consecutive sub-blocks, is at least 

qn-k > 1 + (q - i)[(n - b + 1)qb1 1 + ( « - b +1)qb21 + ( « - b + 1)qb31J 

+ 1 (q -1)2 qb1+b2-2 (b - b1 - b2 + 1)(b - b1 - b2 + 2) 

+ 1 (q -1)2 qb2+b-2 (b - b2 - b3 + 1)(b - b2 - b3 + 2) . (1) 

Proof. The theorem is proved by enumerating 
(i) all the error patterns of length b (fixed) in first n 

components; 
(ii) all the error patterns of length b (fixed) in next n -

components; 
(iii) all the error patterns of length b3 (fixed) in the last n3 -

components; 
(iv) all bursts of length b (fixed) in the first two sub-blocks 

of length n1 and n2 ; and 
(v) all bursts of length b (fixed) in the last two 
(vi) sub-blocks of length n2 and n3. 

The number of error pattern in (i) to (iii) comes out to be 

( q - 1 ) [ ( n - b + 1 ) q ^ - 1 + ( « - b 2 + 1 ) q ^ 1 + ( « 3 - b 3 + 1 ) q b - 1 ] ( 2 ) 

as shown in Tyagi and Sethi [6]. Therefore, we need to calculate 
number of error patterns in (iv) and (v). 
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In (iv), since burst error b (fixed) is of the type that part of 
it that lies in the first n -digits is a burst of length h (fixed) and 
remaining part in next n2 digits is a burst of length h2 (fixed), 
therefore, the starting positions of such a burst in the first n1 

digits can be and (n - (b - h2) +1) the last starting position can 
be (n - h +1) th component. To enumerate the number of such 
vectors assume that the burst starts from the jth component. 
Obviously 

n - (b - b2) < j < nx - h +1 ( 3 ) 

This burst may continue up to (b + j -1) th component where 

h - n + j-1 < n (4) 

The number of bursts of length b1 (fixed) starting from the jth 

component is 

(q -1)^h1 -1 (5) 
where as the number of bursts of length h2 (fixed) in a vector of 
length (h - n + j -1) is 

( h - h 2 + n l + j ) ( g - 1 ) g h 2 - 1 ( 6 ) 

So, the total number of bursts under category (iv) starting from 
the jth component is 

(h - h2 - n + jXq -1)2 q h +h2 2 ( 7 ) 

Thus, the total number of bursts under category (iv) for all 

possible values of j is. 
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(q-1) 2
 qb+b22 ^ (b - b2 - j ) (8) 

j = n -b+b2 +1 

= 1 (q - 1 ) 2 qh1+h2 - 2 (h - h - h2+1)(h - h - h2+2). 

Similarly, the total number of bursts under category (v) is 

(9) 

= 1 (q -1)2 qh2+h3 - 2 (h - h2 - h3 + 1)(h - h2 - h3 + 2) . ( 1 0 ) 

Since all these error vectors in (2), (9) and (10) should have 
different syndromes for error correction, therefore, the total 
number of cosets qn-k should be at least as large as the number of 
error patterns (including the pattern of all zeros) and therefore we 
must have qn-k > 1 + (2) + (9) + (10) i.e. 

qn-k > 1 + (q - - bi + l)qb1-1 + (n2 - b2 + 1)qb2 1 + (n3 - b3 + l)qb3 1J 

+ 1 (q -1)2 qb1+b2 2 (b - b - b2 + 1)(b - bx - b2 + 2) 

+ 1 (q -1)2 qb2+b3 2 (b - b2 - b3 + 1)(b - b2 - b3 + 2). 

Incidentally, it can be shown that the result applies to non-linear 
codes also. 

Discussion. If there is no overlapping burst of length b, the 
condition reduces to upper bound given by Tyagi and Sethi [6] 
i.e. 

q n - k > 1 + ( q - 1 ) [ ( n - b + 1 ) q b l 1 + ( n ^ - b 2 + 1 ) q ¿ 2 - 1 + ( n , - b 3 + 1 ) q * 3 - 1 ] . 

1. 2 Sufficient Condition 
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Theorem 2. Given positive integers b, b2 and b3; there will 
always exists an («^, n2^ , n3^) - (n, k) linear code that correct all 
fixed bursts of length b (fixed), b (fixed) and b (fixed) in the 
first n1, next n2 and last n3 digits and all the overlapping bursts 
of length b (fixed) (b > b + b2 and 

b > b2 + b3, b = b + b2 = b2 + b3 

only when n = b, i = 1 to 2 ) in any two consecutive sub-blocks, 
satisfying the inequality. 

qn-k
 > q ' 3 ^ [ 1 + ( n - 2 b + 1 ) ( q - 1 ) q ' 3 + 

qbi -1 + [ i + « - 2b + i)(q - i q "1 + ( « - b + i)(q - i)qb 

+ 1 (q -1)2 qb2 -2 (b - b - b + 1)(b - b - b + 2)] + 

+ q b i - 1 [ i + & - ( n - n - 2 b + i ) ( q - i ) q b l - 1 + ( n - b + i ) ( q - i ) q b 2 - 1 + 

(« - ¿3 + i)(q - i)qb3-1 + i(q -1)2qb2 -2 (b - ¿2 - K +1) -

(b - b2 - b3 + 2) + i ( q -1)2 qb -2 (b - b - b2 +1) 
(11) 

Proof. The existence of such a code is shown here by 
constructing an appropriate (n - k) x n parity check matrix H for 
the desired code. If H1' denotes the number of columns of the 
parity check matrix H' in the first n1 -digits, H 2 ' denotes the 
columns of the parity check matrix H' in the next n -digits, and 
H 3 ' denotes the columns of the parity check matrix H' in the last 
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n3 -digits, then the matrix H' may be expressed as 
H ' = [H3 'H2 'H1 ' ] . Then the required matrix H may be obtained 
from H' by reversing the order of its columns. i.e. 
H ' = [ Hj ' H 2 ' H3 ']. 

Select any non zero (n-k) -tuple as the first column of H' 
(in H3 '). Subsequent columns are added to H' such that after 

having selected n3 -1 columns hx, h2, , h ! a column h is 
added provided that 

h ^(u + u ,h ,) + (v.h+... + v^, ,) n? ^ «3-O3+I «3-O3+I n^— 1 n^-1/ v 1 7 7+c^-l 7+c^-l / 

where either all vi are not zero or if vs is the last non zero 
coefficient then h3 < s < n3 - h3. 

This construction assures that the code which is the null 
space of the finally constructed matrix H will be capable of 
correcting all bursts of length h3 (fixed) in the third sub-block of 

length n3. To choose the vi is equivalent to enumerating the 
number of bursts of length h3 (fixed) in an (n3 - h3) tuple. 

( n - 2 h + 1 ) ( q - 1 ) q h 3 . 

Thus, the total number of columns to which h cannot be equal is 

q 3 + ( n - 2 h + 1 ) ( q - 1 ) q ' 3 " ' ] . ( 1 4 ) 

Now, we shall add (n3 +1 )t\(n3 + 2 f . . . columns of H' (in H2'). 
We wish to assure that the code so constructed is capable of 
correcting all bursts of length h2 (fixed) in the second sub-block 
of length n2, along with an overlap burst of length 
h(h > h + h2) in (n + n2) components. 

81 



Mixed Burst Error Correcting Codes 

As the first requirement, the general tth column (t > n ) to 
be added should not be a linear combination of the immediate 
proceeding b2 - 1 colmns ht+1 ht-x together with any b2 

c o n s e c u t i v e a m o n g s t h n 3 + i , h n 3 + 2 , , ht-b2
 i-e 

h, *(ut-bl+Kbl+1 + • • •+",-A-i)+(''A + • • •+K+b2-A+b2-i)• (l5) 

Where hr amongst h +ih 2,...,ht_b and either all the vr are zero 

or if vt is the last non-zero coefficient, then b2 < t < t - n 3 _b2. 

The ut in (15) can obviously be selected in g62 1 ways. Using the 

U in (15) is equivalent to choosing the number of bursts of 

length 6(fixed) in a vector of length t - n _ 6 . Their number is 

(t - n _ 262 + 1 ) ( q - 1 ) q b 2 -1 (16) 

Second requirement is that tth column should also not be a 
linear combination of the immediately proceeding b2 - 1 columns 

/?, ,h ,, • • •, ht_x (t - b2 +1 > «3 +1) together with any b3 consecutive 

columns from amongst ^ .i.e. 

where all the vt are not zero, and if vs is the last non-zero 

coefficient, then b3 < s. The number of ways in which the 

coefficient. ut in (17) can be selected in qb 1 ways, choosing the 

coefficient v in (17) is equivalent to enumerating the bursts of 

length b3 (fixed) in a vector of length n3. Their number is 

( n - 6+1) (q -1)qb3-1. (18) 
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Third requirement is that the tth column should also not be a 
linear combination of the immediately proceeding b2 -1 columns 

ht-b2+A-b2+2 together with any b3+b2 consecutive columns 
amongst i.e 

A *(ut-b2+A-b2+i +••• + «t-A-i) + O A + v,+A+i + • • • + vjh
j+b-1) 

where j = n3 -{b-b2) + \,...,n3-b3 +l,and all Vj's are not zero 
and if vs is the last non zero coefficient, then b1 + b2 < s. The 
number of ways in which the coefficient ut in (19) can be 
selected is qb2+b3-2. Choosing the coefficient v. in (19) is 
equivalent to enumerating the burst of length b (fix) in a vector of 
length n + n , b - b 2 < n , Their number is 

(q-1)2qb2+b3-2 ( j + (b -b2) -«3) i.e. 

j=n,-(b-b2)+1 

1 (q - 1 ) 2 qb2+b3-2 (b - (b2 + b3) + 1)(b - ( b + b3) + 2). 

So, the total number of combination to which ht cannot be equal 

is (16) + (18) + (20) i.e. 

qb2 1 1 + ( t - n 3 - 2 b 2 + l)(q-l)qb2 1 +{n3 - b 3 + l)(q-l)qb3 1 ] 

+ 1 (q -1)2 qb2+b3-2 (b - b2 - b3 + 1)(b - b2 - b3 + 2) . 

Taking t = n3 + n2 as the last column of the second sub-block, the 
equation (21) becomes 

qb2-1 [1 + («2 - 2b2 + 1)(q - 1)qb2-1 +(n3 - b3 + 1)(q - 1)qb3-1 ] 

+ 1 (q-1)2 qb2+b3-2 (b - b2 - b3 + 1)(b - b2 - b3 + 2) . 

The first requirement assures that in the code which is the null 
space of the finalconstructed matrix H. The syndromes of any 
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two bursts each of which is of length b (fixed) are not equal, the 
second requirement assures that the syndrome of two bursts, one 
of which is the burst of length b (fixed) in the sub-block of 
length n2 and the other bursts of length b3 (fixed) in the sub-
block of length n3 are different and the third requirement assures 
that the syndromes of two bursts, one of which is a burst of length 
b2 in the sub-block of length n2 and the other burst of length b 
fixed in two consecutive sub-blocks of length n2 and n3, are 
different. 

Now we shall start adding («, +n2 +iyA,(/73 +n2 + 2)th,..., 
columns of H ' (in H ' ), we wish to assure that the code so 
constructed is capable of correcting all bursts of length b1 (fixed) 
in the first sub-block of length n . For this, we lay down the 
following requirements. 

As the first requirement, the general kth column (k > n3 + n2) 
to be added should not be a linear combination of the 
immediately preceding \ - 1 columns 

K-bl+n—A-iAk-bi +1 >«3 +«2 +1) 

together with any b consecutive columns from amongst 

K * O^+A-^+i+• • • + u k - A - i ) + O A + • • •+vr 

where hr are amongst h ^ ^ h ^ ^ , . . . , ^ , and either all the 

vr are zero or if vk is the last non-zero coefficient, then 

b < k < k - ( n + n2) - b . 
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The % in (23) can obviously be selected in qb -1 ways. Choosing 
vr in (23) is equivalent to choosing the number of bursts of 
length b (fixed) in a vector of length k - ( n + n2 ) - bx. Their 
number is 

i + ( k - n - n - 2 b + i ) ( q - 1 ) q b 1 - 1 . 

The second requirement is that the kth column should also not 
be a linear combination of the immediately preceding 
hk_bi hk , (k - b, +1 > n3 + n2 + 1 ) together with any b2 

consecutive columns from amongst h i , . . . ,h i.e. 

hk * (Uk-b1 + 1 h k - b 1 +1 +...+A-i )+(y.h+...+vi+b _xhi+b ) 

where all the vt are not zero and if vs is the last non zero 

coefficient, then b2 < s. The number of ways in which the 

coefficient % in (25) can be selected is qb - 1 . Choosing the 

coefficient v in (25) is equivalent to enumerating the bursts of 

length b2 (fixed) in a vector of length n This number is 

( n - b 2 + 1 ) ( q - 1 ) q b 2 - 1 . 

The third requirement is that the k th column should also not be 
a linear combination of the immediately preceding b1 - 1 
columns hk b h1: | ( k - b l + l > n 3 + n 2 + l ) together with any 

b3 consecutive columns from amongst h1, h2, , h i.e. 

hk * (Uk-b1 + 1 h k -b 1+1 +.. . + Kt_A-i) + (V'A +.. . + v ^ h ^ ) 

where all the v 's are not zero, and if v is the last non zero 

coefficient, then b3 < s. The number of ways in which the 

coefficient uk in (27). Can be selected is qb3-1. Choosing the 
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coefficient v in (27) is equivalent to enumerating the bursts of 
length b3 (fixed) in a vector of length n3. Their number is 

( n - b 3 + 1 ) ( q - 1 ) q b - 1 . 

The fourth requirement is the kth column should also not be a 
linear combination of the immediately preceding b1 - 1 columns 
hk_bi hk , (k + b, - 1 > n3 + n2 + 1 ) together with any 

b2 + b3 consecutive columns from amongst A,,/72,.. ./'/„ „ . i.e 

h k * ( U k - b 1 + 1 h k -b1+1 +... + ukJik_x ) + (Ujhj +... + Vj_b+lhj_b+l ) 

where j = n3-(b-b2) + l, n3-(b-b2) + 2,...,n3-b3 +1. Also all 

vi are not zero and if vs is the last non zero coefficient, then 

b3 + b2 < s, the number of ways in which the coefficient % in 

(29) can be selected is qbs +b2-2. Choosing the burst of length 

b3 + b2 (fixed) in a vector of length n3 + n2. Their number is 

(q-1)2qb2+b3-2 ^ ( j + (b - bz) - "3) 

j = n - (b-bz )+1 

i.e 

. 1 ( q - 1 ) 2 q b 2 + b - 2 ( b - ( b z + b 3 ) + 1 ) ( b - b + b 3 ) + 2 ) ( 3 0 ) 

The fifth requirement is that the kth column should also not be 
a linear combination of the immediately preceding b1 - 1 columns 

i, • • •, b/ , (k - b, + 1 > n3 + n2 + 1 ) together with any bx + b2 

consecutive columns from amongst 
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i.e.hk * (uk_w+i hk_h+1 +... + Kt_A-i) + (v Jr + . . . + vj+b_,hj+b_(31) 

where j = n2-(b-bx) + l, n2 -(b-bl) + 2,...,n2-b2 +1.where all 
v. 's are non zero and if v is the last non zero coefficient then J s 

b + b2 < s. The number of ways in which the coefficient % in 

(31) can be selected is qbl+b2-2. Choosing the coefficient vJ in 

(31) is equivalent to enumerating the bursts of length b + b2 fixed 

in a vector nx + n2. Their number is 

(q - 1)2qb1+b2-2 (J + (b - b2) - n2) 
J=«2-(b-b1 )+1 

i.e. 

1 ( q - 1 ) 2 q b 1 + b 2 - 2 ( b - ( b 1 + b 2 ) + 1 ) ( b - ( b , + b 2 ) + 2 ) . ( 3 2 ) 

So, the total number of combination to which h can not to equal 
is (24) + (26) + (28) + (30) + (32) i.e. 

qb1 - 1 [1 + (k - n - n - 2b + 1)(q - 1)qb - 1 + ( n - b + 1)(q - 1)q'2 - 1 + 

(«3 -b3 + 1)(q- 1)qb3-1 ]+ (33) 

+ 1 (q-1)2 qb1+b2-2 (b - b1 - b2+1)(b - b - b 2 +2) 

+ 1 (q -1)2qb2+b3-2 (b - b2 - b3 + 1)(b - b2 - b3 + 2) . 

The first requirement assures that in the code, which is the null 
space of the final constructed matrix H, the syndromes of any two 
bursts, each of which is of length bx (fixed) are not equal, the 
second requirement assures that the syndromes of two bursts, one 
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of which is a bursts of length b (fixed) in the sub-block of sub 
length n1 and the other is a burst of length b2 in the -block of 
length n2 , are different, the third requirement assures that the 
syndromes of two bursts, one of which is a burst of length b 
(fixed) in the sub-block of length n1, and other is a burst of 
length b3 (fixed) in the sub-block of length b3 (fixed) in the sub-
block of length n , are different, the fourth requirement assures 
that the two syndromes of two bursts, one of which is a burst of 
length b1 (fixed) in the sub-block of length n1 and the other is a 
burst of length b (fixed) in two consecutive sub-blocks of length 
n2 and n3 are different, and the fifth requirement assures that the 
syndromes of two bursts, one of which is a burst of length 
b (fixed) in the sub-block of length nx and the other is the burst 

of length b in two consecutive sub-blocks of length n and n , 
are different. At worst of all these linear combination considered 
in (14), (22) and (33) may be distinct, thus while choosing the 
nth column, we must have 

qn-k > (14) (34) 

while choosing the (n3 + n2)th column, we must have 

qn-k > (22) (35) 
where as while choosing the nth column (n3 + n2 + n1) we must 

have 

qn-k >(33). (36) 

However, the requisite matrix H' can be completed if 

qn-k > max{(34), (35), (36)}, 
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which is expression (11). The required parity check matrix 

i / = [ i / 1 ' i / 2
, i / 3

, ] = [^/ij,...,/iII] is then obtained from 

H' = [H3' H2' Hx'] = [hnhn_xhn_2,..., h2l\ ] by reversing its columns 

altogether i.e. h. becomes h .+1. 

2. DISCUSSION 

We present here different possible cases based on the length of 
the burst and size of the sub-blocks viz. 

(1) b1 = b2 = b3; n1 = n2 = n3; i.e. the length of bursts as well as 
sub-blocks is same. 

(2) b1 = b2 = b3; n1 = n2 ^ n3; i.e. the length of bursts is equal but 
the size of two sub-blocks is different. 

(3) b1 = b2 = b3; n1 ^ n2 ^ n3; i.e. the length of bursts is equal but 
the sub-blocks are of different size. 

(4) b1 ^b2 = b3, n = n2 = n3; i.e. the length of bursts is same 
only in two sub-blocks whereas size of sub-blocks is same. 

(5) b1 ^ b2 = b3, n ^ n2 = n3; i.e. the length of two burst as well 
as sub-blocks is same. 

(6) b1 ^ b2 = b3, n ^ n2 ^ n3; the length of two bursts are same 
but the size of all sub-blocks are different. 

All the cases discussed above have been illustrated by the 
following examples 1 to 6 respectively. 

Example 1. For n = n2 = n3 = N, b = b = b = bthe given 
bound in (1) can be expressed as 

23W-r > 1 + qb'-13(tf - b' +1) + (q -1)2q2(b'-1) (b - 2b' + 1)(b - 2b' + 2) 
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(37) 

For N = 2, b' = 1, b = 3, we have obtained (6, 1) - code that can 
correct all single errors in all the sub-blocks and a burst of length 
3 simultaneously in two consecutive sub-blocks. For this the 
following matrix may be considered as parity check matrix. It can 
be verified in the following table that the code is a mbc- code. 

H = 

1 0 0 0 0 1 
0 1 0 0 0 1 
0 0 1 0 0 1 
0 0 0 1 0 1 
0 0 0 0 1 1 

Table 1 

Error 
Pattern Syndrome 
10 00 00 1 0 0 0 0 
01 00 00 0 1 0 0 0 
00 10 00 0 0 1 0 0 
00 01 00 0 0 0 1 0 
00 00 10 0 0 0 1 0 
00 00 01 1 1 1 1 1 
10 10 00 1 0 1 0 0 
01 10 00 0 1 1 0 0 
01 01 00 0 1 0 1 0 
00 10 10 0 0 1 0 1 
00 01 10 0 0 0 1 1 
00 01 01 1 1 1 0 1 
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Case 2. If bx = b2 = b3 = bN = n = n
2 ^ n, then the bound in (1) 

can be expressed as 

2" k > 1 + 2 ( N - b '+ 1)(q - 1 )q b ' - 1
 + (n3 - b3 + 1)(q - 1 )q b - 1 

+ (q -1)2 q2(b'-1) (b - 2b'+ 1)(b - 2b'+ 2) 
For N = 3, n = 4, b' = 2, b = 5 we have the following parity 

check matrix for a (10, 4) linear code 

H = 

0 1 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 1 0 0 
0 1 1 0 0 0 0 0 1 0 
1 0 1 0 0 1 0 0 0 1 
0 1 0 1 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 

It can be verified from the following error-pattern syndrome table 

that the code is a mbc-code 

Table 2 

Error Pattern Syndrome 

100 000 0000 000100 
110 000 0000 101110 
010 000 0000 101010 
011 000 0000 110111 
000 100 0000 000010 
000 110 0000 000011 
000 010 0000 000001 
000 011 0000 000101 
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000 000 1000 100000 
000 000 1100 110000 
000 000 0100 010000 
000 000 0110 011000 
000 000 0010 001000 
000 000 0011 001100 
100 100 0000 000110 
100 110 0000 000111 
110 100 0000 101100 
110 110 0000 101101 
010 100 0000 101000 
010 110 0000 101001 
011 100 0000 110101 
011 110 0000 110100 
010 010 0000 101011 
010 011 0000 101111 
011 010 0000 110110 
011 011 0000 110010 

Error Pattern Synd rome 
000 100 1000 100010 
000 100 1100 110010 
000 110 1000 100011 
000 110 1100 110011 
000 010 1000 100001 
000 010 1100 110001 
000 011 1000 100101 
000 011 1100 110101 
000 010 0100 010001 
000 010 0110 011001 
000 011 0100 010101 
000 011 0110 011101 
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Case 3. For n ^ n2 ^ n3, b = b = b = b', the inequality (1) can 
be expressed as 

T - k > ! + _ , + 3) + ( q _ ^ qA
b _j) _ ^ , + ^ _ 2b' + 2) 

(39) 

In this case,for N = 9, b = b2 = b3 = 1, b = 3, we have obtained a 

(9, 4) code that may correct all single errors in all the three sub-

blocks together with the bursts of length 3(fix) simultaneously in 

the vector of length nx + n2 and n2 + n3. 

Consider the following parity check matrix 

H 3 = 

1 1 0 0 0 1 0 0 0 
0 1 0 1 0 0 0 0 1 
1 1 1 0 0 0 0 1 0 
1 1 0 0 0 0 1 0 0 
1 1 1 1 1 0 0 0 0 

It can be verified that the code so constructed is a (9, 4) mbc-
code. 

Case 4. If b1 ̂  b2 = b3 = b', n1= n2 = n3 = N, then equality (1) can 
be expressed as 

qn-k > 1 + (q - 1)qb-1 (N - b +1) + 2(q - 1)(N - b'+ 1)qb-1 

+ 1 (q -1)2 qb+b-2 (b - b - b'+ 1)(b - b - b'+ 2) 

+ 1 (q -1)2 q 2(b'-1) (b - 2b'+ 1)(b - 2b'+ 2) 
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For N = 3, b = 1, b' = 2, b = 4, the parity check matrix for the code 
(9, 4) may be given as 

H 4 = 

0 11 1 0 0 1 0 0 
0 1 0 1 0 0 0 1 0 
1 0 1 1 0 0 0 0 1 
1 1 0 1 0 1 0 0 0 
1 0 1 1 1 0 0 0 0 

It can be verified that the code so constructed is a (9, 4) mbc-
code. 

Case 5. If b = b = b2 ^ b3, ^ = n = n2 ^ n3, then the bound given 
in (1) can be expressed as 

2n-k > 1 + 2(0 -1)(X - b '+ 1)qb -1 + I , 1 \ „ b '-1 

^ (q -1)2 q2(b'-1) (b - 2b ' + 1)(b - 2b ' + 2) + 

1 (q -1)2 qb3+b'-2 (b - b - b ' + 1)(b - b3 - b ' + 2) . (41) 

For N = 2, n3 = 3, b' = 1, b3 = 2, b = 3, it can be verified from 
the following parity check matrix 

H = 

11 0 0 1 0 0 
0 1 0 0 0 1 0 
1 1 0 0 0 0 1 
0 1 0 1 0 0 0 
1 1 1 0 0 0 0 
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that the code so constructed is a (7,2) mbc-code. 

Case 6. If b' = b = b2 ^ b3, n ^ n3 ^ n3, then the inequality (1) 
can be expressed as. 

2n-k > 1 + (q _ 1)(n _ b' + 1)qb -1 + (q _ 1)(n2 _ b' + 1)qb_1 + I , 1 \ „ b '_1 

(q _1)(n3 _ b3 + 1)qb3 1 + (42) 

1 
+ 1 (q _ 1)2 q2(b' _j) (b _ 2b' + 1)(b _ 2b' + 2) + 

1 (q _ 1)2 qb+b'_2 (b _ b _ b' + 1)(b _ b3 _ b' + 2) . 

For n = 2, n2 = 3, n = 4, b' = 1, b3 = 2, b = 3, the (9, 4) code 
obtained from the following parity check matrix is a mbc-code. 

H 6 = 

0 1 1 1 0 1 0 0 0 
0 1 0 1 0 0 1 0 0 
0 1 1 1 0 0 0 1 0 
1 1 0 0 0 0 0 0 1 
0 0 1 1 1 0 0 0 0 

3. OPEN PROBLEMS AND REMARKS 

In this paper, we have obtained lower and upper bounds on the 

number of parity -check digits for (n^, n^ , n3^ ) mbc-linear 
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codes, which corrects burst in three different sub-blocks of a 

codeword. We have shown the existence of linear codes for 

different values of the parameters 

n , n2, n3, k, b, b2, b3, b > \ + b2 = b2
 + b 

by constructing appropriate parity check matrices following the 

synthesis procedure outlined in the proof of Theorem 1. 

However, the problem needs further investigation to 

1) find the possibilities of the existence of mbc- linear codes 

in non-binary case; 

2) find the possibilities of the existence of mbc-optimal 

codes in binary and non-binary cases. 
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