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ABSTRACT: This study uses high-order sharing deformation theory to model auxetic core layer 

smart sandwich plates and examines their mechanical properties. The outer layers of the smart plate 

consist of electro-elastic BaTiO3 (Barium Titanate) and magnetostrictive CoFe2O4 (Cobalt Ferrite) 

materials. The auxetic core layer consists of a metallic material (Nickel) with varying auxetic cell 

parameters. Three fundamental parametric characteristics of the auxetic core cell are modeled: wall 

thickness parameter, length parameter, and inclination angle. The equations of motion are derived 

from Hamilton's principle and resolved using the Navier method. The findings of this study will 

facilitate the optimal design of smart electromechanical systems intended for operation in high-

temperature environments. 

Keywords: Auxetic Structure, Smart Sandwich Plate, Magneto Strictive Material, Electro Elastic 

Material 
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1. INTRODUCTION 

Magneto-electro-elastic (MEE) materials are a unique class of smart materials that exhibit 

piezoelectric and piezomagnetic properties in a layered configuration (Mahesh et al., 2022). These 

materials, also known as multiferroics, have gained significant attention due to their ability to 

effectively couple different phases, making them valuable in various industries (Moshtagh et al., 

2019). The magnetoelectric coupling effects in MEE materials have led to their widespread use in 

engineering applications such as sensors, actuators, robotics, structural health monitoring, vibration 

control, and medical instruments (Park and Han, 2018). Researchers have explored the development 

of multiphase magneto-electro-elastic (MMEE) materials by varying the volume fractions of different 

components like BaTiO3 and CoFe2O4 (Mahesh and Kattimani, 2019). The study of magneto-electro-

elastic nanoplates has shown that surface effects play a crucial role in the propagation of anti-plane 

shear waves in these materials (Wu et al., 2015). Moreover, polymer-based magneto-electro-elastic 

composites have emerged as promising materials with macro-scale magneto-electric coupling 

achieved through homogenization techniques (Miehe and Vallicotti, 2015). The mechanical behavior 

of magneto-electro-elastic structures has been a subject of intense research, with studies focusing on 

areas such as buckling analysis, free vibration analysis, and crack propagation in these materials 

(Aboudi, 2001; Pan and Han, 2005; Zhou et al., 2018). Investigations into the effects of imperfections 

like cracks and dislocations on the magneto-electro-elastic properties of solids have been conducted 

to understand their structural stability (Wang and Kuna, 2015). Additionally, the study of functionally 

graded magneto-electro-elastic materials has revealed insights into their fracture mechanical 

behaviors and stress analysis (Bagheri et al., 2017; Ma et al., 2007). 

Auxetic materials are a unique class of materials that exhibit a negative Poisson's ratio, meaning 

they expand laterally when stretched longitudinally and contract laterally when compressed 

longitudinally (Aktaş and Güvenç, 2024; Wright et al., 2012). These materials have garnered 

significant interest due to their unconventional properties, such as improved toughness, resilience, 

shear resistance, impact resistance, and shape fitting ability (Shukla and Behera, 2023). Auxetic 

materials include a variety of forms such as auxetic polymers, fibers, yarns, fabrics, and composites 

(Kamrul et al., 2022; Zulifqar and Hu, 2019). They have been applied in diverse fields including civil 

engineering, architecture, sports clothing, and high-performance equipment (Xu et al., 2020). 

Research on auxetic materials has led to the development of auxetic textiles, which have shown 

promise in various applications due to their adaptability and structural variability (Gao and Chen, 

2024). Additionally, auxetic structures have been explored for their mechanical properties, with 

improvements noted in shear, impact, and bending resistance (Peliński et al., 2020). The creation of 

ultra-light auxetic meta-materials with enhanced stiffness and strength has been highlighted as a 

practical advancement in the field (Rayneau-Kirkhope, 2018). 

The thermomechanical behavior of smart plate systems is an increasingly critical area of 

research, as highlighted in previous studies. This study is unique in that it focuses on modeling 

advanced sandwich plates featuring Auxetic core layers alongside electroelastic and magnetostrictive 

surface layers, which has not been widely explored. The use of high-order plate theory enables an 

accurate representation of the complex behavior of these plates, setting this work apart from other 

research in the field. The primary goal was to investigate the thermomechanical buckling behavior of 

these smart sandwich plates within an integrated framework that considers the synergy of the core 

and surface layers. Additionally, a thorough analysis of the thermomechanical properties of the 

piezomagnetic materials used in the surface plates was performed, contributing to the development 

of a highly precise and robust model. This work offers groundbreaking insights that are directly 
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applicable to cutting-edge aerospace and space applications, where metamaterial properties and 

thermal performance are paramount. Furthermore, the findings hold promise for advancing 

electromechanical smart systems and provide valuable solutions for vibration and impact damping in 

high-temperature environments, distinguishing it from other conventional studies in the field. 

 

2. MATHEMATICAL FORMULATION 

As depicted in Figure 1, the rectangular plate is supposed to be thick, composed of metal auxetic 

core and piezo magnetic materials, with dimensions of length a, breadth b, and thickness h. It is 

situated between two piezo-electromagnetic patches with thicknesses of hp. 

 

 
Figure 1. The schematic view of the smart sandwich plate and auxetic cell 

 

The origin is situated in the middle plane, at the center of the plate, and the Cartesian coordinate 

system is used for this problem. The following is the assumption underlying the current formulation 

(Ersoy et al., 2018): 

1. The three layers of the sandwich plate are perfectly connected to one another, preventing 

any slippage at their interfaces. 

2. The properties of the top and bottom piezo-electromagnetic layers are identical and 

homogeneous. 

2.1 Auxetic Core Properties 

The core layer of the proposed sandwich plate is composed of an auxetic material with a 

negative Poisson's ratio, which exhibits superior mechanical properties under mechanical loads and 

strains. When the auxetic core structure is subjected to compressive and tensile loadings, it will 

expand and contract accordingly. Figure 1 displays the geometrical specifications of the auxetic unit 

cell used in the structure's core, such as the inclined angle (θ), rib thickness (t), vertical wall length 

(d), and inclined wall length (1). Nickel is the substance of the auxetic core in this investigation. As 

a result, the following equations (Li et al., 2022a) will connect the mass density and equivalent elastic 

characteristics of the auxetic core to the properties of the nickel (Li et al., 2022b; Nouraei et al., 2023): 

 

𝐸11
𝑐 = 𝐸𝐴𝑙 [

(𝛽1 − sin⁡(𝜃)𝛽3
3

[(𝛽1sec2⁡(𝜃) + tan2⁡(𝜃))𝛽3
2 + 1]cos3⁡(𝜃)

] (1) 
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𝐸22
𝑐 = 𝐸𝐴𝑙 [

𝛽3
3

(𝛽3
2 + tan2⁡(𝜃))(cos⁡(𝜃)𝛽1 − cos⁡(𝜃)sin⁡(𝜃))

] (2) 

 

𝐺12
𝑐 = 𝐸𝐴𝑙 [

𝛽3
3

(2𝛽1
2 + 𝛽1) cos(𝜃)

] (3) 

 

𝐺13
𝑐 = 𝐺𝐴𝑙 [

2sin2⁡(𝜃) + 𝛽1
2(𝜂1 − sin⁡(𝜃))

+
−sin⁡(𝜃) + 𝛽1
2𝛽1 + 1

]
𝛽3

2cos⁡(𝜃)
 (4) 

 

𝐺23
𝑐 = 𝐺𝐴𝑙 [

𝛽3cos⁡(𝜃)

𝛽1 − sin⁡(𝜃)
] (5) 

 

𝜌𝑐 = 𝜌𝐴𝑙 [
(2 + 𝛽1)𝛽3

2(𝛽1 − sin⁡(𝜃))cos⁡(𝜃)
] (6) 

 

where β3 = t/l and β1 = d/l. On the other hand, Poisson's ratio can be obtained directly(Li et al., 

2022b) from the geometrical parameters of the auxetic unit cells (Li et al., 2022b; Nouraei et al., 

2023). Equations (7a) and (7b) calculate the Poisson ratios of a material in the x-y and y-x directions 

depending on the geometric and material parameters and take into account the direction and effect of 

structural deformations. 

 

𝜈12
𝑐 =

(sin⁡(𝜃) − 𝛽1)(sin⁡(𝜃))(1 − 𝛽3
2)

cos2⁡(𝜃)[𝛽3
2(𝛽1sec2⁡(𝜃) + tan2⁡(𝜃)) + 1]

 (7a) 

 

𝜈21
𝑐 =

(𝛽3
2 − 1)sin⁡(𝜃)

(𝛽1 − sin⁡(𝜃))(𝛽3
2 + tan2⁡(𝜃))

 (7b) 

 

Figure 1 is shown to examine the impact of the cell inclination angle (θ) on the Poisson's ratio 

of the auxetic core, with β3=0.0138571 and β1 varying between 1 and 4. It is simple to infer from this 

picture that positive values of lead to negative Poisson's ratios, which is an indication of the auxetic 

core. This figure also shows that when β1 drops, greater values of Poisson's ratio are obtained. 

Determining the temperature-dependent features is essential for accurately forecasting the 

behaviour of the structure. Therefore, the coefficients of thermal conductivity ψef, Poisson's ratio νef,, 

thermal expansion κef, and effective modulus of elasticity Eef, may all be explained by a nonlinear 

temperature function (Abdelmola and Carlsson, 2019). 

 

𝑃 = 𝑃0(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (8) 

 

The P0, P-1, P1, P2 and P3 values of each material with temperature T orders (-1, 0, 1, 2, and 3) 

define P, which in this case stands for the temperature-dependent characteristics of constituents. 

Moreover, according to the effective material properties, temperature variations have very little effect 

on the mass density ρ(z), which is solely a function of z. 

 



Buğday, M. JournalMM (2025), 6(1) 103-120 

 

 
107 

2.2 The types of The Temperature Increase 

Equations for uniform (UTI), nonlinear (NLTI), and linear (LTI) variations in temperature are 

available for each thickness of the sandwich nanoplate. 

If it is assumed that the temperature rises linearly (LTI) from the bottom surface 𝑇𝑏 to the top 

surface 𝑇𝑡 along the thickness, the temperature of a plane extending along the z-axis can be found 

using the following the equation (Kiani and Eslami, 2013): 

 

𝑇(𝑧) = 𝑇𝑏 + (𝑇𝑡 − 𝑇𝑏) (
ℎ + 2𝑧

2ℎ
) (9) 

 

In the event of nonlinear temperature increase (NLTI) through the thickness, the temperatures 

of the sandwich nanoplate's top 𝑇𝑡 and bottom 𝑇𝑏 surfaces can be determined using equation 9 (Zhang, 

2014). 

 

−
𝑑

𝑑𝑧
(𝜅(𝑧)

𝑑𝑇

𝑑𝑧
) = 0, 𝑇 (

ℎ

2
) = 𝑇𝑡,   ⁡𝑇 (−

ℎ

2
) = 𝑇𝑏 (10) 

 

The temperature of the entire FGM sandwich nanoplate, whose initial temperature rises 

consistently from 𝑇0 to T, may be calculated at a uniform temperature increase (UTI) using the 

following equation: 

 

𝛥𝑇 = 𝑇 − 𝑇0 (11) 

𝑇(𝑧) = 𝑇𝑏 +
(𝑇𝑡 − 𝑇𝑏)

∫ ⁡⁡
1

⁡𝜅(𝑧)
𝑑(𝑧)

ℎ
2

−
ℎ
2

∫ ⁡𝜅(𝑧)𝑑𝑧
𝑧

−
ℎ
2

 
(12) 

 

Here 𝜅(𝑧) denotes the thermal conductivity coefficient. In this study the nonlinear temperature 

rise (12) is used for analysis. 

2.3 Displacement Field 

Because shear deformations are significant in the current plate and this system requires a high 

degree of precision, the displacement field is modeled using two SSDT variables, as stated in 

(Tornabene and Viola, 2009) 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
∂𝑤𝑏(𝑥,𝑦,𝑡)

∂𝑥
− 𝑓(𝑧)

∂𝑤𝑠(𝑥,𝑦,𝑡)

∂𝑥
, (13) 

 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
∂𝑤𝑏(𝑥,𝑦,𝑡)

∂𝑦
− 𝑓(𝑧)

∂𝑤𝑠(𝑥,𝑦,𝑡)

∂𝑦
, (14) 

 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑦, 𝑡) + 𝑤𝑠(𝑥, 𝑦, 𝑡) (15) 

 

where u0 v0, wb, and ws are the mid-surface components of displacement and u, v, and w are the 

displacement components of the plate in the directions of x, y, and z. Note that the transverse 

displacements resulting from shearing and bending are represented by the values ws and wb, 

respectively. The shape function, f(z), is also equal to (Yuan and Dawe, 2002): 
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𝑓(𝑧) = 𝑧 −
ℎ

𝜋
sin⁡(

𝜋𝑧

ℎ
) (16) 

 

The strain tensor components about the displacement field in Eq. (9, 10, 11 and, 12) are as 

follows: 

 

𝜀𝑥𝑥 =
∂𝑢

∂𝑥
− 𝑧

∂2𝑤𝑏
∂𝑥2

− 𝑓(𝑧)
∂2𝑤𝑠
∂𝑥2

𝜀𝑦𝑦 =
∂𝑣

∂𝑦
− 𝑧

∂2𝑤𝑏
∂𝑦2

− 𝑓(𝑧)
∂2𝑤𝑠
∂𝑦2

𝛾𝑥𝑦 =
∂𝑣

∂𝑥
+
∂𝑢

∂𝑦
− 2𝑧

∂2𝑤𝑏
∂𝑥 ∂𝑦

− 2𝑓(𝑧)
∂2𝑤𝑠
∂𝑥 ∂𝑦

𝛾𝑦𝑧 = 𝑔(𝑧)
∂𝑤𝑠
∂𝑦

 (17) 

 

where: 

 

𝑔(𝑧) = 1 − 𝑓′(𝑧) (18) 

 

where the normal strain component is εii and the shear strain component is γij (ii=xx, yy and 

ij=xy, yz, xz), respectively. 

2.4 Stress-Strain Relations 

2.4.1 Auxetic plate 

The nonlocal theory defines the stress-strain relations for the porous core as follows (Yuan and 

Dawe, 2002): 

 

[1 − 𝜇2∇2]

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
𝑐11 𝑐12 0 0 0
𝑐21 𝑐22 0 0 0
0 0 𝑐44 0 0
0 0 0 𝑐55 0
0 0 0 0 𝑐66]

 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

 (19) 

 

where cij are the stiffness matrix arrays, ∇2 is the Laplacian operator, σij are the stress 

components, and μ=e1α and is the nonlocal parameter that is determined by molecular dynamics, 

experimental research, and molecular structural mechanics. 

 

𝑐11 = 𝑐22 =
𝐸(𝑧)

1 − 𝑣2
, ⁡𝑐12 = 𝑐21 =

𝜈𝐸(𝑧)

1 − 𝑣2
 (20) 

 

2.5 Solution Procedure 

The motion equations are derived using Hamilton's concept. This idea is stated as follows: 

 

∫  
𝑡2

𝑡1

  (𝛿𝑈 − 𝛿𝑇 − 𝛿𝑊)d𝑡 = 0 (21) 
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U, T, and W stand for external work, kinetic energy, and strain energy, respectively. 

For equations of motion involving plates with easily supported boundary conditions, there is an 

analytical solution. The displacements are regarded as functions that at least meet the different 

geometric boundary conditions based on Navier's solution. 

 

{
 
 

 
 
𝑢0
𝑣0
𝑤𝑏
𝑤𝑠
𝜙
𝜓 }
 
 

 
 

= ∑  

∞

𝑚=1

 ∑  

∞

n=1

 

{
 
 
 
 
 

 
 
 
 
 𝑢‾cos⁡(

𝑚𝜋𝑥

𝑎
) sin⁡(

𝑛𝜋𝑦

𝑏
)

𝑣‾sin⁡(
𝑚𝜋𝑥

𝑎
) cos⁡(

𝑛𝜋𝑦

𝑏
)

𝑤‾ 𝑏sin⁡(
𝑚𝜋𝑥

𝑎
) sin⁡(

ℎ𝜋𝑦

𝑏
)

𝑤‾ 𝑠sin⁡(
𝑚𝜋𝑥

𝑎
) sin⁡(

𝑛𝜋𝑦

𝑏
)

𝜙‾sin⁡(
𝑚𝜋𝑥

𝑎
) sin⁡(

𝑛𝜋𝑦

𝑏
)

𝜓‾sin⁡(
𝑚𝜋𝑥

𝑎
) sin⁡(

𝑛𝜋𝑦

𝑏
) }
 
 
 
 
 

 
 
 
 
 

e𝑖𝜔𝑡 (22) 

 

In this case, the maximum values of the displacement components, electric and magnetic 

potentials, and unknown coefficients are denoted by the variables 𝑢‾ , 𝑣‾, 𝑤‾ 𝑏 , 𝑤‾ 𝑠, 𝜙‾ , and 𝜓‾ . Natural 

frequency is also ω. The following relation results from inserting the suggested functions into the 

equations of motion: 

 

([𝐾] − 𝜔2[𝑀])𝐝 = {0} (23) 

 

where: 

 

{𝑑} = {𝑢‾ , 𝑣‾, 𝑤‾ 𝑏, 𝑤‾ 𝑠, 𝜙‾, 𝜓‾}
𝑇 (24) 

 

The "Appendix" section contains an explanation of the arrays of [K] and [M] matrices. The 

properties of piezo magnetic materials used in this study are presented in Table 1, and the material 

properties of Auxetic core material Ni are shown in Table 2. 

 

Table 1. The magnetic, piezo, electro and thermal properties of CoFe2O4 and BaTiO3 (Esen and Özmen, 2024; Tocci 

Monaco et al., 2021) 

 

 

 

 

 

 

 

 

 

  CoFe2O4 BaTiO3 

𝐶11 [GPa] 286 166 

𝐶22  286 166 

𝐶33  269.5 162 

𝐶12  173 77 

𝐶13  170.5 78 

𝐶23  170.5 78 

𝐶44  45.3 43 

𝐶55  45.3 43 
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Table 1. The magnetic, piezo, electro and thermal properties of CoFe2O4 and BaTiO3 (Esen and Özmen, 2024; Tocci 

Monaco et al., 2021) (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Material properties of the Auxetic core layer (Esen et al., 2022) 

Material Property P-1 P0 P1 P2 P3 

Nickel 

ρ (kg/m3) 0 8900 0 0 0 

E (Pa) 0 223.95x 109 -2.794x10-4 3.998x10-9 0 

υ 0 0.31 0 0 0 

α (1K-1) 0 9.9209x10-6 8.705x10-4 0 0 

ψ (W/mK) 0 58.74 -4.614x10-4 6.670x10-7 -1.523x10-10 

 

3. RESULTS AND DISCUSSION 

3.1 Effect of The Auxetic Cell Parameters on The Mechanical Properties of The Core 

Layer 

Since it is a value frequently used in comparable research in the literature and was thought to 

be a suitable parameter to guarantee the model's accuracy, the value of β1 was set at 2. Furthermore, 

early analytical and experimental evaluations verified that this choice best captures the system's 

physical behavior (Koç et al., 2024; Yıldız and Esen, 2024). 

 

  CoFe2O4 BaTiO3 

𝐶66  56.5 44.5 

𝑒31 [C/m2] 0 -4.4 

𝑒32  0 -4.4 

𝑒33  0 18.6 

𝑞31 [N/A.m] 580.3 0 

𝑞32  580.3 0 

𝑞33  699.7 0 

𝜉11 [10-9C2/N.m2] 0.08 11.2 

𝜉22  0.08 11.2 

𝜉33  0.093 12.6 

𝜁11 = 𝜁22 = 𝜁33 [s/m] 0 0 

𝜒11 [10-6 N.s2/C] -590 5 

𝜒22  -590 5 

𝜒33  157 10 

𝑝11 = 𝑝22 [10-7C/m2K] 0 0 

𝑝33  0 -11.4 

𝜆11 = 𝜆22 [10-5Wb/m2K] 0 0 

𝜆33  -36.2 0 

𝛼1 = 𝛼2 [10-6K-1] 10 15.8 

𝜌 [kg/m3] 5800 5300 
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a) b) 
Figure 2. Variation of the Young Moduli of auxetic layer depending on the inclination angle θ for thickness ratio β3 = 

0.1, 0.15, 0.2 and, 0.25; and for length ratio β1 = 2; a) E11; b) E22 

 

In Figure 2a, the Elasticity Module E11 change at the θ curvature angle between 5°-85° and the 

thickness ratio β3 = 0.1, 0.15, 0.20 and, 0.25 for the length ratio β1 = 2 is presented. Figure 3b shows 

the change of E22 Elasticity Module in the y direction for the same parameters. As seen in Figure 3a, 

E11 gradually increases linearly for the inclination angle between θ = 5° and 50°. Between 50° and 

70°, the increase increases rapidly non-linearly, and between 70° and 85° it increases exponentially 

very quickly. For β3= 0.1, the E11 value at θ = 5° was calculated as 4x108 Pa, at θ = 50° the E11 value 

was calculated as 9x108 Pa, at θ = 70° the E11 value was calculated as 4,3x109 Pa and at θ = 85° the 

E11 value was calculated as 6,3x1010 Pa. When θ = 5° to 50°, the E11 value increased 23 times. When 

θ = increased from 50° to 70°, the E11 value increased 4.8 times; When θ = 70° to 85°, the E11 value 

increased 14.4 times. 

As seen in Figure 2b, E22 decreased very rapidly between θ = 5° and 40°. At θ = 40° to 85°, the 

E22 value decreased approximately linearly. For β3= 0.1, the E22 value at θ = 5° was calculated as 

6x108 Pa, the E22 value at θ = 40° was calculated as 2,7x108 Pa, and the E22 value for θ = 85° was 

calculated as 1,8x107 Pa. From θ = 5° to 40°, the E22 value decreased by 2.2 times, and from θ = 40° 

to 85°, the E22 value decreased by 15.4 times. 

 

  

a) b) 
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c) 
Figure 3. Variation of the Shear Moduli of auxetic layer depending on the inclination angle θ for thickness ratio β3 = 0.1, 

0.15, 0.2 and, 0.25; and for length ratio β1 = 2; a) G12; b) G13 c) G23 

 

In Figure 3a, the Shear Modulus G12 change in the xy direction at the θ inclination angle 

between 5°-85° and the thickness ratio β3 = 0.1, 0.15, 0.20 and, 0.25 for the length ratio β1 = 2 is 

presented. In Figures 3b and 3c, Shear Modules G13 and G23 in xz and yz directions are given for the 

same parameters. As seen in Figure 3a, the Shear Module gradually increases linearly at the 

inclination angle between G12 θ = 5°-70°. Between 70° and 85°, it increases exponentially very 

quickly. For β3= 0.1, the G12 value at θ = 5° was calculated as 2,1x107 Pa, at θ = 70° the G12 value 

was calculated as 60013700 Pa, and at θ = 85° the G12 value was calculated as 2x108 Pa. When θ = 

5° to 70°, G12 value increased by 2.9 times. When θ = 70° to 85°, G12 value increased 3.9 times. 

The result obtained in Figure 3b is similar to Figure 3a. G13 value, Shear Module gradually 

increases linearly at the inclination angle between θ = 5°-70°. Between 70° and 85°, it increases 

exponentially very quickly. For β3= 0.1, the G13 value at θ = 5° was calculated as 9,4x109 Pa, at θ = 

70° the G13 value was calculated as 3,5x1010 Pa, at θ = 85° the G13 value was calculated as 1,4x1011 

Pa. When θ = 5° to 70°, G13 value increased by 3.7 times. When θ = 70° to 85°, G13 value increased 

4.1 times. 

In Figure 3c, G23 value, Shear Module increases linearly at the inclination angle between θ = 

5°-30°. When θ = 30°, G23 value is maximum. Between 30 and 85, the Shear Modulus gradually 

decreases. For β3= 0.1, the G23 value at θ = 5° was calculated as 4,1x109 Pa, at θ = 30° the G23 value 

was calculated as 4,5x109 Pa, and at θ = 85° the G23 value was calculated as 6,8x108 Pa. When θ = 5° 

to 30°, G23 value increased by 1.1 times. When θ = 30° to 85°, G23 value decreased by 6.65 times. 

In Figure 4, the density (ρ) change at the thickness ratio β3 = 0.1, 0.15, 0.20 and, 0.25 values 

for the θ inclination angle between 5° and 85° and the length ratio β1 = 2 is presented. As seen in 

Figure 5, the density (ρ) gradually increases linearly at the inclination angle between θ = 5°-70°. 

Between 70° and 85°, it increases exponentially very quickly. For β3= 0.1, the ρ value at θ = 5° was 

calculated as 934.106 kg/m3, at θ = 70° the ρ value was calculated as 4908.36 kg/m3, and at θ = 85° 

the ρ value was calculated as 20345.8 kg/m3. When θ = 5° to 70°, the ρ value increased by 5.25 times. 

When θ = 70° to 85°, the ρ value increased 4.15 times. 
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Figure 4. Variation of the density ρ of auxetic layer depending on the inclination angle θ for thickness ratio β3 = 0.1, 0.15, 

0.2 and, 0.25; and for length ratio β1 = 2. 

 

  

a) b) 
Figure 5. Variation of the Poisson ratios of auxetic layer depending on the inclination angle θ for thickness ratio β3 = 0.1, 

0.15, 0.2 and, 0.25; and for length ratio β1 = 2; a) ѵ12; b) ѵ21 

 

In Figure 5a, the variation of the Poisson ratio ѵ12 in the xy direction at the thickness ratio β3 = 

0.1, 0.15, 0.20 and, 0.25 for the θ inclination angle between 5° and 85° and the length ratio β1 = 2 is 

presented. Figure 5b shows the Poisson ratio ѵ21 in the yx direction for the same parameters. As seen 

in Figure 5a, the Poisson ratio (ѵ12) gradually increases linearly in the negative direction at the 

inclination angle between θ = 5°-60°. Between 60° and 85°, it increases exponentially and very 

rapidly in the negative direction. For β3= 0.1, ѵ12 value at θ = 5° was calculated as -0.148194, ѵ12 

value at θ = 60° was calculated as -3.18503, and ѵ12 value at θ = 85° was calculated as -23.9868. 

When θ = 5° to 60°, ѵ12 value increased 21.5 times in the negative direction. When θ = 60° to 85°, 

ѵ12 value increased by 7.53 times in the negative direction. 

In the results obtained in Figure 5b, first a peak is seen in the negative direction and then it 

decreases nonlinearly towards zero as the inclination angle increases. We can list the points with 

peaks in the negative direction as follows: At β3=0.1, ѵ21 value at θ =6° is -2.59397, at β3=0.15, at θ 

=9°, ѵ21 value is -2.59397, at β3=0.2, θ =12° ѵ21 value at -1.30753, β3=0.25, ѵ21 value at θ =15° is -

1.03767. At β3 = 0.1, between θ = 5° and 40°, the Poisson ratio first reached its maximum value and 

then increased exponentially towards zero. At θ = 5°, the ѵ21 value was calculated as -2.5506, and at 

θ = 40°, the ѵ21 value was calculated as -0.656603. Between θ = 40°-85°, the Poisson ratio slows 

down and approaches zero. At θ = 85°, ѵ21 value is calculated as -0.0075197. When the θ = value 
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increased from 5° to 40°, the ѵ21 value increased by 3.88 times. When θ = 40° to 85°, ѵ21 value 

increased 87.3 times. 

 

  

a) b) 
Figure 6. Variation of the Thermal expansion coefficients of auxetic layer depending on the inclination angle θ for 

thickness ratio β3 = 0.1, 0.15, 0.2 and, 0.25; and for length ratio β1 = 2; a) α11; b) α22 

 

In Figure 6a, the change of thermal expansion coefficients α11 in the xx direction for the θ 

inclination angle between 5°-85° and the thickness ratio β3 = 0.1, 0.15, 0.20 and, 0.25 for the length 

ratio β1 = 2 is presented. Figure 6b shows the thermal expansion coefficients α22 in the yy direction 

for the same parameters. As seen in Figure 6a, thermal expansion coefficients (α11) increase linearly 

in the negative direction at the inclination angle between α11 θ = 5°-85°. For β3= 0.1, the α11 value at 

θ = 5° was calculated as 5.97x10-7, and at θ = 85°, the α11 value was calculated as -3.64x10-8. When 

θ = 5° to 85°, the α11 value increased 21.5 times in the negative direction. When θ = 60° to 85°, α11 

value increased 16.4 times in the negative direction. 

In Figure 6b, while the α22 value increases linearly at the inclination angle between θ = 5°-70°, 

it increases rapidly exponentially between θ = 70°-85°. For β3= 0.1, the α22 value at θ = 5° was 

calculated as 5.24x10-7, at θ = 70° the α22 value was calculated as 2.15x10-6, and at θ = 85° the α22 

value was calculated as 8.60x10-6. When θ = 5° to 70°, the α22 value increased by 4.1 times. When θ 

= 70° to 85°, the α22 value increased 4 times. 

 

4. CONCLUSIONS 

The study examines the thermomechanical characteristics of auxetic core smart sandwich plates 

utilizing high-order shear deformation theory. The outer layers of the smart plate consist of 

electroelastic BaTiO3 (Barium Titanate) and magnetostrictive CoFe2O4 (Cobalt Ferrite) materials. 

The mechanical properties of the core layer, encompassing elastic modulus, shear modulus, density, 

Poisson's ratios, and thermal expansion coefficients, are derived from the parameters of the auxetic 

cell, including length, thickness, and inclination angle. The results obtained are summarized as 

follows: 

The elastic moduli in the E11 and E22 directions are significantly influenced by the length 

parameter β1 and the thickness parameter β3 of the auxetic layer cell, contingent upon the inclination 

angle. The elastic modulus in the E11 direction demonstrates exponential growth as the inclination 

angle θ increases, particularly beyond θ = 60°. Until θ attains 60°, the ascent velocity is comparatively 
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gradual. Conversely, E22 exhibits an exponential decline until θ attains 40°. After θ = 40°, the descent 

rate markedly decreases. 

The shear moduli in the G12, G13, and G23 directions are substantially influenced by the length 

parameter β1 and the thickness parameter β3 of the auxetic layer cell, contingent upon the inclination 

angle. The shear modulus in the G12 and G13 axes demonstrates exponential growth as the inclination 

angle θ increases, particularly beyond θ = 60°. The ascent rate remains comparatively gradual until θ 

attains 60°. Conversely, G23 exhibits an increase until θ attains 30°. The descent rate exhibits an 

exponential decline at an angle of θ = 40°.  

The density ρ is significantly influenced by the length parameter β1 and the thickness parameter 

β3 of the auxetic layer cell, contingent upon the inclination angle. The object's density increases 

proportionally with the elevation of the inclination angle θ. At an angle of θ = 60°, the precipitation 

amount undergoes exponential growth. 

The length parameter β1 and the thickness parameter β3 of the auxetic layer cell are significantly 

influenced by the Poisson ratios in the ѵ12 and ѵ21 directions, which are contingent upon the 

inclination angle. The Poisson ratio in the ѵ12 direction diminishes as the inclination angle θ rises. 

The value undergoes exponential growth after θ = 60°. In contrast, ѵ21 initially declines until θ = 5°, 

after which it exhibits exponential growth. 

The thermal expansion coefficients in the α11 and α22 directions are significantly influenced by 

the length parameter β1 and the thickness parameter β3 of the auxetic layer cell, which are contingent 

upon the inclination angle. The thermal expansion coefficients in the α11 direction exhibit a linear 

decline with increasing inclination angle θ. Conversely, as the angle of inclination increases, α22 also 

rises, exhibiting an exponential growth pattern, particularly beyond θ = 60°. 
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2

−
ℎ
2
−ℎ𝑝

 𝑔33 (
𝜋

ℎ𝑝
)

2

sin2⁡(
𝜋�̂�

ℎ𝑝
)d𝑧 + ∫  

ℎ
2
+ℎ𝑝

ℎ
2

 𝑔33 (
𝜋

ℎ𝑝
)

2

sin2⁡(
𝜋�̂�

ℎ𝑝
)d𝑧

{𝑆20, 𝑆22} = ∫  
−
ℎ
2

−
ℎ
2
−ℎ𝑝

  cos2⁡(
𝜋�̂�

ℎ𝑝
) {𝜇11, 𝜇22}d𝑧 + ∫  

ℎ
2
+ℎ𝑝

ℎ
2

  cos2⁡(
𝜋�̂�

ℎ𝑝
) {𝜇11, 𝜇22}d𝑧
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𝑆30 = ∫  
−
ℎ
2

−
ℎ
2
−ℎ𝑝

 𝜇33 (
𝜋

ℎ𝑝
)

2

sin2⁡(
𝜋�̂�

ℎ𝑝
)d𝑧 + ∫  

ℎ
2
+ℎ𝑝

ℎ
2

  𝜇33 (
𝜋

ℎ𝑝
)

2

sin2⁡(
𝜋�̂�

ℎ𝑝
) d𝑧

𝐾11 = −
𝑚2𝜋2

𝑎2
𝐴11 −

𝑛2𝜋2

𝑏2
𝐴66

𝐾12 = −
𝑚𝑛𝜋2

𝑎𝑏
(𝐴12 + 𝐴66)

𝐾13 =
𝑚3𝜋3

𝑎3
𝐵11
𝑏 +

𝑚𝑛2𝜋3

𝑎𝑏2
(𝐵12

𝑏 + 2𝐵66
𝑏 )

 

𝐾14 =
𝑚3𝜋3

𝑎3
𝐵11
𝑠 +

𝑚𝑛2𝜋3

𝑎𝑏2
(𝐵12

𝑠 + 2𝐵66
𝑠 )

𝐾15 =
𝑚𝜋

𝑎
𝑃11

𝐾16 =
𝑚𝜋

𝑎
𝐽11

𝐾22 = −
𝑚2𝜋2

𝑎2
𝐴66 −

𝑛2𝜋2

𝑏2
𝐴22

𝐾23 =
𝑚2𝑛𝜋3

𝑎2𝑏
(𝐵12

𝑏 + 2𝐵66
𝑏 ) +

𝑛3𝜋3

𝑏3
𝐵11
𝑏 ,

𝐾24 =
𝑚2𝑛𝜋3

𝑎2𝑏
(𝐵12

𝑠 + 2𝐵66
𝑠 ) +

𝑛3𝜋3

𝑏3
𝐵22
𝑠

𝐾25 =
𝑛𝜋

𝑏
𝑃12

𝐾26 =
𝑛𝜋

𝑏
𝐽12

𝐾33 = −
𝑚4𝜋4

𝑎4
𝐷11
𝑏 −

2𝑚2𝑛2𝜋4

𝑎2𝑏2
(𝐷12

𝑏 + 2𝐷66
𝑏 ) −

𝑛4𝜋4

𝑏4
𝐷22
𝑏 − [𝑘1 + 𝑘2𝜋

2 (
𝑚2

𝑎2
+
𝑛2

𝑏2
)

−(𝑁0𝑥 +𝑁𝐸𝑥 + 𝑁𝐻𝑥)
𝑚2𝜋2

𝑎2
− (𝑁0𝑦 + 𝑁𝐸𝑦 + 𝑁𝐻𝑦)

𝑛2𝜋2

𝑏2
]

𝐾34 = −
𝑚4𝜋4

𝑎4
𝐷11
𝑠 −

2𝑚2𝑛2𝜋4

𝑎2𝑏2
(𝐷12

𝑠 + 2𝐷66
𝑠 ) −

𝑛4𝜋4

𝑏4
𝐷22
𝑠 − [𝑘1 + 𝑘2𝜋

2 (
𝑚2

𝑎2
+
𝑛2

𝑏2
)

−(𝑁0𝑥 +𝑁𝐸𝑥 + 𝑁𝐻𝑥)
𝑚2𝜋2

𝑎2
− (𝑁0𝑦 + 𝑁𝐸𝑦 + 𝑁𝐻𝑦)

𝑛2𝜋2

𝑏2
]

𝐾35 = −
𝑚2𝜋2

𝑎2
𝑃13 −

𝑛2𝜋2

𝑏2
𝑃14

𝐾36 = −
𝑚2𝜋2

𝑎2
𝐽13 −

𝑛2𝜋2

𝑏2
𝐽14

𝐾44 = −
𝑚4𝜋4

𝑎4
𝐻11
𝑠 −

2𝑚2𝑛2𝜋4

𝑎2𝑏2
(𝐻12

𝑠 + 2𝐻66
𝑠 ) −

𝑛4𝜋4

𝑏4
𝐻22
𝑠 −

𝑚2𝜋2

𝑎2
𝐴55
𝑠 −

𝑛2𝜋2

𝑏2
𝐴44
𝑠

⁡− [𝑘1 + 𝑘2𝜋
2 (
𝑚2

𝑎2
+
𝑛2

𝑏2
) − (𝑁0𝑥 +𝑁𝐸𝑥 + 𝑁𝐻𝑥)

𝑚2𝜋2

𝑎2
− (𝑁0𝑦 + 𝑁𝐸𝑦 +𝑁𝐻𝑦)

𝑛2𝜋2

𝑏2
]

𝐾45 = −
𝑚2𝜋2

𝑎2
(𝑃15 − 𝑃17) −

𝑛2𝜋2

𝑏2
(𝑃16 − 𝑃18)

𝐾46 = −
𝑚2𝜋2

𝑎2
(𝐽15 − 𝐽17) −

𝑛2𝜋2

𝑏2
(𝐽16 − 𝐽18),

𝐾55 =
𝑚2𝜋2

𝑎2
𝑃20 +

𝑛2𝜋2

𝑏2
𝑃22 + 𝑃30,

𝐾56 =
𝑚2𝜋2

𝑎2
𝐽20 +

𝑛2𝜋2

𝑏2
𝐽22 + 𝐽30

𝐾66 =
𝑚2𝜋2

𝑎2
𝑆20 +

𝑛2𝜋2

𝑏2
𝑆22 + 𝑆30

𝑀11 = 𝑀22 = −𝐼0
𝑀12 = 𝑀15 = 𝑀25 = 𝑀35 = 𝑀45 = 𝑀55 = 𝑀56 = 𝑀16 = 𝑀26 = 𝑀36 = 𝑀46 = 𝑀66 = 0,

𝑀13 = 𝐼1
𝑚𝜋

𝑎

𝑀14 = 𝐼2
𝑚𝜋

𝑎

𝑀23 = 𝐼1
𝑛𝜋

𝑏
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𝑀24 = 𝐼2
𝑛𝜋

𝑏
[1 + 𝜇2𝜋2 (

𝑚2

𝑎2
+
𝑛2

𝑏2
)]

𝑀33 = − [𝐼0 + 𝐼3𝜋
2 (
𝑚2

𝑎2
+
𝑛2

𝑏2
)]

𝑀34 = − [𝐼0 + 𝐼4𝜋
2 (
𝑚2

𝑎2
+
𝑛2

𝑏2
)]

𝑀44 = − [𝐼0 + 𝐼5𝜋
2 (
𝑚2

𝑎2
+
𝑛2

𝑏2
)]

 


