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Abstract

This study presents an analytical investigation of a one-dimensional inverse coefficient nonlinear
hyperbolic equation with periodic boundary conditions. The analytical solution is derived from applying
the Fourier method. An iterative approach is used to establish convergence and to assess the existence,
uniqueness, and stability of the solution to the nonlinear problem.
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1. INTRODUCTION

The study of inverse coefficient problems in hyperbolic equations has gained significant attention
recently due to its wide-ranging applications in physics, engineering, and medical imaging. These problems
are centered around the challenge of identifying unknown coefficients or parameters from observed data, a
task that can be quite difficult given their inherently ill-posed nature. In this context, Tekin [1] highlights
the conditions necessary for the unique solvability of an inverse problem related to second-order hyperbolic
equations, stressing the critical role that additional constraints can play in ensuring a well-defined solution.

The introduction of periodic boundary conditions adds another layer of complexity to these inverse
problems, as they impose specific constraints on the solutions over a defined interval. Such periodic
boundary conditions are vital in various physical scenarios, such as the vibrations of strings or the
propagation of waves in bounded media, where system behavior exhibits periodicity over time [2]. Research
into the uniqueness and stability of solutions under periodic conditions has shown that, despite the ill-
posedness of these problems, unique solutions can still be obtained under certain circumstances [3-5].
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One particularly effective approach to tackling these challenges is the Fourier method, which has been
successfully employed in numerous studies to address inverse coefficient problems [6]. This method has
demonstrated its capability to establish the existence, uniqueness, convergence, and stability of solutions
for a variety of equations, including the Euler-Bernoulli, heat, Burger, and Klein-Gordon equations with
periodic boundary conditions [7-9].

In this study, we consider an inverse coefficient nonlinear hyperbolic equation represented as

V/t_vxx :e(t)f(y,t,V), (yat)EQ (1)
with the initial condition

v(y,0) =9(y)

v,(»,0) =y (), -

the periodic boundary condition
v(0,t) =v(m,t)

v, (0,0) =v (7,1) 3)
and overdetermination data
Et)= [T v(y,t)dy 4@

for a nonlinear source term represented by f(y,t, V).

Here 2:={0<y<m0<t<TL2:={0<y<m0<t<T}
The functions ¢, , E and f(y, t,v) are given functions.
Here ¢ (x) € [0,7],y(x) € [0,7] and f (¥, t,V), 2 X (—o0,0), for (y,t) € Q,v(y,t) € (—o0, ).

By using the Fourier method, the solution function, determined by {6, v}, can be found. The existence,
uniqueness, and stability of the solutions to the inverse problems are proven using an iterative approach.

2. ANALYTICAL SOLUTION OF THE PROBLEM

Definition 1. The problem of finding the values of {6, v} that satisfy (1)-(4) is known as the inverse problem.

Definition 2. If the set {v(t)} = {vo(t), Ve (0), Ve (£), k = L_N} of continuous functions on [0, T] satisfies
the norm condition||v(t)|| = grltcg%lvo O] + Xx=1 (grltagglvck ]+ g’}fﬂ’%lvsk (t)l), then space B is called a

Banach space.

Let us assume the following conditions on the data for the problem (1)-(4)

(C1)E(t) € C%[0,T],0(¢t) € C[O,T].

(C2) (y) € C*[0,7],9(y) € C[0,7].

(C3) Let f(y, t,v) be a function that is continuous in all arguments 2 X (—o0, ) and satisfies the following
conditions:

a(k)f t, a(k)f StV - —_—
D | ay((i) L ay(({) Dl < b(y,t)|v — ¥,k = 0,2, where b(y, t) € L,(2), b(y,t) = 0.

2) f(y,t,v) €ClO,m],t € [0, T]If(n,t,V)I <M,
3) [, f,t,v)dy #0,Vt € [0,T].

By applying the Fourier method, the solution to (1)-(3) is obtained as follows:
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v = (o +wt+ [ =000 1, (00

+i ((pck cos 2kt + % sin 2ktj cos2ky + i( J- 0(r) f,, (r)sin 2k(t - z')dz'j cos2ky

+
s T

[% cos 2kt +";—Zsin 2ktj sin 24y + Z[ [[60) £, (0)sin2k( - z’)drj sin 24y.

6]
Differentiating the overdetermination condition under conditions (C1)—(C3), we obtain:
” s
E'(t) = [, yvudy. (6)
Equations (5), (6) yield
oo B0 i 7[; 2k [(pk cos 2kt+vl—]é‘s1n 2kt) Ai;(j () f,, (7)sin 2k(t - r)dr)
[y tv)dy [y tv)dy [y tv)ay 7
3. THE EXISTENCE AND UNIQUENESS OF SOLUTIONS
Theorem 1. If conditions (C1)—~(C3) are satisfied, then the problem (1)—(4) has a unique solution.
Proof. Let us provide an iteration for (5) and the inverse coefficient as follows:
V0 = g, + i+ [ [ =00 () f(Erv e,
rJ0do
v (1) = @, cos 2kt + W—Zsin 2kt + LJ” J.” O () f(&,7,v™)cos 2k sin 2k(t — 7)d Edr,
v (6) = @, cos 2kt+—ksm 2kt +— J I 0 (¢) f(&,7,v™)sin 2kE sin 2k (¢ — 7)d Ed'r, ®)
N Y, I :
. £ i kz:: (2k) ((pxk cos 2kt + 212‘ sin 2kt) ﬂ';(JO 0™ (v) f,, (r)sin 2k(t—z')dr)
[ oty [T o ™)y [ oty ™)y )

V(O)(t) € B,t € [0,T] is from the conditions of the theorem.
For N = 0, by adding and subtracting |, Ot ) On f(&,1,0)dédr in (8) and applying Cauchy inequality, we obtain
1 ! 2 % ]2
|vé )(t)| =l +1//0t|+(j0 (t-7) dr) UO{;
1
' S et 2
+(j0(t—r)2dr) (jo{; 0

Y
2k

’ ‘“(r)[f(ér,vw’)—f(é,r,O)]dé} de
} drj s

+ ( j;dr)E ( L{ﬁ j0”|¢9<°> (O[S (&.7.v") = £(£,7,0) |cos 2k¢ sin 24(1 ~o)|)’ dgdrf

1
IHGIE

¢(‘k +

0

H([ac )| 1L 6 (1) £(&,7,0)cos 2k sin 2k(t — 7)| d & zdr 5,
0 ﬂ-k 0
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Vs

VO] <o+ Ya +( L:dr)f ( [/ {i jo”\e“” @[ £ (&0 ) - £(£.7,0) ]sin 2k& sin 2k(e - 7)) d§dr);

([ ae )| [ 122 (7109 (2) .7, 0)sin 2k sin 2k(t — 7)| d & zdr E.
0 0 ﬂ-k 0

After using Lipschitz condition, we have

0] <, +V/Otl+\E [L {%jo

Yer
2k

df} dr],

laz] df}z e [ AE3)

A U‘) {i [710@ @&, oW (&, 7) cos 2k sin 2k (1 - o}’ arfazf)E +

VO] <o+
1

[ om @@ soncosaiesinaia-of acas

1
l//sk

|v;,'3 (z)| <|o, |+ i+ N ( jo{i j0”|e<°> (0)b(E, oW (&, 7)sin 2k sin 2k(t —7)|} argdr)E +

1

Ji ( L{ﬁ j0”|9<°> (£)f(&,7,0)sin 2k sin 2k(t —7)|}* dgdrf .

By applying Holder inequality,

b ofslo w5 121 ofasf e (5 120

dg} dr}

LY (Bt ) (ST (Bl o omemmcossecsman-efae]

| =

brol<Sleal (3
[ ][ij {i "0 (2).£ (&,7,0) cos 2ké sin 2k(t - r)\dg} drj ,
ok =\

‘Vs(?(t)‘sg‘w +%(i j (Z‘V’k j +\/—[ j [ J'{ .[0”‘9‘°>(r)b(§»7)v‘0) sinzkfsinZk(t—r)‘df}z dr]z

[ j [ {l 9(0>(T)f(§ 7,0)sin 2k & sin 2k (t — T)‘df} dr] s
4

and applying Bessel’s inequality, we have

o 0f<lo w5 2o omenelae) ae| [ ({21 ief |
] o+ L [2 (Sl |20 ol ac |+ (L[] 0" @reroae] ae]
|V,§,?(t)|ﬁi|(ﬂsk|+ \/7(2|,,,,| jz \ﬁ(] {J |g<o>(r)b(§ T)V(0)|d§} dz'] +\E(Ig{jﬂgm)(ﬂf@,1,0)|d§}2 dr)z.

Finally, we get
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ol S S
0] = e 2 502 e ()] prax |y

leall+loll7l ||‘//o|| R,
+z Potc | 1Pk +2\/g;

where A = (w)

Hence from the conditions of the theorem v(¥(¢t) € B, t € [0, T].

Vo<

l//ck + l//sk

+ A||¢9<°> (t)”"b( v, t)||||v<°> (t)" + A||9<°> (t)"M,

If considered 2k [) ¢(y) sin2kydy = [, ¢'(y) cos 2 kydy for (7), we have

E"(t)- ﬁZ(DA cos 2kt — ﬁZl//k sin 2kt 22 j j 0 (z) f (z)sin 2k & sin 2k(t — 7)d Ed T
9(1) (t) _ k=1
[T o )y [T o vy

applying the Cauchy and Bessel inequalities, along with the Lipschitz condition, we obtain:

o O+ gt + 7wl + 4Tf(||9(°><t>llllb<y’r>|||| C]+fo" 0|m).

The same estimations apply for step N, we obtain:

o= o s

_lal+ !wolllT e Sloal a5 Slyal sl e @l ol o]+ Ao o] v
|| <E"<t>+n o+ 7w ) “Tf (||e<N><r>||||b<y,r>||||v<“<f>||+||9<“<f>IIM)-

We obtain vAV*V(t) € B, t € [0, T] because of v™)(t) € B,t € [0, T].
By applying same methods for convergence, we get:

0 sy o o O o)

24T

HereS—M WV

and C = ||v(°) - v(l)”

As N - oo, vVt — (W) gpd gIN+D — V),

Let us show that
I{Iimv(N“)(t) = v(t),lglime(”“)(t) = 6(t).

Let’s take the difference between the exact and approximate inverse coefficients:

nz j j OV (1) £ (&, 7,y ) sin 2k€Esin 2k (¢ — 7)d Ed T nz j j 0(2) f(&,7,v)sin 2kEsin 2k (¢ — T)dEdr
(1) — 0" (1) = =

[T o @ty ™ ™dy o tvyay

Then add and subtract | Ot ) On 0(0)f (&, t,vN*D)dédr, and applying consecutively Cauchy, Bessel
inequalities and Lipschitz condition, we have
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[6() = 6™ D@ < sle@ b, Oll||lve) —=vE* D).

By applying the same methods for v(t) — vA¥*D(¢t), we find
1

JIN!
As N — oo, vON*U () > y(t) and 8NV (1) - 0(b).

"v(t) —p D (t)" <A(A+sm)" ||9<N) (t)||||e<N’ (t)||...||6r<1> (t)" Cx

(L[ 2@ nazae) exp(24+ san)oo b0

Let consider we have two solutions (v, 8) and (w, p) of (1)-(4). We obtain the following, applying the same
methods:

[o@ o)< sle®|lptr- D)~ @) (10)
[v(6) = @) < 4]|p@)|||[o(r,O|[v(2) - (@) + A|6) - p(0)| M. (11

By using (10) in (11), we get |[v(t) — w(®)l = (4 + SMI6@O by, OlIv(E) — w(®)]].

Finally, applying Gronwall inequality to the last inequality, we have:
1
t 2
lv(t) —w(@®)|l < 0x exp(Ad+ SM) (j j 0%(t)b? (¢, T)dfdt) :
0 Jo

Then v(t) = w(t), therefore 6(t) = p(t).
The proof is completed.

4. STABILITY OF THE SOLUTION (v,6)

Theorem 2. If the assumptions (C1)—(C3) hold, then the solution pair (v, ) of the problem (1)-(4) depends
continuously on the input data ¢, 1 and E.

Proof. Let sets ||®@|| = {p,,E} and ||®|| < {@,y,E} denote two data groups that conform to the
assumptions (C1)—~(C3). Assume there are positive constants M; that ensure the following inequalities are
satisfied:
lol| <,

vl |E <,

Let us denote
[l <llel+lwl+1£]. [®]<2]+ 7+ |E]
Let (v,0) and (v,0) be the solutions of the problem (1)-(4) according to the data @ and @. By applying

loy -6 < D((E"(r)—E"(o)mi Pl ~ Pl IIJB@IIM ~7 |+ 2T oo ol v —V||j,

-7 <2|@-B| xexp2r? ( [ jo”bz(g,r)dgdr).
2

Here D = ————..
Mom2—4MoM~\T

For @ — @ then v - v. Hence 6 — 6.
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5. CONCLUSION

An analytical investigation of a one-dimensional inverse coefficient nonlinear hyperbolic equation
with periodic boundary conditions is conducted in this study. The analytical solution is obtained using the
generalized Fourier method. Furthermore, an iterative approach is implemented to demonstrate
convergence and to examine the existence, uniqueness, and stability of the solution for the nonlinear
problem.
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