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Abstract

We show that any quantum family of quantum maps from a noncommutative space to a
compact quantum metric space has a canonical quantum pseudo-metric structure. Here by
a ‘compact quantum metric space’ we mean a unital C*-algebra together with a Lipschitz
seminorm, in the sense of Rieffel, which induces the weak* topology on the state space of
the C*-algebra. Our main result generalizes a classical result to noncommutative world.

1. Introduction

One of the basic ideas of Noncommutative Geometry is that any unital C*-algebra A can be considered as the algebra of continuous functions
on a (symbolic) compact quantum (noncommutative) space QA. From this point of view, any unital *-homomorphism Φ : B→ A between
unital C*-algebras can be interpreted as a quantum map QΦ from QA into QB. There are many notions in Topology and Geometry that can
be translate into NC language. The notion of quantum family of (quantum) maps, defined by Woronowicz [16] and Sołtan [15] (see also
[10, 11, 12]), conclude from the following fact: “Every map f from X to the set of all maps from Y to Z (or in other word, any family of
maps from Y to Z parameterized by f with parameters x in X) can be considered as a map f̃ : X×Y → Z defined by f̃ (x,y) = f (x)(y).” A
translation of this to noncommutative language is as follows.

Definition 1.1. ([10, 11, 12, 15, 16] Let B,C be unital C*-algebras. A quantum family of morphisms from B to C (or, a quantum family of
maps from QC to QB) is a pair (A,Φ) consisting of a unital C*-algebra A and a unital *-homomorphism Φ : B→C⊗A, where ⊗ denotes
the spatial tensor product of C*-algebras.

Another concept that can be translate from Geometry into NC Geometry, is distance or metric. Marc Rieffel, by using the notion of order
unite spaces, has developed the notion of quantum metric space in a series of papers [5, 6, 7, 8, 9]. For two other different notions of quantum
metric see [3, 13, 14]. Here, we deals with special examples of Rieffel’s quantum metric spaces, stated in the C*-algebraic formalism. The
aim of this note is to show that any quantum family of maps from a quantum space to a compact quantum metric space has a canonical
quantum pseudo-metric structure. We are motivated by the following trivial fact: Let (Z,d) be a metric space and f : X×Y → Z be a family
of maps from Y to Z, then X has a pseudo-metric ρ defined by

ρ(x,x′) = sup
y∈Y

d( f (x,y), f (x′,y)).

In Section 2 we introduce the notion of compact quantum pseudo-metric space. In Section 3 we define a natural compact quantum
pseudo-metric space structure on any quantum family of maps from a quantum space to a compact quantum metric space. In Section 4 we
examine our definition in the classical case.

2. Compact quantum pseudo-metric spaces

By a pseudo-metric d on a set X we mean a positive valued function on X×X which is symmetric, satisfies triangle inequality, and d(x,x) = 0
for every x ∈ X . For any topological space X with topology τ (resp. pseudo-metric space (X ,d)) C(X ,τ) (resp. C(X ,d)) denotes the
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C*-algebra of all continuous bounded complex valued maps on X with the uniform norm. For a pseudo-metric d, τd denotes the topology
induced by d. Let (X ,d) be a pseudo-metric space. For every f ∈ C(X ,d), the Lipschitz semi norm ‖ f‖d is defined by

‖ f‖d = sup{ | f (x)− f (x′)|
d(x,x′)

: x,x′ ∈ X ,d(x,x′) 6= 0}.

Also, the Lipschitz algebra of (X ,d) is defined by,

Lip(X ,d) = { f ∈ C(X ,d) : ‖ f‖d < ∞}.

We need the following simple lemma.

Lemma 2.1. Let (X ,d) be a pseudo-metric space and a be a complex valued map on X. Then a ∈ Lip(X ,d) and ‖a‖d ≤ 1 if and only if
|a(x)−a(x′)| ≤ d(x,x′) for every x,x′ ∈ X. In particular, if b ∈ C(X ,d), then ‖b‖d = 0 if and only if b is a constant map.

Proof. Let a∈Lip(X ,d) and ‖a‖d ≤ 1. Suppose that x,x′ ∈ X . If d(x,x′) = 0, then a(x) = a(x′), since a is continuous with τd . If d(x,x′) 6= 0,
then 1≥ ‖a‖d ≥

|a(x)−a(x′)|
d(x,x′) , and thus |a(x)−a(x′)| ≤ d(x,x′). The other direction is trivial.

For any C*-algebra A, S(A) denotes the state space of A with w* topology. If A is unital, 1A denotes the unit element of A.
Let A be a self adjoint linear subspace of the C*-algebra A, and let L : A → [0,∞) be a semi norm on A . Connes has pointed out [1], [2],
that one can define a pseudo-metric ρL on S(A) by

ρL(µ,ν) = sup{|µ(a)−ν(a)| : a ∈A ,L(a)≤ 1} (µ,ν ∈ S(A)). (2.1)

Note that ρL can take values +∞ and 0 for different states of A. Conversely, let d be a pseudo-metric on S(A) (such that the topology induced
by d on S(A) is not necessarily w* topology). Define a semi norm Ld : A→ [0,+∞] by

Ld(a) = sup{ |µ(a)−ν(a)|
d(µ,ν)

: µ,ν ∈ S(A),d(µ,ν) 6= 0} (a ∈ A).

Note that Ld(a) = Ld(a∗) for every a ∈ A.
Let (X ,d) be a compact metric space. Consider the Lipschitz semi norm

‖ · ‖d : Lip(X ,d)⊂ C(X ,d)→ [0,+∞).

Then it is easily checked that the semi norm ρ‖·‖d
on the state space of C(X ,d) is a metric, called Monge-Kantorovich metric [4]. It is well

known that the topology induced by ρ‖·‖d
, is the w* topology, and for every x,y ∈ X , d(x,y) = ρ‖·‖d

(δx,δy), where δ : X → C(X ,d)∗ is the
point mass measure map.

Proposition 2.2. Let (X ,τ) be a compact Hausdorff space and d be a pseudo-metric on X such that the topology induced by d on X is
weaker than τ , i.e. τd ⊂ τ . Consider the Lipschitz semi norm ‖ · ‖d : Lip(X ,d)⊂ C(X ,τ)→ [0,+∞) and let ρ = ρ‖·‖d

. Then the following
are satisfied.

i) d(x,y) = ρ(δx,δy), for every x,y ∈ X.
ii) Lρ = ‖ · ‖d on C(X ,d)⊂ C(X ,τ).

iii) Let a ∈ C(X ,τ), then a ∈ C(X ,d) if and only if the map ν 7−→ ν(a) on S(C(X ,τ)) is continuous with ρ .
iv) the topology induced by ρ on S(C(X ,τ)) is weaker than the w* topology.

Proof. i) Let x,y be in X . Suppose that a ∈ Lip(X ,d) and ‖a‖d ≤ 1. Then by Lemma 2.1, |δx(a)−δy(a)|= |a(x)−a(y)| ≤ d(x,y), and thus
by definition of ρ , we have ρ(δx,δy)≤ d(x,y). Conversely, let ax ∈ C(X ,d) be defined by ax(z) = d(x,z) (z ∈ X); then for every x′,y′ ∈ X ,
|ax(x′)−ax(y′)|= |d(x,x′)−d(x,y′)| ≤ d(x′,y′), and thus by lemma 2.1, a ∈ Lip(X ,d) and ‖a‖d ≤ 1. Now, we have

ρ(δx,δy)≥ |δx(ax)−δy(ax)|= |ax(x)−ax(y)|= d(x,y).

ii) By i) and definitions of Lρ and ‖ · ‖d , it is clear that ‖ · ‖d ≤ Lρ on C(X ,τ).
Let a ∈C(X ,d). If ‖a‖d = 0, then by Lemma 2.1, a is a constant map and thus Lρ (a) = 0. If ‖a‖d = ∞ then Lρ (a) = ∞ since ‖a‖d ≤ Lρ (a).
Thus suppose that 0 < ‖a‖< ∞. Then for every µ,ν ∈ S(C(X ,τ)), we have

ρ(µ,ν)≥ |µ( a
‖a‖d

)−ν(
a
‖a‖d

)|= |µ(a)−ν(a)|
‖a‖d

and thus if ρ(µ,ν) 6= 0 then ‖a‖d ≥
|µ(a)−ν(a)|

ρ(µ,ν)
. Therefore,

‖a‖d ≥ sup{ |µ(a)−ν(a)|
ρ(µ,ν)

: µ,ν ∈ S(C(X ,τ)),ρ(µ,ν) 6= 0}= Lρ (a).

iii) The ‘if’ part is an immediate consequence of i). For the other direction, we need some notations: Let ∼ be the equivalence relation on
X defined by x∼ x′⇔ d(x,x′) = 0. Let Y = X/∼ and letˆ: X → Y be the canonical projection. Then d̂, defined by d̂(x̂1, x̂2) = d(x1,x2),
is a well defined metric on Y , andˆis an isometry between (X ,d) and (Y, d̂). Thus the C*-algebras C(X ,d) and C(Y, d̂), and the Lipschitz
algebras (Lip(X ,d),‖ · ‖d) and (Lip(Y, d̂),‖ · ‖d̂) are isometric isomorph. In particular, the topology induced by ρ on S(C(X ,d)) is the w*
topology, since as mentioned above the Monge-Kantorovich metric ρ‖·‖d̂

induces the w* topology on S(C(Y, d̂)). Consider the canonical
embedding Φ : C(X ,d)→ C(X ,τ). For every ν ,ν ′ ∈ S(C(X ,τ)), ν ◦Φ and ν ′ ◦Φ are in S(C(X ,d)) and

ρ(ν ,ν ′) = ρ(ν ◦Φ,ν ′ ◦Φ). (2.2)
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Now, let a ∈ C(X ,d) and νi→ ν be a convergent net in S(C(X ,τ)) with ρ . Then νi ◦Φ→ ν ◦Φ is a convergent net in S(C(X ,d)) with ρ ,
and since the topology induced by ρ agrees with the w* topology on S(C(X ,d)), we have

νi(a) = νi ◦Φ(a)→ ν ◦Φ(a) = ν(a).

Thus we get the desired result.
iv) Let νi→ ν be a convergent net in S(C(X ,τ)) with w* topology. Thus as in the proof of iii), νi ◦Φ→ ν ◦Φ with ρ , and by (2.2), νi→ ν

in S(C(X ,τ)) with the topology induced by ρ . This completes the proof of iv).

Definition 2.3. By a compact quantum pseudo-metric space (QSM space, for short) we mean a triple (A,A ,L), where A is a unital
C*-algebra, A is a self adjoint linear subspace of A with 1A ∈A , and L : A → [0,+∞) is a semi norm such that

(a) L(a) = L(a∗) for every a ∈A ,
(b) for every a ∈A , L(a) = 0 if and only if a ∈ C1A, and
(c) the topology induced by the pseudo-metric ρL on S(A) is weaker than the w* topology.

As an immediate corollary of the definition, for any compact quantum pseudo-metric space (A,A ,L), the topology induced by ρL on S(A)
is compact and in particular the diameter of S(A) under ρL is finite.

Proposition 2.4. Let (A,A ,L) be a QSM space. Then, for every a ∈A , the map µ 7−→ µ(a) on S(A) is continuous with topology induced
by ρL.

Proof. Straightforward.

Definition 2.5. A QSM space (A,A ,L) is called a compact quantum metric space (QM space, for short) if A is a dense subspace of A.

Let (A,A ,L) be a QM space and µ,ν be two different states of A. Then since A is dense in A, there is a ∈A such that µ(a) 6= ν(a). Thus
(by (2.1)) ρL is a metric on S(A). It is an elementary result in Topology that any Hausdorff topology τ weaker than a compact Hausdorrf
topology τ ′ on a set X , is equal to the same topology τ ′. Using this, we conclude that the topology induced by ρL on S(A) is the w* topology.

Example 2.6. Let (X ,d) be a compact metric space. Then

(C(X ,d),Lip(X ,d),‖ · ‖d)

is a compact quantum metric space.

Example 2.7. Let (X ,τ) be a compact Hausdorff space and let d be a pseudo-metric on X such that τd ⊂ τ . Then Proposition 2.2 and
Lemma 2.1, show

(C(X ,τ),Lip(X ,d),‖ · ‖d)

is a compact quantum pseudo-metric space.

Remark 2.8. Let (A,A ,L) be a QM space and A⊂A be the linear subspace of all self-adjoint elements of A . Then A is an order unite
space and (A,L|A) is a compact quantum metric space in the sense of Rieffel’s definition [7].

Lemma 2.9. Let A be a C*-algebra with the C*-norm ‖ · ‖, A be a self adjoint linear subspace of A containing 1A and L : A → [0,+∞)
be a semi norm such that for every a ∈A , L(a) = 0 if and only if a ∈ C1A. Let L̃ and ‖ · ‖̃ denote the quotient norm of L and ‖ · ‖ on A

C1A
and A

C1A , respectively. Suppose that the image of {a ∈A : L(a)≤ 1} in A
C1A is totally bounded for ‖ · ‖̃. Then the topology induced by ρL

on S(A) is weaker than the w* topology.

Proof. See Theorem 1.8 of [5].

Example 2.10. Let A be a finite dimensional C*-algebra and N be a Banach space norm on A such that N(a) = N(a∗) for every a ∈ A. Let
the semi norm N0 : A→ [0,∞) be defined by

N0 = inf{N(a+λ1A) : λ ∈ C}.

Since A is finite dimensional, the C*-norm of A and N are equivalent. Thus the image K of {a ∈ A : N0(a)≤ 1} is closed and bounded in
A

C1A . Again, since A is finite dimensional, K is compact and thus totally bounded for the quotient norm of the C*-norm. Thus by Lemma 2.9,
(A,A,N0) is a QM space.

Example 2.11. Let G be a compact Hausdorff group with identity element e. Let ` be a length function on G, i.e. ` is a continuous non
negative real valued function on G such that

(i) `(gg′)≤ `(g)+ `(g′), for every g,g′ ∈ G,
(ii) `(g) = `(g−1) for every g ∈ G, and

(iii) `(g) = 0 if and only if g = e.

Let A be a unital C*-algebra with a strongly continuous action · : G×A→ A of G by automorphisms of A, i.e.

(a) for every g ∈ G the map a 7−→ g ·a is a *-automorphism of A,
(b) e ·a = a for every a ∈ A ,
(c) g · (g′ ·a) = (gg′) ·a, for every g,g′ ∈ G,a ∈ A, and
(d) if gi→ g is a convergent net in G and a ∈ A, then gi ·a→ g ·a with the C*-norm of A.
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Define a semi norm L on A by

L(a) = sup{‖g ·a−a‖
`(g)

: g ∈ G,g 6= e} (a ∈ A).

Let A = {a ∈ A : L(a) < +∞}. Then by Proposition 2.2 of [5], A is a dense *-subalgebra of A. Now, suppose that the action of G is
ergodic, i.e. if a ∈ A and for every g ∈ G, g ·a = a, then a ∈ C1A. Then it is trivial that L(a) = 0 if and only if a ∈ C1A. Rieffel has proved
[5, Theorem 2.3], that the topology induced by ρL on S(A) agrees with the w* topology. Thus (A,A ,L) is a QM space.

For some other examples that completely match our notion of QM space, see [5]. As we will see in the next section, using quantum family of
morphisms we can construct many QSM spaces from a QSM space.

3. The main definition

We need the following simple topological lemma.

Lemma 3.1. Let Y be a compact space, X be an arbitrary space and (Z,ρ) be a pseudo-metric space. Also, let C(Y,Z) be the space of all
continuous maps from Y to Z, with the pseudo-metric ρ̂ defined by

ρ̂( f ,g) = sup{ρ( f (y),g(y)) : y ∈ Y} ( f ,g ∈ C(Y,Z)).

Suppose that F : Y ×X → Z is a continuous map. Then the map F̃ : X → C(Y,Z), defined by F̃(x)(y) = F(y,x) is continuous.

Proof. Let x0 ∈ X and ε > 0 be arbitrary. Since F is continuous, for every y ∈ Y , there are open sets Uy,Vy in X and Y respectively, such
that (y,x0) ∈ Vy×Uy and ρ(F(y,x0),F(y′,x)) < ε/2 for every (y′,x) ∈ Vy×Uy. Since Y is compact, there are y1, · · · ,yn ∈ Y such that
Y = ∪n

i=1Vyi . Let W be the open set ∩n
i=1Uyi . Let x ∈W and y ∈ Y be arbitrary. Then for some i (i = 1, · · · ,n), y belongs to Vyi and we have,

ρ(F(y,x),F(y,x0))≤ ρ(F(y,x),F(yi,x0))+ρ(F(yi,x0),F(y,x0))< ε.

Thus we have ρ̂(F̃(x), F̃(x0))< ε for every x ∈W . The proof is complete.

Let (A,A ,L) be a QSM space, B be a unital C*-algebra, and (C,Φ) be a quantum family of morphisms from A to B, Φ : A→B⊗C.
Let d be a pseudo-metric on S(C), defined by

d(ν ,ν ′) = sup{ρL((µ⊗ν)Φ,(µ⊗ν
′)Φ) : µ ∈ S(B)} (ν ,ν ′ ∈ S(C)).

Proposition 3.2. With the above assumptions, let C be the linear space of all c ∈ C such that the map ν 7−→ ν(c) on S(C) is continuous
with the topology induced by d, and Ld(c)< ∞. Then the following are satisfied.

i) C is a self adjoint linear subspace of C and 1C ∈ C .
ii) For every c ∈ C , Ld(c) = 0 if and only if c ∈ C1C.

iii) The topology induced by d on S(C) is weaker than the w* topology.
iv) With the restriction of the domain of Ld to C , ρLd ≤ d.
v) The topology induced by ρLd on S(C) is weaker than the w* topology.

Proof. i) is easily checked.
ii) Let c be in C and Ld(c) = 0. By Lemma 2.1, the map ν 7−→ ν(c) on S(C) is constant, and thus c ∈ C1C.
iii) Apply Lemma 3.1, with X = S(C), Y = S(B), Z = S(A), ρ = ρL and F : Y ×X → Z defined by

F(µ,ν) = (µ⊗ν)Φ (µ ∈ Y,ν ∈ X).

We get F̃ : X → C(Y,Z) is continuous with the metric ρ̂ on C(Y,Z). On the other hand, for every ν ,ν ′ we have d(ν ,ν ′) = ρ̂(F̃(ν), F̃(ν ′)).
Thus, if νi→ ν is a convergent net in X with w* topology, then

d(νi,ν) = ρ̂(F̃(νi), F̃(ν))→ 0.

This implies that the topology induced by d is weaker than the w* topology.
iv) Let ν ,ν ′ be in S(C). If d(ν ,ν ′) = 0 then for every c ∈ C , ν(c) = ν ′(c) (since the map µ 7−→ µ(c) is continuous with d) and thus by
the definition of ρLd , ρLd (ν ,ν

′) = 0. Thus suppose that d(ν ,ν ′) 6= 0. Let c ∈ C with Ld(c)≤ 1. Then 1≥ Ld(c)≥
|ν(c)−ν ′(c)|

d(ν ,ν ′) , and thus
|ν(c)−ν ′(c)| ≤ d(ν ,ν ′). Therefore

ρLd (ν ,ν
′)≤ d(ν ,ν ′).

v) follows directly from iv) and iii).

Definition 3.3. With the above assumptions, Proposition 3.2, shows that (C,C ,Ld) is a QSM space that is called QSM space induced by the
QSM space (A,A ,L) and quantum family of maps (C,Φ).

Lemma 3.4. With the above assumptions, let a ∈A and let µ ∈ S(B). Then c = (µ⊗ idC)Φ(a) is in C , and Ld(c)≤ L(a).
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Proof. We first show that Ld(c)≤ L(a)(< ∞). If L(a) = 0 then a ∈C1A and thus c ∈C1C and Ld(c) = 0. Suppose that L(a) 6= 0. We prove
that for every ν ,ν ′ ∈ S(C) with d(ν ,ν ′) 6= 0,

|ν(c)−ν ′(c)|
d(ν ,ν ′)

≤ L(a). (3.1)

Let ν ,ν ′ ∈ S(C) be such that d(ν ,ν ′) 6= 0. If |ν(c)−ν ′(c)|= 0, then (3.1) is satisfied. Suppose that

|ν(c)−ν
′(c)|= |(µ⊗ν)Φ(a)− (µ⊗ν

′)Φ(a)| 6= 0.

By the definition of d, we have d(ν ,ν ′)≥ ρL((µ⊗ν)Φ,(µ⊗ν ′)Φ). On the other hand, by the definition of ρL,

ρL((µ⊗ν)Φ,(µ⊗ν
′)Φ)≥ |(µ⊗ν)Φ(

a
L(a)

)− (µ⊗ν
′)Φ(

a
L(a)

)|

=
|(µ⊗ν)Φ(a)− (µ⊗ν ′)Φ(a)|

L(a)
.

Thus, (3.1) is satisfied and Ld(c)≤ L(a).
Now, we show that the map ν 7−→ ν(c) on S(C) is continuous with τd . Let νn→ ν be a convergent sequence in S(C) with the metric d.
Thus, by the definition of d, we have

ρL((µ⊗νn)Φ,(µ⊗ν)Φ)→ 0.

Therefore, by Proposition 2.4,

νn(c) = (µ⊗νn)Φ(a)→ (µ⊗ν)Φ(a) = ν(c).

Proposition 3.5. With the above assumptions, suppose that (A,A ,L) is a QM space and the linear span of

G = {(µ⊗ idC)Φ(a) : µ ∈ S(B),a ∈ A}

is dense in C (for example Φ is surjective). Then (C,C ,Ld) is a QM space.

Proof. Since A is dense in A and the linear span of G is dense in C, we have

G0 = {(µ⊗ idC)Φ(a) : µ ∈ S(B),a ∈A }

is dense in C. On the other hand, by Lemma 3.4, G0 ⊂ C . Thus C is dense in C and (C,C ,Ld) is a QM space.

Example 3.6. Let A and C be unital C*-algebras. Suppose that A⊗C has a QSM structure. Consider *-homomorphisms

id : A⊗C→ A⊗C and F : A⊗C→ C⊗A,

where F is the flip map, i.e. F(a⊗ c) = c⊗a for a ∈ A,c ∈ C. Then

(C, idA⊗C) and (A,F)

are quantum families of morphisms. Thus A and C have naturally QSM structures. Also, by Proposition 3.5, if A⊗C has a QM structure
then so are A and C.

Example 3.7. Let A be a unital C*-algebra and suppose that A has a QSM structure. Let Φ : A→B be a unital *-homomorphism. Then
(B,Φ) can be considered as a quantum family of morphisms from A to C. Thus B naturally has a QSM structure. Also, if Φ is surjective
and A has a QM structure, then by Proposition 3.5, B has a QM structure.

4. The commutative case

In this last section we study induced metric structures on ordinary families of maps.

Lemma 4.1. Let (X ,τ) be a compact Hausdorff space and let d be a pseudo-metric on S(C(X ,τ)) such that τd is weaker than the w*
topology. Let C be the space of all c ∈ C(X ,τ) such that the map ν 7−→ ν(c) is continuous on S(C(X ,τ)) and Ld(c)< ∞. Consider the
semi norm Ld : C → [0,+∞). Then for every x,x′ ∈ X, d(δx,δx′) = ρLd (δx,δx′).

(We remark that Lemma 4.1 is different from part i) of Proposition 2.2.)

Proof. Let x,x′ be in X . By the definition of ρLd , we have

ρLd (δx,δx′) = sup{|a(x)−a(x′)| : a ∈ C ,Ld(a)≤ 1}. (4.1)

Let a ∈ C and Ld(a)≤ 1. If d(δx,δx′) = 0, then a(x) = a(x′) since the map δx 7−→ δx(a) = a(x) is continuous with d, thus (4.1) implies that

ρLd (δx,δx′) = d(δx,δx′) = 0.

Now, suppose that d(δx,δx′) 6= 0. Since 1 = Ld(a)≥
|a(x)−a(x′)|

d(δx,δx′ )
, we have d(δx,δx′)≥ |a(x)−a(x′)|, thus (4.1) implies that ρLd (δx,δx′)≤

d(δx,δx′). Now, define a map bx on X by bx(y) = d(δx,δy). Then bx ∈ C and Ld(bx)≤ 1. Thus

ρLd (δx,δx′)≥ |bx(x)−bx(x′)|= d(δx,δx′).

This completes the proof.
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Theorem 4.2. Let (X ,τ), (Y,τ ′), (Z,τ ′′) be compact Hausdorff spaces and let d0 be a pseudo-metric on X such that τd0 ⊂ τ . Let

F : Y ×Z→ X

be a continuous map with τ,τ ′,τ ′′, and define a pseudo-metric d1 on Z by

d1(z,z′) = sup
y∈Y

d0(F(y,z),F(y,z′)).

With the canonical identification C(Y ×Z,τ ′× τ ′′)∼= C(Y,τ ′)⊗C(Z,τ ′′) let

F̂ : C(X ,τ)→ C(Y,τ ′)⊗C(Z,τ ′′)

be defined by F̂(a) = aF, for a ∈ C(X ,τ). Let

(C(Z,τ ′′),C ,N)

be the QSM space induced by QSM space (C(X ,τ),Lip(X ,d0),‖ · ‖d0) and quantum family of morphisms (C(Z,τ ′′), F̂). Then the following
are satisfied.

i) d1(z,z′) = ρN(δz,δz′) for every z,z′ ∈ Z.
ii) C ⊂ Lip(Z,d1).

iii) ‖ · ‖d1 ≤ N.

Proof. i) Let L = ‖ · ‖d0 . Let us recall the definition of (C(Z,τ ′′),C ,N). Let d be the pseudo-metric on S(C(Z,τ ′′)) defined by

d(ν ,ν ′) = sup{ρL((µ⊗ν)F̂ ,(µ⊗ν
′)F̂) : µ ∈ S(C(Y,τ ′))}.

Then N = Ld and C is the space of all c ∈ C(Z,τ ′′) such that the map ν 7−→ ν(c) on S(C(Z,τ ′′)) is continuous with d and N(c)< ∞. By
Lemma 4.1, we have,

d(δz,δz′) = ρN(δz,δz′), (4.2)

for every z,z′ ∈ Z. Now, we explain the relation between d1 and d.
Let z,z′ ∈ Z and y ∈ Y . Then

(δy⊗δz)F̂ = δF(y,z) and (δy⊗δz′)F̂ = δF(y,z′).

On the other hand, by Proposition 2.2, for every x,x′ ∈ X , d0(x,x′) = ρL(δx,δx′). Thus

ρL((δy⊗δz)F̂ ,(δy⊗δz′)F̂) = d0(F(y,z),F(y,z′)).

This formula together with the definitions of d and d1, show that

d1(z,z′)≤ d(δz,δz′). (4.3)

Let µ ∈ S(C(Y,τ ′)) be arbitrary. We consider µ as a probability Borel regular measure on (Y,τ ′). Then for every a ∈ Lip(X ,d0) with
‖a‖d0 ≤ 1, we have,

|(µ⊗δz)F̂(a)− (µ⊗δz′)F̂(a)|= |
∫

Y
(aF(y,z)−aF(y,z′))dµ (y)|

≤
∫

Y
|a(F(y,z))−a(F(y,z′))|dµ (y).

(4.4)

For every y ∈ Y , by Lemma 2.1,

|a(F(y,z))−a(F(y,z′))| ≤ d0(F(y,z),F(y,z′)).

Therefore, we have

|a(F(y,z))−a(F(y,z′))| ≤ d1(z,z′). (4.5)

(4.5) and (4.4) implies that

|(µ⊗δz)F̂(a)− (µ⊗δz′)F̂(a)| ≤ d1(z,z′).

Therefore, by the definition of d,

d(δz,δz′)≤ d1(z,z′). (4.6)

Now, by (4.6) and (4.3), d(δz,δz′) = d1(z,z′), and thus by (4.2),

d1(δz,δz′) = ρN(δz,δz′)

for every z,z′ ∈ Z, and i) is satisfied. ii) and iii) are immediate consequence of i) and definitions of C , ‖ · ‖d1 and N.
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5. Conclusion

In this note, we introduced the new concept of compact quantum pseudo-metric space as a generalization of the concept of compact quantum
metric space. The C*-algebraic examples of the latter concept, which has been introduced by Rieffel, are very restricted. But, by using the
concept of quantum family of maps, it was denoted that the source of examples for (C*-algebraic) quantum pseudo-metric spaces are very
wider than those for (C*-algebraic) quantum metric spaces.
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