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Abstract  Öz 

In this paper, a state and parameter observer, based on a novel extended 
Kalman filter (EKF), is designed to solve the parameter variations 
dependent estimation performance deterioration of induction motor 
(IM) drive systems. The proposed EKF based observer algorithm 
performs online estimation of the rotor mechanical speed, stator 
stationary axis component of the stator currents and rotor fluxes, stator 
resistance, rotor resistance, reciprocal of the total inertia of the system, 
and load torque including viscous friction term in a single EKF by using 
measured rotor mechanical speed and stator currents. Thus, frequency 
and temperature-dependent variations of the resistances are estimated 
to be updated in the observer, which leads to control performance 
enhancement of the IM drive. Moreover, to rise the dynamic 
performance of the observer, the load torque and reciprocal of the total 
inertia of the system which are mechanical parameters are also 
estimated. To verify the robustness of the IM drive and the estimation 
performance of the proposed observer, they have been tested under 
challenging scenarios including changes in parameters and speed 
reference. Moreover, the estimation performance of the proposed ninth 
order observer is compared with that of a sixth order EKF estimating 
the same electrical parameters by using directly measured speed. 
Ultimately, the simulation results obviously reveal the efficacy of the 
proposed IM drive. 

 Bu makalede, asenkron motor (ASM) sürücü sistemlerinin parametre 
değişimlerine bağlı kestirim başarımlarının kötüleşmesi problemini 
çözmek için genişletilmiş Kalman filtresine (GKF) dayalı yeni bir durum 
ve parametre gözlemleyicisi tasarlanmıştır. Önerilen GKF tabanlı 
gözlemleyici algoritması, ölçülen stator akımları ve rotor mekanik hızı 
kullanılarak stator akımlarının ve rotor akılarının stator duran eksen 
bileşenlerinin, rotor mekanik hızının, viskoz sürtünme terimi dâhil yük 
momentinin, rotor direncinin, stator direncinin ve sistemin toplam 
eylemsizliğinin tersinin eş-zamanlı kestirimlerini gerçekleştirmektedir. 
Böylece, dirençlerin frekans ve sıcaklık bağımlı değişimlerinin 
gözlemleyicide güncellenmek üzere kestirilmesi ASM sürücüsünün 
kontrol başarımının iyileştirilmesi sağlar. Ek olarak, gözlemleyicinin 
dinamik başarımını artırmak için mekanik parametreler olan yük 
momenti ve sistemin toplam eylemsizliğinin tersi de kestirilmektedir. 
Önerilen gözlemleyicinin kestirim başarımı ve ASM sürücüsünün 
sağlamlığı, hız referansı ve parametrelerdeki değişimleri içeren zorlu 
senaryolar altında test edilmektedir. Ayrıca, dokuzuncu dereceden 
önerilen gözlemleyicinin kestirim başarımı, ölçülen hızı doğrudan 
kullanarak aynı elektriksel parametreleri kestiren altıncı dereceden 
GKF’nin kestirim başarımı ile karşılaştırılmıştır. Özetle, benzetim 
sonuçları önerilen ASM sürücüsünün etkinliğini açıkça ortaya 
koymaktadır. 

Keywords: Extended Kalman filter, Induction motor, Rotor and stator 
resistance estimation, State and parameter estimation. 

 Anahtar kelimeler: Genişletilmiş Kalman filtresi, Asenkron motor, 
Rotor ve stator direnci kestirimi, Durum ve parametre kestirimi. 

1 Introduction  

In literature, there are many sophisticated studies on high-
performance control applications of the induction motors (IMs) 
performed by the vector control (VC) [1],[2], the direct torque 
control (DTC) [3],[4], and the model predictive control [5],[6]. 
These control methods require the correct values of the control 
variables/states. However, the highly nonlinear structure of the 
IM model and parameter variations that are caused by its 
working conditions make obtaining the correct values of 
control variables challenging. Thus, for the researchers 
concentrating on the improvement of control performance by 
estimating states and parameters, it is a research area that is 
still open. In literature, there are deterministic and stochastic 
based various methods proposed to solve this problem which 
can be classified as full order observers [6], model reference 
adaptive systems (MRAS) [7], Luenberger observers [8], sliding 
mode observers (SMO) [9], and nonlinear Kalman filter based 
observers [1],[3],[10]. 

                                                           
*Corresponding author/Yazışılan Yazar 

Considering the deterministic based approaches concentrating 
on the parameter estimation of the IM, [11] introduces a neural 
network estimator utilizing the flux estimation of a 
programmable cascade filter for rotor resistance (𝑅𝑟) 
estimation and a fuzzy logic based estimator for stator 
resistance (𝑅𝑠) estimation. [12] considers an adaptive observer 
to perform online estimations of 𝑅𝑟 and 𝑅𝑠 by utilizing one 
phase current measurement. In order to perform 𝑅𝑟 estimation, 
motor torque and reactive power based MRAS algorithms are 
performed in [13]. Online estimations of 𝑅𝑟 and magnetizing 
inductance (𝐿𝑚) are realized in [14] by using MRAS algorithm 
which utilizes the rotor flux obtained by SMOs series 
implemented. In order to attain improved dynamic 
performance, [15] presents a decoupling mechanism for the 𝑅𝑟 
and 𝐿𝑚 estimations performed in [14]. [16] presents reactive 
and active power based-MRAS (Q-MRAS and P-MRAS) 
algorithms to perform simultaneous 𝑅𝑟 and 𝑅𝑠 estimations. The 
parameter and noise sensitivity of the deterministic based 
methods affect their estimation performances. Contrary to the 
deterministic approaches, stochastic ones such as the extended 
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Kalman filter (EKF), a commonly used methods for the state and 
parameter estimations of IMs despite its computational load, 
take into account noises called the measurement (R) and 
process (Q) noises. 

There are many EKF based studies focusing on the state and 
parameter estimation of the IMs in the current literature. For 
the speed-sensorless case, it is stated in [17] that the estimation 
performance deteriorations occur when a limited number of 
measurement is used in a single EKF to estimate a high number 
of parameters. In [18], an eight-order EKF is designed to 
perform simultaneous estimation of 𝑅𝑟 and 𝑅𝑠 in a single EKF; 
however, when simultaneous changes are performed in 𝑅𝑟 and 
𝑅𝑠, the eight-order EKF fails to realize the correct estimation of 
one of the estimated 𝑅𝑟 and 𝑅𝑠 values in simulations. The 
experimental results demonstrate that 𝑅𝑠 is not estimated 
correctly while 𝑅𝑟 is estimated successfully in the eight-order 
EKF. In the literature, to overcome the simultaneous estimation 
problem of 𝑅𝑟 and 𝑅𝑠, EKF observer structures, known as 
switching EKF [19],[20], braided EKF [17],[21] and bi-input 
EKF [22], [23] are proposed for estimation of the high number 
of states and the other parameters together with 𝑅𝑟 and 𝑅𝑠. 
Moreover, to perform estimation of more states and 
parameters with a lower computational burden, a hybrid 
structure of the EKF and the MRAS algorithms is proposed in 
[4]. Even if these structures enable high number of estimated 
parameters, the main drawbacks of these methods can be given 
as follows: 

 The switching of the different EKF algorithms in [20], 
[21] and different IM models in [22] lead to 
computational load increase as well as the tuning 
difficulty and design complexity as in hybrid structure 
in [4], 

 Increased memory requirement in [4],[20]–[22] 
compared to the standard EKF. 

Along with the proposed EKF studies for speed-sensorless 
operation, there are also some studies using EKF algorithm in 
state and parameter estimations of the IM when the rotor speed 
is measured. For this case, [24] presents the online estimation 
of stationary axis (𝛼𝛽 − axis) component of the rotor fluxes and 
stator currents (𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝑖𝑠𝛼 , and 𝑖𝑠𝛽 ,) together with the 𝑅𝑟 and 

𝑅𝑠 by an EKF algorithm for direct VC (DVC) based IM drive. As 
opposed to the [24], [25] proposes a DTC based IM drive, which 
uses EKF algorithm estimating 𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑠𝛼 , 𝜑𝑠𝛽 , 𝑅𝑟, and 𝑅𝑠 by 

using the six-order the stator flux based dynamic model of the 
IM. Furthermore, [26] presents a reduced-order EKF based 
observer, which performs the online estimation of 𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝑅𝑟 

and 𝐿𝑚 both in real-time experiments and simulation. In these 
studies, The EKF algorithm directly uses the measured rotor 
speed (𝜔𝑚), which results in the only use of the electrical 
subsystem in the IM model. Thus, it is not possible for these 
studies to perform online estimation of the mechanical states, 
resulting in dynamic performance enhancement, with the 
electrical ones. For this purpose, an EKF algorithm that 
simultaneously performs the estimations of 𝑖𝑠𝛼 , 𝑖𝑠𝛽 , 𝜑𝑟𝛼, 

𝜑𝑟𝛽, 𝜔𝑚, 𝑡𝐿, 𝑅𝑟, and 𝐿𝑚 in a single EKF algorithm without 

switching operation is proposed in [27], and the proposed EKF 
algorithm is compared to the six-order EKF directly using the 
measured 𝜔𝑚. The experimental results show that with the 
help of equation of motion and measurement matrix (H) 
extension, 𝑡𝐿 estimation improves the dynamic performance of 
the EKF algorithm compared to the six-order EKF. 
Furthermore, [1] proposes an EKF observer performing the 

online estimations of 𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝜔𝑚, 𝑡𝐿, 𝑅𝑟, 𝐿𝑚, and 𝛾𝑇 by 

using the ninth-order extended model of the IM. Therefore, 
thanks to the H matrix extension used as in [27], both the 
mechanical parameters and the electrical parameters except 
for 𝑅𝑠, rotor leakage inductance (𝐿𝑙𝑟), and stator leakage 
inductance (𝐿𝚤𝑠) are estimated both in real-time experiments 
and simulations by using measured 𝑖𝑠𝛼 , 𝑖𝑠𝛽 , and 𝜔𝑚 values.  

The main contribution of this  paper is to perform simultaneous 
estimation of 𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝜔𝑚, 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 𝛾𝑇 , in a single 

EKF without any model/EKF switching operation or hybrid 
method. To perform the estimation of overall all nine states and 
parameters in a single EKF, the H matrix is extended by the 
measured 𝜔𝑚, which leads to use of the priori estimation error 
in rotor speed together with the currents in the posteriori 
estimations in the proposed EKF, similar to recent study [1] 
estimating 𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝜔𝑚, 𝑡𝐿, 𝑅𝑟, 𝐿𝑚, and 𝛾𝑇 . Thus, this 

paper aims to obtain enhanced estimation performance of the 
EKF and thus the control performances of the IM drive 
specifically at very low and up to rated speed operations which 
are sensitive to variations in 𝑅𝑟 and 𝑅𝑠. Furthermore, compared 
to the other speed-sensored EKF studies, using directly the 
measured 𝜔𝑚 in [24]–[26], the proposed EKF is also estimates 
the mechanical parameters (𝑡𝐿 and 𝛾𝑇) to increase the dynamic 
performance. By performing 𝑡𝐿 estimation with the proposed 
observer, it is also possible to use the estimated 𝑡𝐿 value in the 
feed forward control loop to improve the torque response, as in 
[28]. 𝛾𝑇 estimation is also required for the position control 
system to perform robust control, as demonstrated in [1]. 
Moreover, in order to demonstrate the effectiveness of the 
proposed ninth order observer, its estimation performance is 
compared with that of a sixth order observer, proposed in [24], 
directly using the measured 𝜔𝑚 to perform 𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝑅𝑟, 

and 𝑅𝑠 estimations. Therefore, the estimation performance 
deteriorations based on the effect of the frequency and 
temperature variations on resistances as well as the unknown 
mechanical parameters is eliminated by estimating 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, 
and 𝛾𝑇 parameters.  

This study organized as five sections, the detailed literature 
analysis is given in section I. The ninth-order IM model 
development is presented in Sections II. EKF algorithm with the 
effect of H matrix extension is detailed in Sections III. Section IV 
presents the simulation studies of the proposed EKF based IM 
drive. Lastly, section V clarifies the results of the paper.  

2 Development of the extended IM model  

So as to perform simultaneous estimation of overall nine states 
and parameters (𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝜔𝑚, 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 𝛾𝑇), the 

rotor flux based dynamic IM model is extended. From this point 
of view, with the assumption of slow changes in  𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 
𝛾𝑇 values against operation conditions and time [27], these 
values are determined as additional constant states in the IM 
model. The steady state representation of the rotor flux based 
ninth-order dynamic model of the IM is given in (1) and (2) in 
continuous form. 

�̇�t = 𝐟(𝐱t, 𝐮t) + 𝐰 

�̇�t = 𝐀(𝐱t)𝐱t + 𝐁𝐮t +𝐰 
(1) 

𝐳t = 𝐡(𝐱t) + 𝐯 

𝐳t = 𝐇𝐱t + 𝐯 
(2) 
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Here, the nonlinear state and input function is represented by 𝐟 
while the output function is referred by 𝐡. 𝐀 and 𝐁 extended 
system and control input matrix, respectively. The 
measurement matrix extended by measured 𝜔𝑚 in this paper 
as in [1],[27] is represented by 𝐇. 𝐱, 𝐳, and 𝐮 are the extended 
state, measurement, and control input vectors, respectively. the 
measurement and process noises are referred by  𝐯 and 𝐰, 
respectively. The details of ninth-order rotor flux based IM 
model whose general form is presented in (1) and (2) can be 
given as follows: 

𝐱t = [𝑖𝑠𝛼 𝑖𝑠𝛽 𝜑𝑟𝛼 𝜑𝑟𝛽 𝜔𝑚 𝑡𝐿 𝑅𝑟 𝑅𝑠     𝛾𝑇]
𝑇 

𝐮t = [𝑢𝑠𝛼 𝑢𝑠𝛽]𝑇       𝐡(𝐱t) = [𝑖𝑠𝛼 𝑖𝑠𝛽 𝜔𝑚]𝑇  

𝐇 = [
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

] 

𝐟(𝐱t, 𝐮t) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −(

𝑅𝑠
𝐿𝜎
+
𝑅𝑟𝐿𝑚

2

𝐿𝜎𝐿𝑟
2
) 𝑖𝑠𝛼 +

𝑅𝑟𝐿𝑚
𝐿𝜎𝐿𝑟

2
𝜑𝑟𝛼 +

𝐿𝑚𝑝𝑝
𝐿𝜎𝐿𝑟

𝜔𝑚𝜑𝑟𝛽 +
𝑢𝑠𝛼
𝐿𝜎

−(
𝑅𝑠
𝐿𝜎
+
𝑅𝑟𝐿𝑚

2

𝐿𝜎𝐿𝑟
2
) 𝑖𝑠𝛽 −

𝐿𝑚𝑝𝑝
𝐿𝜎𝐿𝑟

𝜔𝑚𝜑𝑟𝛼 +
𝑅𝑟𝐿𝑚
𝐿𝜎𝐿𝑟

2
𝜑𝑟𝛽 +

𝑢𝑠𝛽

𝐿𝜎
𝑅𝑟𝐿𝑚
𝐿𝑟

𝑖𝑠𝛼 −
𝑅𝑟
𝐿𝑟
𝜑𝑟𝛼 − 𝑝𝑝𝜔𝑚𝜑𝑟𝛽

𝑅𝑟𝐿𝑚
𝐿𝑟

𝑖𝑠𝛽 + 𝑝𝑝𝜔𝑚𝜑𝑟𝛼 −
𝑅𝑟
𝐿𝑟
𝜑𝑟𝛽

3𝑝𝑝𝐿𝑚𝛾𝑇
2𝐿𝑟

(𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼) − 𝑡𝐿𝛾𝑇

0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⏟                                    
𝐀(𝐱t)𝐱t+𝐁𝐮t

 

Where, 𝐿𝑠 is the stator inductance; 𝐿𝜎 = 𝐿𝑠 − 𝐿𝑚
2 /𝐿𝑟 represents 

stator transient inductance; 𝐿𝑟 is the rotor inductance; 𝑢𝑠𝛼  
and 𝑢𝑠𝛽  represent the  𝛼𝛽 − components of stator voltages, 

respectively; 𝑝𝑝 is the number of pole pairs. It should be 

emphasized that the viscous friction term is not included in the 
presented IM model, which means that it is counted in the 
estimated 𝑡𝐿. Here, the steady state form of the IM model 
presented in (1) and (2) is discretized by the use of the first-
order forward Euler approximation presented in (3), and the 
obtained discretized model of the IM can be given as in (4) and 
(5). 

�̇�t ≈
𝐱k+1 − 𝐱k

𝑇
 (3) 

𝐱k+1 = 𝑇 × 𝐟(𝐱k, 𝐮k) + 𝐈𝟗×𝟗 × 𝐱k +𝐰 

𝐱k+1 = 𝐀(𝐱k)𝐱k + 𝐁𝐮k +𝐰 
(4) 

𝐳k = 𝐡(𝐱k) + 𝐯    

𝐳k = 𝐇𝐱k + 𝐯 
(5) 

Here, 𝐈 is the identity matrix. The EKF algorithm proposed in 
this paper is constituted by using the discretized IM model in 
(4) and (5) in the EKF algorithm presented below. 

3 The EKF observer 

In this paper, in order to estimate 𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝜔𝑚, 𝑡𝐿, 𝑅𝑟, 

𝑅𝑠, and 𝛾𝑇 in a single EKF without any hybrid approach or 
switching operation, the H matrix is extended by the measured 
𝜔𝑚, which means that 𝜔𝑚 is both measured and the estimated 
by the proposed EKF just as 𝑖𝑠𝛼  and 𝑖𝑠𝛽  as in [1],[27]. Instead of 

direct usage of the measured 𝜔𝑚 in EKF, this extension enables 
using of the speed error, the difference between the measured 
and priori estimated speed, along with the current errors to 
obtain posterior values of the estimations in the measurement 
update step of the standard EKF. Moreover, due to the 
definition of 𝜔𝑚 in the IM model as a state thanks to the 
equation of motion, the dynamic performance increase is 
provided thanks to the estimation of 𝑡𝐿 and 𝛾𝑇 as in [1],[27]. 
Due to the fact that 𝑡𝐿 estimation is performed in this paper, it 
can be used to obtain enhanced torque response as in [28]. With 
the advantages of H matrix extension and the use of the 
equation of motion, the standard EKF algorithm presented in 
(6) and (11) is used to perform simultaneous estimation of the 
total nine states and parameters. 

𝐅k|k−1 =
∂𝐟(𝐱, 𝐮k)

∂𝐱
|
𝐱=�̂�k−1

 (6) 

�̂�k
− = 𝐟(�̂�k−1, 𝐮k) (7) 

𝐏k
− = 𝐅k|k−1𝐏k−1𝐅k|k−1

T + 𝐐 (8) 

𝐊k = 𝐏k
−𝐇T[𝐇𝐏k

−𝐇T + 𝐑]−1 (9) 

�̂�k = �̂�k
− + 𝐊k(𝐳k −𝐇�̂�k

−) (10) 

𝐏k = (𝐈 − 𝐊k𝐇)𝐏k
− (11) 

Here, 𝐅 is the function that is used in the linearization of the 
nonlinear IM model. 𝐏k

− and 𝐏k are the priori and the posteriori 
estimation error covariance matrices. �̂�k

− and �̂�k are the priori 
and the posteriori estimations of the state vector, respectively. 
𝐊 is the Kalman gain which is used to correct and update the 
outputs of the estimation stage. 𝐑 and 𝐐 are the covariance 
matrices for the measurement and process noises. 𝐈 is the 
Identity matrix. 

4 Simulations studies 

In simulation studies, the proposed EKF algorithm, 
simultaneously estimating 𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝜔𝑚, 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 

𝛾𝑇 in a single EKF, and the proposed drive are verified under 
the challenging scenarios. Furthermore, the estimation 
performance comparison of the proposed ninth order observer 
and a sixth order observer proposed in [24] is performed. While 
the proposed ninth order observer utilizes the H extension to 
perform estimations of nine states and parameters, the sixth 
order observer proposed in [24] directly uses the measured 𝜔𝑚 
to realize online estimations of 𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝑅𝑟, and 𝑅𝑠. To 

perform simulations, the proposed DVC based IM drive 
demonstrated in Figure 1 is implemented and realized in 
Matlab/Simulink. Therefore, by using the DVC based IM drive, 
the close loop comparison of the proposed ninth order and the 
sixth order observers are carried out. In Figure 1, the required 

phase angle 𝜃𝑟𝑓 and the magnitude of the rotor flux is obtained 

by the use of estimated rotor flux components. Moreover, trial 
and error method based tuned conventional PI controllers are 
used in the drive system presented in Figure 1.  

Table I presents the rated parameter values of the IM used in 
Figure 1, which are the same as in previous studies to make an 
easy comparison with the previous ones. As it can be seen 
directly in Figure 1, the estimations of 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 𝛾𝑇 are only 
realized to eliminate the performance deteriorations of the 
proposed EKF algorithm and thus the drive system. 

 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 30(6), 771-778, 2024 
R. Yıldız, M. Barut, R. Demir 

 

774 
 

 

 

Figure 1. The proposed DVC based drive. 
 

Table 1. IM parameters. 

𝑃(𝑘𝑊) 𝑓(𝐻𝑧) 𝑉(𝑉) 𝐼(𝐴) 
2 50 380 6.9 

𝑅𝑠 (Ω) 𝑅𝑟  (Ω) 𝐿𝑠 (𝐻) 𝐿𝑟  (𝐻) 
2.283 2.133 0.2311 0.2311 
𝐿𝑚 (𝐻) 𝑛𝑚 (𝑟𝑝𝑚) 𝑇𝐿 (𝑁𝑚) 𝑝𝑝 

0.22 1430 20 2 

𝐽𝐿(𝑘𝑔 𝑚
2) 𝐵𝐿(𝑁𝑚/(𝑟𝑎𝑑/𝑠)) 

0.0183 0.001 

 

In order to verify both estimation accuracy of the proposed EKF 
based observer and the robustness of the proposed IM drive, 
they are verified under a comprehensive scenario, which is 
specially designed to show their capability against varying 
parameters as seen in Figure 2. In order to make a fair 
comparison, the six order observer is also tested under same 
scenario given in Figure 2. Whole details of the designed 
comprehensive scenario are given below. 

 This scenario includes the wide speed range 
operation of the IM, which can be summarized as 
rated speed at clockwise and counterclockwise 
directions (1500 r/min and -1500 r/min), low speed 
(-100 r/min), and the continuously zero-speed 
operation, 

 𝑡𝐿 applied to the IM is changed to its rated value (20 
Nm), half of its rated value (10 Nm), and unloaded 
condition (0 Nm) by step-like and linear variations, 

 𝑅𝑟 and 𝑅𝑠 values of the IM are doubled (4.266 and 
4.566 respectively) and decreased to their nominal 
values in the different operating conditions of the IM, 

 𝛾𝑇 value is changed to its halved value (27.3 1/kg.m2) 
and increased to rated one in different speed regions, 

 So as to make estimations more difficult, the initial 
conditions for estimations are chosen as zero, and the 
DC condition is included in the different parts of the 
scenario. 

 

Figure 2. 𝑛𝑚
𝑟𝑒𝑓

 variation and applied 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 𝛾𝑇 for DVC 
based IM system. 

 

0 5 10 15 20 25 30 35 40 45

-1500

0

1500

0 5 10 15 20 25 30 35 40 45

-20

-10

0

20

0 5 10 15 20 25 30 35 40 45

2.133

4.266

0 5 10 15 20 25 30 35 40 45

2.283

4.566

0 5 10 15 20 25 30 35 40 45

27.3

54.6

-100



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 30(6), 771-778, 2024 
R. Yıldız, M. Barut, R. Demir 

 

775 
 

The applied IM values and reference signals for the IM drive to 
obtain this detailed comprehensive scenario are presented in 
Figure 2. Here, “.𝑟𝑒𝑓” represents the reference value applied to 
the drive system. Figure 3 shows the resulting estimation 
performances of the proposed ninth order EKF and the control 
performance proposed EKF based IM drive. Figure 4 indicates 
the estimation results of the sixth order observer proposed in 
[24] and control performance of sixth order observer based IM 
drive. Figure 5 demonstrates the resulting estimation errors for 
proposed observer which is obtained by calculating the 
difference between estimated and actual values. Figure 6 shows 
the corresponding estimation errors for sixth order observer. 
Here in Figure 3 and Figure 4, “ . ̂” represents the estimations. 
In Figure 5 and Figure 6, “𝑒(.)” represents the estimation error 

between actual and estimated values. In simulations, Q and R 
matrices that are crucial for the EKF algorithm are chosen as 
diagonal, and their diagonal elements are selected by the trial 
and error method. Moreover, to perform a fair comparison 
between the proposed ninth order observer and sixth order 
observer in [24], the elements of Q and R matrices are used as 
the same in both observers for corresponding states. 

 

Figure 3. The tracking performance of the proposed drive and 
the proposed ninth order EKF estimations. 

The resulting selected noise covariance matrices for the 
proposed ninth order EKF observer are given below. 

𝐏𝐏𝐫𝐨𝐩𝐨𝐬𝐞𝐝 𝐄𝐊𝐅 = diag{10   10   10   10   10   10   10   10   10} 

𝐐𝐏𝐫𝐨𝐩𝐨𝐬𝐞𝐝 𝐄𝐊𝐅 = diag{10−10  10−10  10−12  10−12  10−5  10−4 

                                         10−5  10−5 5x10−4} 

𝐑𝐏𝐫𝐨𝐩𝐨𝐬𝐞𝐝 𝐄𝐊𝐅 = diag{10−6    10−6     10−6} 

The corresponding noise covariance matrices used in the sixth 
order observer are as follows:  

𝐏𝟔𝐭𝐡 𝐨𝐫𝐝𝐞𝐫 𝐄𝐊𝐅 = diag{10   10   10   10   10   10} 

𝐐𝟔𝐭𝐡 𝐨𝐫𝐝𝐞𝐫 𝐄𝐊𝐅 = diag{10−10  10−10  10−12  10−12  10−5  10−5} 

𝐑𝟔𝐭𝐡 𝐨𝐫𝐝𝐞𝐫 𝐄𝐊𝐅 = diag{10−6    10−6} 

The mean square error (MSE) values for 𝑅𝑟 and 𝑅𝑠 estimations 
of both the proposed ninth order observer and sixth order 
observer are presented in Table 2. Here, 𝑅𝑟 and 𝑅𝑠 parameters 
are the only parameters that are estimated by both observers, 
which is the main reason why the corresponding MSE values 
are presented for only 𝑅𝑟 and 𝑅𝑠 parameters. 

 

Figure 4. The sixth order EKF estimations and tracking 
performance of the sixth order EKF based drive. 

 

Figure 5. Resulting estimation errors for proposed ninth order 
observer. 
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Figure 6. Estimation errors for sixth order observer.  

Table 2. MSE values related to estimations  

Figure 5 Figure 6 

𝑒𝑅𝑟(Ω) 𝑒𝑅𝑠(Ω) 𝑒𝑅𝑟(Ω) 𝑒𝑅𝑠(Ω) 

4.44x10−5 1.65x10−5 8.13x10−4 1.60x10−4 

As to the estimation results of the proposed EKF, the 
effectiveness of the proposed IM drive, and comparison studies 
given in Figures 3-6, it can be convenient to deduce the 
following remarks: 

 While all initial conditions are zero, the estimations of 
the proposed EKF observer converge to their actual 
values in a swift manner. In the obtained results, the 
transient state is nearly completed for �̂�𝑟, �̂�𝑠, and 𝛾𝑇 
values in 0.2 𝑠 (𝑒𝑅𝑟 = 7.19x10

−4 [Ω]), 0.15 𝑠 (𝑒𝑅𝑠 =

−7.13x10−4 [Ω]), and 0.3 𝑠 (𝑒𝛾𝑇 = 8.62x10
−4 [1/

(𝑘𝑔.𝑚2]), respectively. Furthermore, it is clear that 
the proposed EKF based observer can easily handle 
the DC condition occurring in the time interval of 
14𝑠 ≤ 𝑡 ≤ 19𝑠 and 40𝑠 ≤ 𝑡 ≤ 45𝑠. 

 The estimation accuracy and thus the control 
robustness of the proposed IM drive is highly 
impressive against this challenging scenario for all 
speed regions.  

 Although a fair comparison, meaning test under same 
scenario with the same Q and R matrices elements for 
corresponding states, is performed between the 
proposed ninth order observer and sixth order 
observer in [24], it is clear from Table 2 and Figure 3-
6 that the proposed ninth order observer has better 
estimation performance for both 𝑅𝑟 and 𝑅𝑠, which are 
the estimated parameters for both observers. The 
proposed ninth order observer has also advantages 
over the sixth order observer in [24] since 𝑡𝐿 and 𝛾𝑇 
estimated by the proposed ninth order observer are 
able to improve control performances as shown in 
[28] and [1], respectively. 

 Even if there are challenging changes in 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 
𝛾𝑇 parameters, the proposed EKF still presents 
magnificent estimation performance with 
instantaneous small peaks, which are caused by the 
transients at momentary parameter changes. 

 Although the trial and error method is chosen in the 
determination of the R and Q matrices, highly 
promising estimation results for proposed EKF and 
robust control performance for proposed IM drive is 
obtained against the changes in 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 𝛾𝑇 . 

 In Figure 5, it is clear that there is a DC bias in 𝑒𝑡𝐿. 

However, as it is stated in Section II, the viscous 

friction term is estimated in 𝑡𝐿 in the proposed EKF 
observer. Hence, the DC bias in 𝑒𝑡𝐿 represents the 

viscous friction term. It can be proven as follows: 

𝑒𝑡𝐿 ≅ −𝛽𝑇𝜔𝑚(∞) (12) 

−0.157 ≅ −0.001x
1500 x 2 x 𝜋

60
  (13) 

−0.157 ≅ −0.15707 (14) 

Overall, these simulation results for proposed observer show 
how effectively all these states and parameters, which are also 
estimated in [23] by using bi-input EKF resulting in IM model 
switching requiring for an extra difficulty in determining the 
values of the additional R and Q matrices, are estimated in a 
single EKF without using a hybrid structure or a switching 
operation. 

5 Conclusion 

In this study, a DVC based IM drive, which contains an EKF 
algorithm estimating 𝑖𝑠𝛼 , 𝑖𝑠𝛽  𝜑𝑟𝛼, 𝜑𝑟𝛽, 𝜔𝑚, 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 𝛾𝑇 , is 

proposed. So as to verify the proposed IM drive in simulation, a 
comprehensive and challenging scenario is designed. The 
estimation performance of the proposed ninth order observer 
is compared with that of a sixth order EKF, proposed in [24], 
using directly measured 𝜔𝑚. Thanks to the extension made in 
the H matrix and the use of the equation of motion in the IM 
model, the proposed EKF algorithm can easily estimate overall 
nine states and parameters. The obtained results demonstrate 
the impressive estimation accuracy of the proposed ninth order 
EKF and the highly satisfactory tracking results of the IM drive 
as opposed to the challenging variations in 𝑡𝐿, 𝑅𝑟, 𝑅𝑠, and 𝛾𝑇 as 
well as the speed reference and show superior performance 
over the sixth order EKF, proposed in [24]. Another striking 
point of the study is that the estimation of all nine states and 
parameters are performed in a single EKF observer without 
using a hybrid structure or a switching operation, it reveals the 
superiority of this study over the previous one that estimates 
the same parameters and states. Thus the simulations prove 
that the proposed IM drive is reliable in order to solve the high 
performance control problem by updating parameter 
variations in the proposed EKF. As a future study, to increase 
the robustness of the proposed EKF based observer in the field-
weakening region, inductance values in IM model can be 
estimated and thus updated in both the observer and control 
system. 
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