
 

International Journal of Multidisciplinary Studies and Innovative 

Technologies 

e-ISSN:  2602-4888 

dergipark.org.tr/en/pub/ijmsit  

Research Article 
 

2024, 8 (2), 144-150  

DOI: 10.36287/ijmsit.8.2.15 

Received: December 1, 2024; Accepted: December 18, 2024 

 

144 

Potato Leaf Disease Detection Using Faster R-CNN and YOLO 

Models 

Sara Medojević1* 

1*Faculty of Applied Sciences, University of Donja Gorica , Podgorica,  Montenegro (sara.medojevic2@gmail.com) (ORCID: 0009-0002-

9995-9416) 

 

Abstract – Potato is one of the most important food crops globally in terms of total food production, significantly impacting the 

global economy. Infected potato plants show visible symptoms on their leaves, which drastically simplifies the process of early 

detection, disease prevention, and minimizing the risk to uninfected plants. Smart farming and new advanced technologies 

incorporate different tools for real-time monitoring and analysis. Most of the models used for potato leaf disease detection are 

based on Deep Learning architectures, most commonly on Convolutional Neural Network (CNN) architecture, which is suitable 

for computer vision and image recognition. This paper depicts and compares the performances of the YOLOv11 Object Detection 

(Fast) model, YOLOv11s model, and Faster R-CNN X101-FPN model. These models were trained on a dataset developed for 

object detection in Roboflow. This dataset consists of 1200 images and 1500 annotations. A single object was labeled as one of 

the six classes: Pest, Bacteria, Fungi, Healthy, Phytophthora, and Nematode. Performance metrics show that these models 

achieve reputable results without excessive training time, making them suitable for real-time monitoring systems. YOLOv11 

Object Detection (Fast), YOLOv11s, and Faster R-CNN X101-FPN achieved mAP50 scores of 95.1%, 97.6%, and 92.62%, 

respectively. 
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I. INTRODUCTION 

Potato is one of the most important food crop globally in 

terms of total food prodaction, standing alongside rice, wheat 

and corn [1]. The latest FAOSTAT data indicate that potato 

production surpassed 376 million metric tons globally in 2022 

[2]. China, India, Ukraine, and Russia are the primary regions 

where potato markets and production are widely established. 

Potato production has significant impact on global economy. 

The potato market size is estimated at 115.74 billion dolars in 

2024, and is expected to reach 137.46 billion dolars by 2029 

[3]. Potato production is hampered by various potato diseases 

which contribute to the  yield loss. Phytophthora infestans is 

the most widespread potato disease, accounting for up to 10 

billion dolars in yield losses and management costs [4]. Early 

detection of diseases and damage play a crucial role in 

harvesting the maximal potato capasity. 

The potato plant has a complex structure, with both 

underground and aboveground components as well as external 

and internal structures. Infected potato plants display visual 

symptoms that can be identified by inspecting the leaves. This 

greatly aids in prevention, early disease detection, and in 

stopping the further spread of infection, there by protecting 

healthy plants. 

Categorization of potato leaf diseases can be based on the 

pathogens that cause them. These pathogens include bacteria, 

fungi, viruses, mycoplasma, nematodes, and adverse 

environmental conditions [5]. This paper focuses on the 

following categories of potato diseases: bacteria, fungi, 

Phytophthora, nematodes, and pests. 

Diseases caused by bacteria primarily impact tubers and 

stems, with changes in the leaves being a byproduct of the 

bacterial infection. Bacterial infections prevent water 

absorption and impair the plant's ability to extract nutrients 

from the soil. One of the most common bacterial pathogens is 

Ralstonia solanacearum, a soil-borne bacterium that infects 

plants through the roots. Symptoms of bacterial infection 

include rapid wilting and curling of leaves, which can lead to 

the collapse of entire plants [6],[7]. 

Diseases caused by fungi can result from a broad group of 

organisms. Depending on the specific pathogen, potato leaves 

may exhibit various symptoms. One of the most common 

fungal diseases is Early Blight, caused by Alternaria solani. 

Symptoms of this infection include small, dark brown to black 

spots that appear in circular patterns. Additionally, leaves with 

slightly sunken spots may have yellow tissue surrounding the 

affected areas [6]. 

 Phytophthora disease is caused by the oomycete plant 

pathogen Phytophthora infestans. One of the most common 

types is Late Blight. Symptoms of this infection include dark 

gray to brown water-soaked spots on leaf tissue, often 

surrounded by white, mold-like growth around the edges. 

Certain lesions may enlarge and develop into necrotic patches 

[4],[6]. 

Nematode infections can be divided into two main 

categories: root-knot nematodes and cyst nematodes. One 
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common symptom is chlorosis, which is caused by reduced 

chlorophyll content due to nutrient deficiencies, appearing as 

yellowing of the leaves [6],[8]. 

Potato pests can be divided into three categories: sucking 

pests, tuber and root damaging pests, and foliage feeders or 

defoliating pests. Symptoms of pest damage include distorted 

leaves with holes and/or leaves dotted with a silver coloration 

[6].   

Healthy leaves appear as uniformly green leaves with no 

discoloration and a perfect leaf shape without any 

imperfections [6]. 

 The development of advanced technology and the Internet 

of Things (IoT) has significantly transformed agriculture and 

improved sustainable agricultural practices. To maximize crop 

yields and improve resource management, traditional farming 

methods with limitations such as reliance on human labor, 

simple tools and machinery, and basic observation have 

needed to be replaced with smart farming methods. Smart 

farming incorporates IoT, Global Positioning Systems (GPS), 

sensors, robotics, drones, precision equipment, actuators, and 

data analytics for real-time monitoring of crops, soil, water, 

nutrients, and microclimate. These measurements help 

maintain soil quality, reduce soil degradation, conserve water 

resources, improve land biodiversity, and ensure a natural and 

healthy environment. Inspecting potato leaves for visible signs 

of infection aids in early identification, disease prevention, and 

minimizing the risk to uninfected plants, supporting 

sustainable agricultural practices. Real-time monitoring 

contributes to plant protection, product quality, fertilization, 

and disease detection. Leveraging available data and 

predictive models enables informed decision-making [9]. 

    Artificial Intelligence (AI) is a term that encompasses a 

wide range of fields and techniques, some of which may 

overlap [10]. AI imitates human intelligence, with the ability 

to learn, recognize patterns, adapt, and create models based on 

previously acquired knowledge and data [11]. Deep learning is 

a subfield of machine learning that uses algorithms to analyze 

multi-layered representations of data, enabling the modeling 

of complex relationships within that data [12]. Various Deep 

Learning (DL) models are built upon Convolutional Neural 

Networks (CNN), with notable examples including the 

Region-Based Convolutional Neural Network (R-CNN), Mask 

Region-Based Convolutional Neural Network (Mask R-CNN), 

AlexNet, ResNet, Single Shot Multibox Detector (SSD), and 

YOLO (You Only Look Once) [13-15]. Such models have a 

wide range of applications in agriculture and can be used for 

detecting potato leaf diseases. 

One of the first papers on this topic was published by Islam, 

Dinh, Wahid, and Bhowmik at the IEEE 30th Canadian 

Conference on Electrical and Computer Engineering in 2017 

[16]. Significant advancements in this field have been made 

since 2020, marked by the publication of numerous scientific 

papers. The study by Ashikuzzaman, Roy, Lamon, and Abedin 

[17], compares the performances of nine Deep CNN models: 

Inception V3, VGG16, VGG19, InceptionResNetV2, 

NasNetMobile, NasNetLarge, ResNet50V2, ResNet101V2, 

and DenseNet201, with the DenseNet201 model achieving the 

highest validation accuracy of 96%. The main objective of the 

study by Zarrouk, Yandouzi, Grari, Bourhaleb, Rahmoune, 

and Hachami [18], focuses on detecting late blight disease 

using the following models: Faster-RCNN (RS50), Faster-

RCNN (VGG19), Faster-RCNN (VGG16), YOLOv8, 

YOLOv7, and YOLOv6. The best-performing models are 

Faster-RCNN (RS50) with a precision of 93.92%, recall of 

94.01%, and mAP of 95.32%, and Faster-RCNN (VGG16) 

with a precision of 91.96%, recall of 91.47%, and mAP of 

93.22%. The paper by Kothari, Mishra, Gharat, Pandey, 

Gharat, and Thakur [19], focuses on comparing the 

performances of four models: CNN, GoogleNet, ResNet50, 

and VGG16. All of the models have classification accuracy 

around 97%. Papers written on this topic continue to improve. 

The majority of papers on this topic focus on image 

classification, with fewer studies addressing object detection 

and segmentation.  

II. MATERIALS AND METHOD 

A. An Overview of the Dataset 

The data used in this paper were obtained from the dataset 

[20], originally developed by multiple teams from Multimedia 

Nusantara University and Gadjah Mada University. Images 

were collected from several potato farms, primarily located in 

Central Java, and in an uncontrolled environment. This method 

of data collection provided a wide range of image lighting, 

sharpness, angles, backgrounds, the number of leaves in an 

image, and types of diseases. The dataset consists of 3076 

images, which were divided into seven classes: nematode, 

fungi, bacteria, pest, virus, Phytophthora, and healthy. The 

images are in JPEG color format with a resolution of 1500 x 

1500 pixels. 

    In order to develop a new dataset, the data needed to be 

downloaded from the original dataset, cleaned, augmented, 

labeled, and annotated. The process of cleaning the data 

included selecting relevant data to be part of the new dataset, 

removing any anomalies that could negatively impact the 

training of models, and isolating relevant objects in the images 

to bypass excessive noise that can occur when there is an 

excessive number of objects in a single image. The original 

dataset was unbalanced. The Nematode class consists of 68 

images, while the Fungi class consists of 748 images. To 

develop a balanced dataset, data needed to be augmented. The 

process of augmentation included data manipulation 

techniques such as rotation, manipulating the background of 

images, cropping, and blurring parts of images. The Roboflow 

platform was used to create the dataset. Preprocessing of the 

data included enabling the Auto-Orient option and resizing. 

All images were resized to 640x640 pixels and were prepared 

for annotation. Because this dataset is created for object 

detection, the annotation process involved drawing bounding 

boxes around objects and labeling them accordingly. 

Examples of infected and healthy leaves can be seen in Fig. 1. 

 

 
Fig. 1. Samples of leaves that fall into one of the six classes: a) Pest,            

b) Bacteria, c) Fungi, d) Healthy, e) Phytophthora, f) Nematode  
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A single object could be labeled as one of the six classes: 

Pest, Bacteria, Fungi, Healthy, Phytophthora, and Nematode. 

This process can be simplified by using Roboflow’s new Auto 

Label feature.    

 This new dataset [21], consists of 1200 images and 1500 

annotations. The dataset was divided into three sets, in the 

proportion of 70/20/10, that are used for training (840 images), 

validation (224 images), and testing (116 images). After 

finishing the dataset, dataset was exported in YOLOv11 

format with  TXT annotations and YAML configurations 

suitable for YOLOv11 model and COCO format with JSON 

annotations sutible for  Efficient Det Pytorch and Detectron 2 

models. 

B. Selection of Deep Learning Models, Methods and Tools  

A subset of Machine Learning, called Deep Learning, 

consists of deep neural networks. These neural networks are 

complex, multilayered structures made of interconnected 

nodes [22]. Deep neural network architecture has one input 

layer, hundreds or thousands of hidden layers, and one output 

layer. These layers enable the extraction of intricate features 

from the data. 

The most commonly implemented deep learning 

architecture used for computer vision and image recognition 

tasks is Convolutional Neural Networks (CNN) [23]. A 

Convolutional Neural Network takes input data represented as 

a tensor. For an input image, three-dimensional tensors are 

commonly used, characterized by the image's height, width, 

and the number of channel layers. The number of channel 

layers corresponds to color channels (R, G, B) and is typically 

three for RGB images [24]. Convolutional Neural Network 

architecture consists of: 

1) Convolution Layer, 

2) Pooling Layer, 

3) Fully-Connected Layer. 

   The Convolutional Layer is used to extract specific 

features by applying both linear and nonlinear operations, 

specifically convolutional operations and activation functions. 

Convolution is a particular linear operation specialized for 

feature extraction, where a kernel is applied across the input 

tensor. Both the input tensor and kernel are matrices. To 

calculate the value of a certain element, the element-wise 

product between the kernel and corresponding elements of the 

tensor needs to be summarized. The matrix that contains 

values calculated in this way is called a feature map. Stride is 

the distance between two consecutive positions of the kernel 

on the tensor. The process of building a feature map, where 

stride = 0, is shown in Fig. 2.    

 

 
Fig. 2. Process of building the feature map 

The dimension of the feature map depends on the 

dimensions of the tensor and the kernel. One way to increase 

the dimension of the feature map is by using zero-padding. 

Zero-padding can be: valid padding, same padding, and full 

padding. 

An activation function is applied after each convolutional 

layer. During the training of a model based on convolutional 

neural networks, the activation function introduces 

nonlinearity. This nonlinearity captures complex relationships 

among features within an image, enabling the model to 

identify hidden patterns and intricate connections between 

characteristics that linear operations alone would not be able 

to capture. Two of the most t commonly used activation 

functions are the Rectified Linear Unit (ReLU) and the 

Sigmoid function.    

   The Pooling Layer is a layer used for reducing the 

dimensions of the feature map. This layer is important because 

it decreases the number of learnable parameters, as well as the 

amount of data processed within the layer. By doing so, it 

reduces the memory requirements during training and helps 

mitigate the issue of overfitting. Two main types of pooling 

are: max pooling and average pooling.  

   Fully-Connected Layer is the final layer in a 

Convolutional Neural Network. As the name suggests, all 

nodes in this layer are fully connected to the nodes in the 

previous layer [24-26]. The process of transforming input data 

in a Convolutional Neural Network is shown in the Fig. 3. 

 

 
Fig. 3   Transforming input data in a Convolutional Neural Network  

 

   Convolutional neural networks (CNNs) can be used for 

classification, object detection, and image segmentation. This 

paper focuses on object detection. 

Object detection involves locating an object within an 

image by marking the located object with a rectangular 

bounding box and classifying it into one of the predefined 

classes. Object detection methods can be divided into two 

groups: single-stage object detectors and two-stage object 

detectors. Single-Stage Object Detectors eliminate the need for 

a separate region of interest (RoI) extraction process, directly 

classifying and marking objects. Examples of single-stage 

object detectors include YOLO (You Only Look Once) and 

SSD (Single Shot MultiBox Detector). Two-Stage Object 

Detectors are network models that detect objects in two 

phases. In the first phase, regions of interest are identified, and 

in the second phase, the objects within these regions are 

classified [27]. The first part of the architecture is called the 

backbone. This part is responsible for extracting features from 

the input data. The extracted features are then passed to the 

second part, known as the neck. In the neck, the features from 

the backbone are aggregated and adjusted before being 

forwarded to the head for further processing. The head is the 

final part of the architecture, where the prediction is made [28]. 

The process of object detection in images can be represented 

by the architecture shown in Fig. 4. 
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Fig. 4 Architecture of an object detection model  

    

 The Ultralytics YOLO model (You Only Look Once) is 

based on Convolutional Neural Networks. YOLO is a popular 

model for object detection and image segmentation. Although 

there are 11 versions of this model, this paper utilizes its latest 

version [29]. When using YOLOv11, it’s possible to choose 

from several variants: YOLOv11n, YOLOv11s, YOLOv11m, 

YOLOv11l, and YOLOv11x. While YOLOv11x delivers high 

precision, its extended training time and large number of 

parameters demand substantial GPU resources, resulting in 

slower performance. In this paper, YOLOv11s was selected 

for its balanced precision, faster processing speed, and reduced 

parameter count, making it well-suited for rapid predictions. 

The YOLO model leverages the Ultralytics libraries, which are 

designed to work in Python. These libraries allow for easy 

configuration of training parameters, such as the number of 

epochs, image size, and task type (such as detection, 

segmentation, or classification). During model training, it is 

essential to set the number of epochs. An epoch represents one 

complete pass through the entire dataset. To ensure the model 

performs at a satisfactory level, it should be trained over a 

sufficiently large number of epochs. 

The metrics used in this study are: recall, precision, 

mAP@0.50, and mAP@0.50-0.95. Recall is a metric used to 

calculate the rate of true positive instances. Precision is a 

metric used to calculate the model's ability to make positive 

predictions for attributes that are actually positive. The higher 

the precision, the more skilled the model is at identifying true 

positives and avoiding false positives. Mean Average 

Precision (mAP@0.50) represents the average precision 

calculated at an Intersection over Union (IoU) threshold of 

0.50. It measures the model’s accuracy while considering only 

"easier" detections. Mean Average Precision (mAP@0.50-

0.95) is the average precision calculated across various IoU 

thresholds, ranging from 0.50 to 0.95. This metric provides a 

comprehensive view of model performance across different 

levels of detection difficulty [30]. 

The YOLOv11 Object Detection (Fast) model, developed 

by Roboflow, utilizes the COCO dataset as a checkpoint. This 

model offers faster training times, though with slightly lower 

accuracy compared to its counterpart, the Accurate model [31].  

Region-based Convolutional Neural Network (R-CNN) is a 

Deep Learning framework used for object detection. R-CNN 

uses a Region Proposal Network (RPN) to suggest regions that 

potentially contain objects within an image. These regions are 

generated without annotated data. The algorithm employs a 

method called selective search, which is an approach that 

balances the number of proposals while maintaining high 

object recall, ensuring efficient object detection. The proposed 

regions are then processed by a CNN, which extracts features, 

and a binary Support Vector Machine (SVM), which helps 

identify objects in the regions. A bounding box regressor is 

used for refining the location and size of the bounding box to 

closely match the actual object, while the classifier predicts the 

category of each object. 

R-CNN faces several limitations, including the rigid and 

non-learnable Selective Search algorithm, which can generate 

poor region proposals for object detection. Because of real-

time applications and significantly increases disk memory 

usage, new variations of R-CNN have been introduced: Fast 

R-CNN, Faster R-CNN, Mask R-CNN, and Cascade R-CNN. 

Faster R-CNN improves the original R-CNN by integrating a 

Region Proposal Network (RPN), which generates region 

proposals directly from CNN feature maps, removing the need 

for selective search. It also shares convolutional features 

between the RPN and the detection network, which reduces 

computation time. As a result, Faster R-CNN achieves real-

time processing speeds of approximately 0.1 seconds per 

image [32]. An iteration refers to a single update step during 

training. Detectron2 offers the tools and framework needed for 

developing and training a Faster R-CNN model [33]. 

III. RESULTS 

All of the models were developed in Google Colab using 

GPU T4. YOLOv11 Object Detection (Fast) model was 

trained for 300 epochs. Fig. 5 captures changes in mAP50 and 

mAP50:95 throughout 300 epochs. 

 

Fig. 5  Changes in mAP50 and mAP50:95 throughout 300 epochs for the 

YOLOv11 Object Detection (Fast) model 

After 300 epochs, the model has an mAP50 of 95.1% and an 

mAP50:95 of 76.7%. This model has a precision of 96.4% and 

a recall of 90.2%. Fig. 6 shows how this model detects 

different classes. 

 

 

Fig. 6  Different results of the YOLOv11 Object Detection (Fast) model 
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YOLOv11s model was trained for 300 epochs. 

 

 

Fig. 7  Yolov11s key performance metrics, train and validation losses during 

model training process  

   Throughout the model training process, it is important to 

monitor training and validation losses as well as other 

performance metrics. These changes are represented in Fig. 7. 

This model has a precision of 96.1%, recall of 93.1%, mAP50 

of 97.6%, and mAP50-95 of 80.6%. In-depth performance 

metrics are shown in Table 1. 

Table 1. Performance metrics of the YOLOv11s model by class 

Class Precision Recall mAP50 mAP50-95 

All 96.1% 93.1% 97.6% 80.6% 

Bacteria 93.1% 91.8% 95% 77.1% 

Fungi 97.9% 97.6% 98.7% 80% 

Healthy 100% 91.1% 99.5% 95.3% 

Nematode 90.4% 97.7% 97.9% 92.6% 

Pest 96.8% 82.8% 94.9% 66.8% 

Phytophthora 98.2% 97.7% 99.3% 71.8% 

 

    A normalized confusion matrix is one of the tools used in 

evaluating the performance of the model by comparing true 

and predicted detections. The normalized confusion matrix for 

this model has a prominent main diagonal with fewer values in 

the row and column used for showing true and predicted 

detections of the background. The normalized confusion 

matrix is represented in Fig. 8. 

 

 

Fig. 8  Normalized confusion matrix of the YOLOv11s model  

 A graphical representation illustrating the variation in a 

model's F1 score across different thresholds is known as an F1-

Confidence Curve, shown in Fig. 9. This graph shows that F1 

score is 0.94 for all the classes when the threshold is set to 

0.471. 

  

Fig. 9  F1-Confidence Curve of the YOLOv11s model  

After developing the model, the results can be seen in Fig. 

10. 

 

 

Fig. 10 Different results of the YOLOv11s model  

Detectron2 Faster R-CNN X101-FPN model was trained 

for 2000 iterations, with a batch size of 4 images and a base 

learning rate of 0.001. After training, this model achieved an 

AP50 of 92.62%, APs of 12.08%, APm of 58.97%, and APl of 

70.83%. The AP for classes: Bacteria, Fungi, Healthy, 

Nematode, Pest, and Phytophthora are 69.39%, 70.68%, 

82.08%, 85.04%, 50.90%, and 63.81%, respectively. The 

results of this model are shown in Fig. 11. 

 

 

Fig. 11 Different results of the Faster RCNN X101-FPN model 
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Table 2 depicts mAP50, the number of epochs/iterations, and 

the time spent while training the previously shown three 

models. 

 
Table 2. Performance metrics of the YOLOv11s model by class 

Model mAP50 Epochs/Iterations 
Training 

time 

YOLOv11 Object 

Detection (Fast) 
95.1% 

300 

Epoches 
1 hour 

YOLOv11s 97.6% 
300 

Epoches 
1.87 hours 

Faster R CNN 

X101-FPN 
92.62% 

2000 

Iteration 
1.58 hours 

IV.DISCUSSION 

   The YOLOv11 Object Detection (Fast) model prioritizes 

processing speed, which is often used to achieve real-time 

performance. Fig. 5 shows that the model achieves reputable 

results at the 200th epoch, after which the mAP is slightly 

refined. YOLOv11s has the longest training time but the best 

performance metrics out of these three models. The class 

Healthy has the best performance, while the class Pest has the 

worst performance out of all six classes. The reason for this is 

that different pests can cause numerous varying size holes on 

a single leaf. Depending on the background, some of these 

holes can be hard to detect. When a leaf is drastically damaged, 

the model may struggle with drawing bounding boxes because 

it is hard to identify where one damage ends and another pest 

damage begins. The confusion matrix showed that the model's 

most frequent errors are misidentifying background elements 

as objects or failing to detect actual objects, considering them 

part of the background. This was expected because the dataset 

contains numerous images with multiple leaves, some with 

more or less blurred backgrounds, making it difficult for the 

model to differentiate between leaves and background. The 

Faster R-CNN X101-FPN model, although showing good AP, 

has the longest training time and the worst AP out of these 

three models. Just like the other models, this model also 

struggles to identify the Pest class, which has the worst AP out 

of all six classes. The best performance is seen in the 

Nematode and Healthy classes. The AP values indicate that the 

model performs best at recognizing large objects and worst at 

recognizing small objects, which is a common trend for most 

models. Reason for this is that larger object occupy more 

pixels and contain more identifiable features, making it easier 

for the model to detect and classify them accurately, while 

smaller object have fewer distinctive features and often merge 

with the background. 

V.CONCLUSION 

All three models demonstrate strong performance and 

efficient training times. The YOLOv11s model achieves the 

best metric results, although it has a slightly longer training 

time compared to the other two models. The YOLOv11 Object 

Detection (Fast) model demonstrated strong performance 

metrics while having the shortest training time. These models 

can be deployed within surveillance systems to enable real-

time monitoring and predictive analytics. Future 

improvements could include developing a larger dataset and 

utilizing more powerful GPUs capable of supporting models 

that achieve higher precision while maintaining rapid 

prediction speeds.  

 

Statement of Research and Publication Ethics 

The author declares that this study complies with Research and 

Publication Ethics 

REFERENCES 

[1] Y. P. S. Bajaj, Potato, vol 3. Springer Science & Business Media, 2013. 

[2] (2024) Food and Agriculture Organization of the united Nations. 

[Online]. Available: https://www.fao.org/faostat/en/#search/potato 

[3] (2024) Potato Market Size- ndustry Report on Share, Growth Trends & 

Forecasts Analysis (2024-2029) on Mordor Intelligence  [Online]. 

Available:https://www.mordorintelligence.com/industry-reports/ 

potato-market 

[4] S. M. Dong, S.Q. Zhou,“ Potato late blight caused by Phytophthora 

infestans: From molecular interactions to integrated management 

strategies,” Journal of Integrative Agricultur, vol. 21, pp. 3456--3466, 

Dec. 2022. 

[5] S.  M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd 

ed., R. M. Osgood, Jr., Ed.  Berlin, Germany: Springer-Verlag, 1998. 

[6] W. J.Hooker., Compendium of potato diseases. International Potato 

Center, International Potato Center, 1981. 

[7] A. Charkowski, K. Sharma, M. L. Parker, G. A. Secor and J. 

Elphinstone, “Bacterial Diseases of Potato” The potato crop: its 

agricultural, nutritional and social contribution to humankind, pp. 351-

-388, Dec. 2019. 

[8] M. Sun, S. Chen and J. E.  Kurle, “Interactive effects of soybean cyst 

nematode, arbuscular-mycorrhizal fungi, and soil pH on chlorophyll 

content and plant growth of soybean“ Phytobiomes Journal., vol. 6, pp. 

95--105, Jan. 2022. 

[9] M. Dhanaraju, P. Chenniappan, Poongodi, K. Ramalingam, S. 

Pazhanivelan, R. Kaliaperumal, “Smart farming: Internet of Things 

(IoT)-based sustainable agriculture” ,Agriculture, vol. 12, pp. 1745 , 

Sep. 2022. 

[10] (2024) Subsets of Artificial Intelligence on Free Learning Platform for 

Better Future. [Online]. Available: https://tinyurl.com/2azettr3 

[11] C. R. Arias, “An introduction to artificial” AI, Faith, and the Future: An 

Interdisciplinary Approach., pp. 12, Jun. 2022. 

[12] L. Deng, Y. Dong, “Deep learning: methods and applications.” 

Foundations and trends® in signal processing., vol. 7, pp. 197--387 , 

2014. 

[13] (2024) R-CNN – Region-Based Convolutional Neural Networks on 

GeeksforGeeks. [Online]. Available: https://www.geeksforgeeks.org/r-

cnn-region-based-cnns/  

[14] (2024) Different types of CNN models on Opengenus. [Online]. 

Available: https://iq.opengenus.org/different-types-of-cnn-models/ 

[15] (2024) Ultralytics YOLO11. [Online]. Available: 

https://docs.ultralytics.com/models/yolo11/ 

[16] M. Islam, A. Dinh, K. Wahid, P. Bhowmik, Detection of potato diseases 

using image segmentation and multiclass support vector machine., 

2017 IEEE 30th canadian conference on electrical and computer 

engineering (CCECE), 2017 . 

[17] M. Ashikuzzaman, K. Roy, A. Lamon, S. Abedin, Potato Leaf Disease 

Detection By Deep Learning: A Comparative Study., 2024 6th 

International Conference on Electrical Engineering and Information \& 

Communication Technology (ICEEICT), 2024 . 

[18] Y. Zarrouk, M. Yandouzi, M. Grari, M. Bourhaleb, M. Rahmoune, K. 

Hachami., “Revolutionizing Potato Late Blight Surveillance: uav-

driven Object Detection Innovations, Journal of Theoretical and 

Applied Information Technology., vol. 102, Apr. 2024. 

[19] D. Kothari, H. Mishra, M. Gharat, V. Pandey, M. Gharat, R. Thakur, 

“Potato leaf disease detection using deep learning” Int. J. Eng. Res. 

Technol, vol. 1, pp. 569–571, Nov. 2022. 

[20] (2023) Potato Leaf Disease Dataset in Uncontrolled Environment on 

mendeley data. [Online]. Available: https://data.mendeley.com/ 

datasets/ptz377bwb8/1 

[21] (2024)  Potato_leaf_disease Computer Vision Project dataset on 

Roboflow. [Online]. Available: https://universe.roboflow.com/potato-

leaf-diseases/potato_leaf_disease 

[22] (2024) What is deep learning? on IBM. [Online]. Available: 

https://www.ibm.com/topics/deep-learning 

[23] (2024) Difference between Shallow and Deep Neural Networkson on 

GeeksforGeeks [Online]. Available: https://www.geeksforgeeks.org/ 

difference-between-shallow-and-deep-neural-networks/ 

[24] (2024) Convolutional Neural Network (CNN) on TensorFlow [Online]. 

Available: https://www.tensorflow.org/tutorials/images/cnn 



International Journal of Multidisciplinary Studies and Innovative Technologies, 2024, 8(2): 144 – 150 

150 

[25] R. Yamashita, M. Nishio, R. K. G. Do, K. Togashi, “Convolutional 

neural networks: an overview and application in radiology” Insights 

into imaging, vol. 9, pp. 611--629, Jun. 2018. 

[26] (2024) What are convolutional neural networks? on IBM. [Online]. 

Available:https://www.ibm.com/topics/convolutional-neural-networks 

[27] (2019) Object Detection: Architectures, Models, and Use Cases on The 

Random Walk Blog. [Online]. Available: https://randomwalk.ai/ 

blog/object-detection-architectures-models-and-use-cases/ 

[28] (2024) What is object detection? on IBM. [Online]. Available: 

https://www.ibm.com/topics/object-detection 

[29] G. Jocher, J. Qiu (2024), Ultralytics YOLO11, version = 11.0.0,  year 

= {2024}, [Online].Available:https://github.com/ultralytics/ ultralytics 

[30] H. Vedoveli (2013) Metrics Matter: A Deep Dive into Object Detection 

Evaluation.[Online].Available:https://medium.com/@henriquevedovel

i/metrics-matter-a-deep-dive-into-object-detection-evaluationef01385 

ec62 

[31] J. Solawetz, P. Guerrie.(2022). What to Think About When Choosing 

Model Sizes. Roboflow Blog: https://blog.roboflow.com/ computer-

vision-model-tradeoff/ 

[32] (2024) R-CNN – Region-Based Convolutional Neural 

NetworksNetworkson on GeeksforGeeks [Online]. Available: 

https://www.geeksforgeeks.org/r-cnn-region-based-cnns/ 

[33] (2019) Y. Wu, A. Kirillov, F. Massa, et al. Detectron2.[Online]. 

Available: https://github.com/facebookresearch/detectron2 

 

https://medium.com/

