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Abstract: The estimation of battery state-of-charge (SOC) in electric or hybrid vehicle has vital importance 

in the designing process of battery management systems. The state-of-charge estimation is implemented 

using different modelling approaches, model-based estimators such as Kalman filtering and Luenberger 

observer and data-driven based modelling techniques like artificial neural network and machine learning 

methods. This study aimed to develop a battery state-of-charge estimation method and proposed a novel 

architecture for multiple battery back SOC estimation using an extended learning machine (ELM). The 

ELM approach is applied considering battery operating conditions using global vehicle driving profiles, 

New European Driving Cycle and Worldwide harmonized Light vehicles Test Procedure. The performance 

of the proposed SOC estimation method is evaluated by using statistical criteria (RMSE, R2, MAPE). 

Consequently, the obtained results show that a data-driven ELM approach with a less complex structure 

can obtain better performance compared with other advanced estimator methods under different operating 

conditions.  
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Elektrikli Araçların Çoklu Paket Lı̇tyum-İyon Batarya Şarj Durumunu Genı̇şletı̇lmı̇ş Bı̇r Makı̇ne 

Öğrenmesı̇ Kullanarak Tahmı̇ni 

 

Öz: Elektrikli veya hibrit araçlarda batarya şarj durumunun (SOC) tahmini, batarya yönetim sistemlerinin 

tasarım sürecinde hayati öneme sahiptir. Şarj durumu tahmini, farklı modelleme yaklaşımları, Kalman  

filtreleme ve Luenberger gözlemcisi gibi model tabanlı tahmin ediciler ve yapay sinir ağı ve makine 

öğrenimi yöntemleri gibi veri odaklı tabanlı modelleme teknikleri kullanılarak gerçekleştirilmektedir. Bu 

çalışma, bir batarya şarj durumu tahmin yöntemi geliştirmeyi amaçlamış ve genişletilmiş makine öğrenmesi 

(ELM) kullanarak çoklu batarya geri SOC tahmini için yeni bir mimari önermiştir. ELM yaklaşımı, küresel 

araç sürüş profilleri, Yeni Avrupa Sürüş Döngüsü ve Dünya Çapında Uyumlaştırılmış Hafif Araçlar Test 

Prosedürü kullanılarak ve akü çalışma koşulları dikkate alınarak uygulanmıştır. Önerilen SOC tahmin 

yönteminin performansı istatistiksel kriterler (RMSE, R2, MAPE) kullanılarak değerlendirilmiştir. Çalışma 

sonunda elde edilen sonuçlar, daha az karmaşık bir yapıya sahip veri güdümlü bir ELM yaklaşımının, farklı 

çalışma koşulları altında diğer gelişmiş tahmin yöntemlerine kıyasla daha iyi performans elde edebileceğini 

göstermektedir.  
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1. INTRODUCTION 

 

The past twenty years have seen increasingly rapid advances in the field of rechargeable 

lithium-ion battery (LIB) energy storage system technologies of battery management systems 

(BMS) such as electric vehicles (EVs) and hybrid electric vehicles (HEVs). In the systems, the 

estimation of state-of-charge (SoC) which denotes the battery level is one of the greatest 

challenges because the parameter cannot be directly measured by a sensor. The SoC parameter is 

estimated using internal resistances and time constants of the battery dynamics and is monitored 

by the BMS to provide safe and reliable driving conditions (Baba et al., 2016). Besides safety, 

there are two critical operating conditions in a battery, over-charging and over-discharging.  The 

over-charging state is above the specified upper limit of charging while over-discharging indicates 

that below the lower battery limit voltage. In this context, it is very important to precisely estimate 

SOC value to avoid mentioned states (Ahmed, El Sayed, Arasaratnam, Tjong, & Habibi, 2014; 

Baba & Adachi, 2014)  

In practical applications, the SoC estimation process is carried out in different ways such as 

the coulomb counting method in which the estimation is calculated by integration of current, data-

driven estimation method, model-based methods. In the first estimation method, the coulomb 

counting method is called as open-loop method and this method is sensitive to an initial value of 

SoC, will suffer from the cumulative integral error of current measurement (Ng, Moo, Chen, & 

Hsieh, 2009; Tong, Lacap, & Park, 2016). Model-based SoC estimation has been applied in many 

studies due to advancement in battery technologies (Jiang et al., 2021a). There are many different 

types of battery models in the literature each suitable for different structures and with a different 

level of complexity, from the electrochemical models to more advanced equivalent circuit models 

and electrochemical impedance models. Electrochemical battery models have been preferred for 

the modelling of battery chemical dynamics in the literature because these models express the 

physical dynamics of the li-on battery under different operating conditions (Ahmed et al., 2014, 

2015). Besides, different observer structures have been implemented to these models such as 

adaptive square root extended Kalman filter (Plett, 2004), unscented Kalman filter (He, Williard, 

Chen, & Pecht, 2013; Zheng et al., 2018), adaptive Luenberger observer (Hu, Sun, & Zou, 2010), 

adaptive sliding mode observer (Belhani, M’Sirdi, & Naamane, 2013). However, the created 

observer and filter structures using physical models require precise and global mathematical 

modelling of the battery. 

In contrary to physical modelling techniques, data-driven or machine learning-based 

modelling methods use the real-world input/output data of the system to model unknown 

dynamics. Since the models obtained using this method do not require a precise model and a 

formulation for dynamic and complex battery systems, machine learning algorithms such as 

artificial neural networks (Dang et al., 2016; Shen, Chan, Lo, & Chau, 2002), particle swarm 

optimization (Hossain Lipu, Hannan, Hussain, & Saad, 2017), support vector machines (Jiang et 

al., 2021b) have been applied to estimate the value of battery SOC. Different parameters (battery 

cell ageing, variable environmental conditions and other nonlinear states) have been easily 

incorporated into these created models (Tong et al., 2016).  Although data-driven techniques are 

successful in accurately estimating the SOC value of batteries, they require cumbersome and time-

consuming processes like online parameter adaption and computational burden on hardware.  

More recently, single hidden layer feedforward neural network-based extreme learning 

machines (ELM) have been proposed to predict future actions of a physical system that included 

unknown dynamics by effectively analyzing collected big data on the system. This method has 

shown good performance in terms of learning speed and generalization compared to another 

conventional feedforward neural network (Huang, Chen, & Babri, 2000; Huang, Zhu, & Siew, 

2006). For this purpose, the ELM has been used in different areas such as automatically driving 

based on camera vision (Zhu, Miao, Hu, & Qing, 2014), pattern classification (Liu & Wang, 

2010), image deblurring (L. Wang, Huang, Luo, Wang, & Luo, 2011).  
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In this study, a key contribution is that this study the ELM estimator has been designed to 

create a Li-ion battery model to develop SOC estimation with 1D AVL Cruise M platform. In the 

proposed ELM predictive model, voltage, current, power and motor load of battery and vehicle 

speed have been considered as input parameters for SOC parameter prediction. Compared with 

the previous works, the main contributions of this paper are summarized as follows: (1) The 

created ELM estimator has been realized SOC value estimation of a battery without the need for 

a complex mathematical model like electrochemical and advanced equivalent circuit models 

under different environmental and driving cycle conditions. (2) Furthermore, fewer battery 

parameters according to neural networks and other data-driven based methods have been needed 

to estimate the battery SOC value in the training process of the ELM model. (3) The predictive 

performance of the ELM model has been evaluated under different both at variable conditions 

like both New European Driving Cycle (NEDC) and Worldwide harmonized Light vehicles Test 

Procedure (WLTP) driving cycles based on performance indices, including RMSE (Root mean 

squared error), R2(Coefficient of determination), MSE (mean squared error), MAE (mean 

absolute error).  

The paper is organized as follows: In Section II, the advanced equivalent circuit based 

mathematical analysis is conducted for the li-ion battery are proposed and presented in detail. In 

Section III, the extended learning machine model is explained. In Section IV, some results and 

discussions are expressed. Finally, some conclusions are provided in Section V.  

 

2. METHODOLOGY 

 

2.1. The Battery SOC Definition 

 

The battery SOC is used to defined the remaining capacity of the lithium-ion battery and is 

mathematically expressed as the ratio of the remaining battery capacity to the full capacity that 

can be delivered as follows.   

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶((𝑡0) −
∫ 𝜇𝐼𝐵𝑎𝑡𝑡(𝑡)𝜇

𝑡

𝑡0

𝐶𝑚𝑎𝑥
 (1) 

In (1), C_max is the maximum charge capacity of battery, in Ah, I_batt depicts the battery 

current that is assumed discharging is positive and μ is the Coulombic efficiency. 

 

2.2. The Modelling of Lithium-ion Battery Based on Equivalent Circuit Approach 

 

In this subsection, the equivalent circuit model that is commonly used in the literature is 

proposed. The simple analytical models are preferred since increasing the complexity of the 

model increases the uncertainty in the estimates of the parameters. However, these models can 

not accurately characterize the battery under overall different operating conditions. In the 

literature, the Thevenin circuit model (Jiang et al., 2021b; Y. Wang, Liu, Pan, & Chen, 2017) and 

second-order circuit model (S. Wang, Fernandez, Shang, Li, & Yuan, 2018) are preferred to 

define battery dynamics.  

In this study, the Thevenin equivalent circuit model has been used as shown in Fig. 1. 
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Figure 1: 

Thevenin equivalent circuit model used for li-on battery 

 

The dynamic behaviour of circuit can be mathematically defined as in Eq. (2) and Eq. (3). 

 

 

𝑈𝑇ℎ =
𝑈𝑇ℎ

𝑅𝑇ℎ + 𝐶𝑇ℎ
+

𝐼𝐿𝑜𝑎𝑑

𝐶𝑇ℎ
 (2) 

 

       𝑈𝐿 = 𝑈𝑂𝐶 − 𝑈𝑇ℎ − 𝐼𝐿𝑅0  (3) 

 

Eq.(3), 𝑈𝑇𝐻,  𝑈𝑂𝐶 and 𝑈𝐿 are the voltage of across 𝐶𝑇ℎ , open circuit and load, respectively.                          

𝑅𝑇ℎindicates polarization resistance and 𝐼𝐿𝑜𝑎𝑑  is load current. 

 

2.3. Vehicle Modelling by Using AVL Cruise M 
 

The estimation of SOC has been carried out using data obtained from a vehicle battery 

management system modelled by AVL Cruise M. The AVL Cruise M software offers both a 

graphical user interface, as well as command-line accessibility to create real-time capable 

subsystem models of engine, driveline, 1D fluid flow, aftertreatment, electrical and control system 

domains (Farag, Fleckenstein, & Habibi, 2014; Taborda, Varella, Farias, & Duarte, 2019; Zhang 

& Li, 2018).  

During this study, the designed layout of AVL program is shown in Fig. 2. The specification 

of electrical motor, battery and vehicle are tabulated in Table 1. 
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Figure 2: 

 The electrical vehicle AVL Cruise M model layout 

 

Table 1. The specification of electrical motor, battery and vehicle used in this study 

Type of electric machine Asynchronous machine 

Moment of intertia 0.08 kg.m2 

Battery minimum voltage 2.5 V 

Battery maximum charge 20 Ah 

Vehicle curb weight 1700 kg 

Vehicle gross wight 1980 kg 

 

2.4. Extreme Learning Machine (ELM) Model Formulation  
 

The ELM algorithms suggested in this paper have been derived from the references (Huang, 

Zhou, Ding, & Zhang, 2012; Huang et al., 2006). The ELM algorithm is capable of learning for 

the single hidden-layer feedforward neural networks compared with traditional artificial neural 

networks and other machine learning algorithms. The output weights of ELM network structure 

are analytically defined according to the pseudo-inverse of the hidden-layer output matrix which 

is set randomly. To describe the ELM method mathematically, an unknown nonlinear dynamical 

system denoted as input ( ) in the following form is considered. Then, the output of the system is 

approximated using the ELM model as follows as expressed in (4) 

 

       𝐹(𝑥) = ∑ 𝜃𝑗ℎ(𝐻𝑁
𝑗=1 𝑎𝑗 , 𝑏𝑗, 𝑥) … … . . 𝑥, 𝑎𝑗 ∈, ℜ𝑛, … . . 𝑏𝑗 ∈ ℜ  (4) 

HN: Number of hidden layer 
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Where, 𝑎𝑖 and 𝑏𝑖 denote determined randomly coefficients of the hidden layer, 𝜃𝑗 is weight 

vector that connects to 𝑗 hidden node from output node. ℎ(𝑎𝑗, 𝑏𝑗, 𝑥) activation function of the 

network. The sigmoid, sine, triangular basis functions can be used as activation functions. To train 

the ELM network, training data and target data are considered as a set of training. So, output 

equation is obtained with hidden node output matrix as follows. 

        
𝐻𝜃 = 𝑌 

 

 

(5) 

        

𝐻 = (
ℎ(𝑎1, 𝑏1, 𝑥1) ⋯ ℎ(𝑎𝑛, 𝑏𝑛, 𝑥1)

⋮ ⋱ ⋮
ℎ(𝑎1, 𝑏1, 𝑥𝑛) ⋯ ℎ(𝑎𝑛, 𝑏𝑛, 𝑥𝑛)

) 

 

 

(6) 

The used activation functions are Sigmoid. 

 

The ELM algorithm is given as in the following form. 

 

1. 𝑎𝑗, 𝑏𝑗, 𝜃𝑗 parameters are determined randomly by using continuous probability distribution 

function. 

2. The general solution of equation given by (6) is treated as optimization problem by 

minimizing the following error in the last squares sense. 

 

        

 min
𝜃

{
1

2
‖[𝑒1

𝑇 , … , 𝑒𝑛
𝑇]‖

𝐹

2
} = min

𝜃
{
1

2
‖[(𝑦1

𝑇 − 𝑥1
𝑇), … , (𝑦𝑛

𝑇 − 𝑥𝑛
𝑇)]‖

𝐹

2
} 

Subject to  

 

 

(7) 

       
𝑌 = 𝐻𝜃 + 𝐸 

 

 

(8) 

3. The solution of (7) is archived by 

        
𝜃 = 𝐻†𝑌 

 

 

(9) 

Where 𝐻† denotes the Moore-Penrose generalized inverse of matrix 𝐻. So, (9) can be written 

as follows and it is solved by singular value decomposition. 

        
𝜃 = 𝐻†𝑌 = (𝐻𝑇𝐻)−1𝐻𝑇𝑌 

 

 

(10) 

2.5. ELM model evaluation parameters 

 

For evaluation, the root mean squared errors (RMSE), e coefficient of determinant (R) and 

mean absolute percentage error (MAPE) are proposed as the performance indexes, 

mathematically expressed by (11),(12),(13), respectively. 

 

        

𝑅𝑀𝑆𝐸(𝑦𝑠𝑜𝑐 , �̂�𝑠𝑜𝑐) = √
∑ (𝑦𝑠𝑜𝑐 −  �̂�𝑠𝑜𝑐)2𝑁

𝑖=1

𝑁
 

 

 

(11) 
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𝑅2(𝑦𝑠𝑜𝑐 , �̂�𝑠𝑜𝑐) = 1 −
∑ (𝑦𝑠𝑜𝑐 −  �̂�𝑠𝑜𝑐)2𝑁

𝑖=1

∑ (𝑦𝑠𝑜𝑐 − 𝑦𝑠𝑜𝑐𝑚𝑒𝑎𝑛
)2𝑁

𝑖=1

 

 

 

(12) 

 

        

𝑀𝐴𝑃𝐸(𝑦𝑠𝑜𝑐 , �̂�𝑠𝑜𝑐) =
100

𝑁
∑

|𝑦𝑠𝑜𝑐 −  �̂�𝑠𝑜𝑐|

𝑦𝑠𝑜𝑐

𝑁

𝑖=1

 

 

 

(13) 

Where �̂�𝑠𝑜𝑐 indicates battery SOC valur estimation of measured 𝑦𝑠𝑜𝑐. By definition, the 

smaller calculated performance index value given in (11),(12),(13), the better estimation 

performance is obtained. 

 

3. RESULTS AND DISCUSSION 
 

To confirm the effectiveness of the proposed ELM method, the relationship between selected 

inputs and SOC parameters of li-ion battery has been realized. The vehicle battery group voltage, 

current, power, electrical motor load and vehicle speed has been used as the input parameters 

while SOC has been used as target data for ELM. The ELM structure used for modelling and 

estimation has been presented in Fig. 3. 

 

j1
x

j2
x

1h (x)

2h (x) y

HN
h (x)

Battery group 

output voltage

Battery group 

output current

SOC

Battery group 

output power

E motor load

Vehicle Speed

3h (x)

j5
x

 
 

Figure 3: 

Extreme learning machine SOC model for li-ion battery 

 

In the first stage of the modelling process, the variable operating conditions have been carried 

out to validate the application and efficiency of the ELM on SOC estimation. For this purpose, 

the battery discharging voltage tills the terminal voltage declines to 2.5V, under New European 
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Driving Cycle (NEDC) and Worldwide harmonized Light vehicles Test Procedure (WLTP) 

driving cycles shown in Fig. 4, respectively.  

 

 
 

Figure 4: 

Driving cycles (a) New European Driving Cycle (NEDC); (b) Worldwide harmonized Light 

vehicles Test Procedure (WLTC) 

 

The NEDC and WLTC are typical vehicle driving cycles that are widely used to test the 

emission levels such as NOx, HC (Hydrocarbon) of automotive engines fuel consumption rate in 

vehicles. In this study, SOC values, its prediction errors for each driving cycles are compared, 

respectively. For the modelling process of battery, motor current, voltage, power and load 

presented in Fig. 5 and Fig. 6 are considered as input parameters for NEDC and WLTC driving 

cycles, respectively. 
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Figure 5: 

Input parameters of ELM model under NEDC operating conditions (a) Battery voltage (b) 

Battery current (c) Power and (d) Electric motor load 
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Figure 6: 

Input parameters of ELM model under WLTC operating conditions (a) Battery voltage (b) 

Battery current (c) Power and (d) Electric motor load 
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Figure 7: 

Comparison of the estimation results under NEDC conditions; (a) SOC estimation, (b) SOC 

estimation error 

 

 
 

Figure 8: 

Comparison of the estimation results under WLTC conditions; (a) SOC estimation, (b) SOC 

estimation error 

 

As can be seen in these figures, the proposed ELM method presents good tacking performance 

under different vehicle transient conditions. From the Fig 7(a) and 8(a) SOC estimation results, it 

can be observed that error is within the range of 0.1% and -0.1% values for NEDC conditions 

while it variables between 0.4% and -0.4% for WLTC conditions. The SOC value in WLTC 

conditions has approximately decreased to 73% since the WLTC driving cycle takes longer than 

NEDC cycle. In addition, to analyze the SOC estimation tracking performance statistically, the 

detailed statistical analysis of different errors has been presented in Table 2i including the root of 

mean square error (RMSE), coefficient of regression (R2) and mean absolute percentage error. 

The fitness of the model has been calculated by assessing the coefficient of regression obtained 

from the analysis of variance (ANOVA).                    
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Table 2. The specification of electrical motor, battery and vehicle used in this study 

Vehicle Driving Cycles RMSE R2 MAPE 

NEDC 0.000117 0.999551 0.015373 

WLTC 0.002072 0.999755 0.026207 

It can be seen from figures and Table 2 including evaluation parameters that the results for 

the SOC estimation using ELM model is in excellent agreement with actual values obtained from 

li-ion battery under different vehicle driving profiles.  

4. CONCLUSIONS

This paper has proposed a novel estimation of lithium-ion battery SOC with an extended

learning machine-based modelling technique. The main conclusions of this study can be presented 

in the following form. 

 The battery SOC estimation model has been developed with different methods in the

literature. However, the proposed ELM algorithm has advantages such as light

calculation, short time-consuming according to complex calculation methods. The ELM

model has been created

 In this study, AVL Cruise M and MATLAB software as a combined program has been

used to model the lithium-ion battery. The effectiveness of the developed model using

this software and ELM based estimation strategy have been evaluated model accuracy

and statistical methods in state-of-charge estimation.

 The proposed ELM model prediction performance has been evaluated through different

global driving cycles; NEDC and WLTC. The results obtained show that better

performance has been obtained by the developed ELM model.

 Unlike previous studies, the proposed ELM method has been utilized for SOC estimation

of multiple li-ion battery package and good prediction performance has been obtained

according to other estimation methods.
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