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Abstract 

Despite the considerable pathogenic impact of Candida albicans in human health, the gap in understanding 

the cellular recognition mechanisms and subsequent host defence activation remain insufficiently 

understood. Recent insights underscore the pivotal role of Toll-like receptors (TLRs) in organising innate 

immune responses against pathogens. Notably, empirical investigations over recent years have underscored 

TLRs as paramount pattern-recognition receptors in mammals. TLR2, for examples, exhibits affinity for 

peptidoglycans, lipoarabinomannan, and bacterial lipoproteins, while TLR4 implicated in detecting 

lipopolysaccharide (LPS) and lipo-teichoic acid. Similarly, TLR5 recognizes flagellin, and TLR9 is 

associated with bacterial DNA recognition. The initial identification of Toll in Drosophila as a regulator of 

antifungal mechanisms suggests the potential involvement of TLRs in mammalian antifungal defence. 

However, scant attention has been devoted to delineating the role of TLRs in combating fungal pathogens 

in humans, despite the evolutionary link between Toll in Drosophila and antifungal mechanisms, suggesting 

a plausible involvement of TLRs in mammalian antifungal defense. Notably, evidence implicates TLR4, 

but not TLR2, in inducing proinflammatory cytokines in response to Aspergillus fumigatus, while its role 

is purported to mediate intracellular signaling, albeit not TNF production, after stimulation of cells with 

Cryptococcus neoformans. However, insights into TLR activation rules have enabled the examination of 

antimicrobial peptide (AMP) interactions with TLRs, facilitating predictions regarding the 

immunomodulatory capacities of diverse molecules. Despite these advancements, the specific role of TLRs 

in recognizing Candida albicans, a prominent human pathogen, remains elusive, warranting further 

investigation. This computational approach synthesizes recent findings elucidating the interactions between 

AMPs and TLRs, delineating the structural determinants governing TLR activation, thus enabling predictive 

insights into the immunomodulatory potential of diverse molecular entities. 
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1. Introduction 

Fungal infections represent a global health concern with 

a rapid climb in incidence observed over the past three 

decades, affecting both immunocompromised patients 

and those considered healthy individuals [1, 2]. The 

prevalence of superficial fungal infections is estimated to 

surpass 1 billion cases annually, with a tendency toward 

underreporting and escalating incidence [2]. Among 

fungal strains, Candida strains, particularly Candida 

albicans, exhibit significant clinical relevance, ranking as 

the fourth cause of nosocomial bloodstream infections in 

numerous European countries and the United States [3]. 

Candida albicans remains a predominant etiological 

agent across mucosal and systemic infections, leading 

substantially to morbidity and mortality [4]. The 

treatment landscape for serious fungal infections 

primarily revolves around polyene antifungal drugs 

(amphotericin B) and its lipid formulations, azoles 

including fluconazole, itraconazole, voriconazole, 

posaconazole, and echinocandins including caspofungin, 

micafungin, and anidulafungin [5]. Although 

amphotericin B was previously regarded as the gold 

standard for invasive fungal infections, its nephrotoxicity 
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and related renal failure have resulted in its restricted 

utilization, with lipid formulations emerging as 

alternatives albeit with higher costs [6]. Fluconazole have 

prized for its high oral absorption rate and independence 

from gastric pH [7], and finds preferential approaches in 

candida infections due to its urinary concentration, 

facilitating the management of Candida spp. urinary 

infections [8]. Echinocandins, the novel class of 

antifungals, represent efficacy in invasive infections and 

are recommended as initial therapy based on compelling 

evidence interacting them with reduced mortality from 

patient-level analysis of randomized trial data [9, 10]. 

Contrarily, itraconazole’s limited bioavailability and 

inclination for adverse effects and drug interactions 

restrict its clinical utility [11].  

The surge in candidemia incidence is associated with 

some factors such as the increased invasive procedures, 

the heightened susceptibility within risk populations, the 

prolonged medical device usage and randomly use of 

broad-spectrum antibiotics and chemotherapeutic 

formulations [12]. Despite advancements in antifungal 

pharmacology, common invasive fungal infections 

continue to bear high mortality rates, underscoring the 

urgent need for novel antifungal agents targeting diverse 

fungal vulnerabilities [13]. Antimicrobial peptides 

(AMPs) exhibit a promising avenue in this pursuit, with 

research indicating their potential in attenuating pathogen 

virulence, particularly in inhibiting biofilm formation. 

The Antimicrobial Peptide Database currently catalogues 

a significant number of AMPs, with ongoing interest in 

their design and development toward combating drug-

resistant infections and modulating immune responses 

[14]. AMPs are widely found in a variety of organisms 

such as bacteria, archaea, protists, fungi, plants, 

amphibians, insects, fish and mammals. AMPs, a 

significant component of innate immunity, are produced 

in areas of the body which are most vulnerable to 

pathogen invasion. As of January 2024, the 

Antimicrobial Peptide Database documents a vast array 

of peptides, including 3146 natural antimicrobial 

peptides and those with 1399 antifungal peptides and 144 

human host defense properties, signaling the burgeoning 

interest in AMPs as therapeutic candidates. The data was 

accessed on 2 April 2024 from https://aps.unmc.edu/. 

With the resurgence of drug-resistant infections, there is 

renewed emphasis on designing and developing AMPs 

with potent, selective activity and favorable 

immunomodulatory profiles [15, 16]. Utilizing an 

innovative amalgamation of techniques spanning 

chemistry, computational biology, and immune 

activation experiments, a novel physical approach for 

AMP-induced immunomodulation via Toll-like 

receptors (TLRs) is described. Current research focuses 

on distinguishing between agonistic and antagonistic 

roles of TLR-targeting agents and their tailored 

application in treating distinct diseases [17]. TLR 

agonists are employed to enhance innate immune 

responses for addressing various disorders such as 

cancers, chronic infections, and asthma, whereas TLR 

antagonists are responsible for managing inflammatory 

conditions like sepsis, chronic pulmonary and 

cardiovascular diseases, and autoimmune diseases [18, 

19]. Recent studies have extensively explored the 

structural and ligand recognition aspects of Toll-like 

receptors, often utilizing computational methodologies 

for their analysis [20, 21]. The increasing incorporation 

of computational tools has led to a deeper comprehension 

of the complex interaction between TLRs and AMPs. 

Thus, the body of literature underscores the dual role of 

AMPs in triggering both pro-inflammatory and anti- 

inflammatory immune responses, contingent upon 

biological context of TLRs. 

 

2. Materials and Methods 

 

2.1. Data Collection/ or/ Retrieval and Prediction of 

Antimicrobial Peptides and Toll-like Receptors 

 

Within the framework of the study, eight AMPs and five 

receptor TLR proteins were investigated. If the 3D 

structure of the studied AMP was not available at Protein 

Data Bank, 3D structures of TLR proteins, as predicted 

by AlphaFold 2, were retrieved from Uniprot 

(https://www.uniprot.org/) database [22]. Only 

extracellular domains of TLRs were used. TLRs whose 

structures were retrieved from the Uniprot are as follows: 

TLR2 (Uniprot entry ID: O60603), TLR3 (entry ID: 

O15455), TLR4 (entry ID: O00206), TLR8 (entry ID: 

Q9NR97), TLR9 (entry ID: Q9NR96). Structures of five 

AMPs were retrieved from protein databank 

(https://www.rcsb.org/ ) in pdb format [23]. The AMPs 

and their PDB IDs are as follows: betadefensin1 (PDB 

ID: 1IJV), betadefensin2 (PDB ID: 1FD3), betadefensin3 

(PDB ID: 1KJ6), LL-37 (PDB ID: 2K6O). Structures of 

beta defensin 4, psoriasin, CGA-N46 and histatin 5 

peptides were predicted using ColabFold-v.1.5.5 

(https://github.com/sokrypton/ColabFold) [24]. 

 

 

2.2. Protein - Protein Docking and SASA Calculation 

 

TLR proteins and peptides were docked onto each other 

using ClusPro (https://cluspro.org)  protein-protein 

docking server [25]. All possible binding positions were 

evaluated visually to identify reasonable binding poses 

(i.e. between the AMP and the ligand binding interface 

of TLR). Changes in Solvent accessible solvent area 

(SASA) (∆𝑆𝐴𝑆𝐴) values between unbound and bound 

complexes were calculated. Complexes showing the 

highest change were selected for Molecular Dynamics 

(MD) simulation study. SASA calculations were 

performed using PyMOL. Changes in SASA were 

calculated using the following equation (1).

              

https://aps.unmc.edu/
https://www.uniprot.org/
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https://github.com/sokrypton/ColabFold
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∆𝑆𝐴𝑆𝐴= 𝑆𝐴𝑆𝐴𝐶𝑜𝑚𝑝𝑙𝑒𝑥 − (𝑆𝐴𝑆𝐴𝑃𝑒𝑝𝑡𝑖𝑑𝑒 + 𝑆𝐴𝑆𝐴𝑃𝑟𝑜𝑡𝑒𝑖𝑛  )                                                             (1)

 

2.3. Molecular Dynamics (MD) Simulations 

 

AMP-TLR docked complexes were used as starting 

structures in MD simulations. Final structures were 

prepared using CHARMM-GUI web server for MD 

simulations [26, 27]. The systems include 0.15M K+ and 

Cl- ions. TIP3 was used as the water model. The systems 

were solvated with a 10.0 Å padding distance from each 

boundary in a box to create reasonable conditions for 

periodic boundaries. CHARMM36 force field was used 

in simulations [28], which were conducted using gromacs 

2020 [29]. Each simulation was conducted for 100ns 

three times. Prior to each simulation, the prepared system 

was minimized with 5000 (10 ps) steps and equilibrated 

with 125000 (250ps) steps. The systems were simulated 

at 310 K, using a 2-fs time step.  Visual Molecular 

Dynamics (VMD) was used to visualize trajectories [30]. 

Total simulation time was 2.4 microseconds (µs) for 24 

systems. Each system was prepared for simulation using 

CHARMM-GUI webserver [26, 27]. 

 

2.4. Root Mean Square Deviation (RMSD) and Root 

Mean Square Fluctuation (RMSF) calculations 

 

Root Mean Square Deviation (RMSD) and Root Mean 

Square Fluctuation (RMSF) calculations of three 

simulation repeats for each simulation complex were 

performed using ProDy [31]. RMSD time profiles were 

computed by superposing alpha-carbon coordinates onto 

the starting conformation. RMSF calculations were also 

similarly performed based on alpha-carbon coordinates, 

after selecting the equilibrated portions of trajectories 

(i.e. between 20 and 100 ns, identified based on the 

RMSD time profiles), and superposing the conformations 

in these portions onto the average conformation. 

Standard deviations were calculated for all simulations 

and shown in the graph.  

 

2.5. Molecular Mechanics/Poisson-Boltzmann 

Surface Area (MM/PBSA) calculations 

Molecular Mechanics/Poisson-Boltzmann Surface Area 

(MM/PBSA) calculations were performed to estimate the 

binding free energies (FEB) of the simulated AMP-TLR 

systems [32]. The analysis was conducted using 100 

frames extracted from the equilibrated portions of the 

molecular dynamics (MD) simulation trajectories. 

gmx_MMPBSA was used to perform MM/PBSA 

calculations [33].  

 

 

 

 

3. Results and Discussion 

3.1. Data Collection/ or/ Retrieval and Prediction of 

Antimicrobial Peptides and Toll-like Receptors 

The AMPs studies include beta defensin 1, beta defensin 

2, beta defensin 3, beta defensin 4, CGA-N46, psoriasin, 

LL-37 and histatin 5. Potential interactions between these 

AMPs and five TLR receptors, namely TLR2, TLR3, 

TLR4, TLR8 and TLR9, were investigated. The selected 

TLR receptor proteins are not found in the Protein Data 

Bank as full structures, including the N-terminal domain 

(ectodomain responsible for ligand recognition), C-

terminal domain (endodomain, cytoplasmic part of the 

protein responsible for signal transduction inside the 

cell), and finally the transmembrane part of the structure 

with helical structure [34]. During the AMPs recognition 

processes, ectodomain of TLRs plays a vital role [35].  

Therefore, ectodomains of TLR Alphafold2-predicted 

structures were used in further modeling studies.  

 

3.2. Protein - Protein Docking and SASA Calculation 

 

Interaction of the AMPs and TLRs were evaluated [36]. 

For this purpose, a protein-protein rigid docking server, 

Cluspro, was used. Waters, ions and other heteroatoms 

were removed from the structure. In the experimental 

structures. Only single chains were used in docking 

simulations. All AMPs were found to dock onto surfaces 

of all five TLRs. In total, 40 protein-protein docking 

studies were performed. All results were visualized using 

PyMOL, and only results that yielded a reasonable 

interaction mode between the AMP and TLR were taken 

into consideration [37]. For each docked pairs, 10 out of 

40 docking results were evaluated to choose best 

complex. The evaluation was based on calculation of 

changes in Solvent Accessible Surface Area (SASA) 

upon binding of AMPs to the TLRs [38]. In total, 400 

docked complexes were evaluated. Only the docked 

complex showing the lowest SASA value was chosen for 

each AMP-TLR pair. Then, best AMP-TLR complex was 

chosen for each peptide by calculating ∆𝑺𝑨𝑺𝑨  values 

(Table 1) using PyMOL. Failure to bury a significant 

surface area on the TLR, and thus relatively high delta-

SASA values may indicate relatively instable systems 

[39] [40]. Therefore, docked complexes that showed 

lowest ∆𝑺𝑨𝑺𝑨  value between each AMP and TLR were 

chosen as a starting file for further MD simulation 

studies. (Figure1). These pairs are highlighted in Table 

1. It can be seen that the AMPs showed the most 

favorable interactions, in terms of buried SASA amounts, 

with either TLR8 and TLR9. 
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Table1. SASA calculation results of each Cluspro docking simulation. 

AMP TLR  𝑺𝑨𝑺𝑨𝑻𝑳𝑹 (Å2) 𝑺𝑨𝑺𝑨𝑨𝑴𝑷 (Å2) 𝑺𝑨𝑺𝑨𝑪𝑶𝑴𝑷𝑳𝑬𝑿 (Å2) ∆𝑺𝑨𝑺𝑨 (Å2) 

Betadefensin 1 TLR2 28.267 2.655 28.786 -2.136 

Betadefensin 1 TLR3 31.435 2.785 32.037 -2.183 

Betadefensin 1 TLR4 28.562 2.730 29.205 -2.087 

Betadefensin 1 TLR8 38.059 2.859 37.972 -2.946 

Betadefensin 1 TLR9 39.121 2.868 38.996 -2.993 

Betadefensin 2 TLR2 28.249 4.975 30.130 -3.095 

Betadefensin 2 TLR3 31.396 5.051 33.992 -2.455 

Betadefensin 2 TLR4 28.693 5.006 30.728 -2.971 

Betadefensin 2 TLR8 37.957 5.173 39.139 -3.991 

Betadefensin 2 TLR9 39.019 5.096 40.299 -3.817 

Betadefensin 3 TLR2 28.225 4.005 29.813 -2.418 

Betadefensin 3 TLR3 31.360 3.834 32.528 -2.666 

Betadefensin 3 TLR4 28.533 3.888 30.310 -2.112 

Betadefensin 3 TLR8 37.90 3.899 38.430 -3.373 

Betadefensin 3 TLR9 38.934 4.007 39.298 -3.644 

Betadefensin 4 TLR2 28.319 6.517 31.639 -3.197 

Betadefensin 4 TLR3 31.414 6.437 34.303 -3.549 

Betadefensin 4 TLR4 28.721 6.587 32.119 -3.189 

Betadefensin 4 TLR8 37.849 6.586 39.594 -4.841 

Betadefensin 4 TLR9 39.049 6.323 41.348 -4.025 

CGA-N46 TLR2 28.229 4.558 29.539 -3.249 

CGA-N46 TLR3 31.425 4.544 34.127 -1.842 

CGA-N46 TLR4 28.661 4.350 30.467 -2.544 

CGA-N46 TLR8 37.813 4.535 39.113 -3.234 

CGA-N46 TLR9 39.012 4.551 39.739 -3.824 

Histatin5 TLR2 
   

ND* 

Histatin5 TLR3 31.367 2.864 32.595 -1.637 

Histatin5 TLR4 28.621 2.872 29.658 -1.836 

Histatin5 TLR8 37.934 2.906 37.429 -3.412 

Histatin5 TLR9 39.047 2.698 38.476 -3.270 

LL-37 TLR2       ND* 

LL-37 TLR3 31.460 4.207 34.002 -1.666 

LL—37 TLR4 28.596 4.107 30.409 -2.296 

LL37 TLR8 
   

ND* 

LL-37 TLR9 38.952 4.071 39.142 -3.882 

Psoriasin TLR2       ND* 

Psoriasin TLR3 
   

ND* 

Psoriasin TLR4 28.619 6.403 31.800 -3.222 

Psoriasin TLR8 37.898 6.140 39.860 -4.178 
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Psoriasin TLR9 38.950 6.109 41.526 -3.534 

*ND: Docking pose unreasonable (i.e. not interacting with the ligand binding interface of the TLR). 

 

Figure 1. Results with the lowest delta SASA values. Colored structures denote TLRs, black structures denote 

AMPs (a) Beta defensin 1 - TLR9 (b) Beta defensin 2 - TLR9 (c) Beta defensin 3 - TLR9 (d) Beta defensin 4 - 

TLR8 (e) CGA-N46 - TLR9 (f) Histatin 5 - TLR8 (g) LL-37 - TLR9 (h) Psoriasin - TLR8. 

3.3. Conformational Stabilities of Complexes 

 

MD simulations were next used to probe the stability of 

the identified docking poses between selected TLRs and 

AMPs by incorporating the dynamic nature of protein-

protein interactions at atomistic scale [40]. Cluspro 

results yield only rigid interaction information; however, 

stability of binding is also important for investigation 

function of AMPs on the body [39]. We thus calculated 

RMSD-time and RMSF profiles of the complexes 

subjected to MD simulations (Figure 2 and Figure 3). 

 
Figure 2. RMSD and FEB time profiles of the simulated TLR-AMP complexes. 
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Beta defensin 1 - TLR9 complex showed fluctuations 

between 1.5-3.0 Å in the RMSD plot, whereas beta 

defensin 2 - TLR9 complex fluctuated around 3.5-4.0 Å. 

Increased fluctuation at around 60ns of the simulation 

was identified to be due to changing location of the 

peptide in the third simulation. After the 80ns, the system 

appeared to fluctuate around 4 Å with only small 

deviations. Beta defensin 3 - TLR9 complex was found 

to fluctuate around 3Å. However, the scale of 

fluctuations was found to be larger than those involving 

beta defensin 1 and beta defensin 2. The levels of these 

fluctuations were found to be even higher for beta 

defensin 4-TLR8 complex. CGA-N46 – TLR9 

simulation could not reach a stable RMS, with a visible 

drift that lasted until the end of the simulation. LL-37-

TLR9 simulation fluctuated around 3 Å until end of the 

simulation.  

In contrast to the RMSD plot, the RMSF profiles were 

mostly similar to each other, indicating highly stable 

systems. It should be noted, however, that this does not 

directly correspond to stability of the bound AMPs to 

their respective TLR targets. Hence, the RMSD plot was 

considered a better measure of binding stability of the 

AMPs. 

 
Figure 3. RMSF graphs of TLR-AMP complexes. 

FEBs of TLR-AMP complexes as identified during the 

simulations are also shown in Figure 2 (second and fourth 

rows). FEB of beta defensin 1-TLR9 and beta defensin 2-

TLR9 complexes were found to be similar to each other 

at around -25 kcal/mol. It is interesting to note that the 

conformational fluctuation in the beta defensin 2-TLR9 

complex at around 60 ns in RMSD plot is also reflected 

on the FEB time profile, indicating that the 

conformational change involves a rearrangement of 

TLR-AMP interaction. The FEB of beta defensin 3-

TLR9 interaction was found to deviate around -5 

0kcal/mol, and a decreasing profile exists. Beta 
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defensin4-TLR8 interaction yielded an unstable FEB 

profile, which deviates between -25 kcal/mol and -50 

kcal/mol, again corresponding to the large fluctuation 

seen in the RMSD plot. CGA-N46-TLR9 complex 

yielded a decreasing FEB profile from -50 kcal/mol to -

75 kcal/mol, indicating that the conformational change 

observed in the RMSD plot is due to rearrangements of 

AMP-TLR interactions toward a more stable binding 

pose. The simulation length was likely not sufficient to 

identify the final equilibriated interaction mode. LL-37-

TLR9 has the lowest average FEB value, which deviated 

between -80 kcal/mol and -120kcal/mol. Histatin 5-

TLR8 and psoriasin-TLR8 complexes also showed 

similar FEB profiles as in the RMSD plot, and showed 

deviations between -40 kcal/mol and -80kcal/mol.  

 

Based on empirical findings obtained from murine 

models, the involvement of TLRs, notably TLR2, TLR4, 

and TLR9, in Candida albicans infections has been 

indicated. These TLRs primarily induce AMP-responses 

rather than triggering the production of proinflammatory 

cytokine [41-43]. Recent interdisciplinary research, 

integrating experimental observations with 

computational simulations, has illustrated the 

multifaceted outcomes resulting from this recognition 

mechanism. Simultaneously, recent inquiries have 

emphasized the significant role of TLR-3 in detecting 

skin injuries by the recognition of damage-associated 

molecular patterns (DAMPs), which leads to the 

secretion of cytokines, chemokines, growth factors, and 

AMPs like LL-37 [44, 45]. While numerous studies have 

elucidated the impact of AMPs on TLR9 activation 

through DNA binding, emerging evidence suggests 

AMPs also modulate TLR3-mediated immune responses 

to double-stranded RNA (dsRNA). The critical 

importance of TLR7 and TLR8 has been underscored to 

clarify their contribution to the host’s defence 

mechanisms against microbial threats [46, 47]. 

Investigations have delineated TLR8 predominates in 

monocytes and myeloid dendritic cells (mDCs) to 

stimulate pro-inflammatory cytokines such as tumor 

necrosis factor (TNF-α) [48, 49]. 

4. Conclusions and Outlook 

While computer-aided design and high throughput 

screening methodologies for AMPs have witnessed 

substantial advancements, a fundamental query persists: 

are we fostering the development of efficacious 

therapeutic agents within the immune system? This 

question presents an intriguing and paradoxical mystery. 

The enrichment of peptide sequence databases, 

particularly concerning their relation to TLRs, has 

significantly contributed to the emergence of peptide-

based therapeutic alternatives for Candida infections. 

However, the current landscape unveils a disjunction 

between the AMP sequences identified/generated and the 

functional and structural attributes of TLRs observed in 

clinical trials, encompassing computationally designed 

AMPs. Despite the notable progress in peptide-based 

therapeutic approaches, computationally designed AMPs 

and their interaction with TLRs have not yet advanced to 

more sophisticated clinical trials targeting fungal 

infections. Nonetheless, the substantial advancements in 

peptide development facilitated by computer-aided 

methods underscore the potential for enriching AMPs 

associated with TLRs as future therapeutic options. The 

pivotal insights provided by these computational 

approaches, encompassing ClusPro (https://cluspro.org)  

protein-protein docking server and SASA calculation, 

hold immense promise for optimizing AMP sequences 

and their interaction with TLRs, thereby enhancing 

therapeutic efficacy against Candida infections. 

Anticipated advancements in highly accurate 

computational methods are poised to bolster researchers’ 

ability to refine scoring functions for designing and 

predicting AMP sequences and TLR interactions at a 

reduced cost. Collectively, these advancements are 

anticipated to propel computationally designed AMPs 

and their interaction with TLR agonists and antagonists 

from database sequences to concrete, effective therapies, 

with an increased likelihood of reaching the market in the 

forthcoming years.  
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