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Abstract: The estimation of battery state-of-charge (SOC) in electric or hybrid vehicle has vital importance
in the designing process of battery management systems. The state-of-charge estimation is implemented
using different modelling approaches, model-based estimators such as Kalman filtering and Luenberger
observer and data-driven based modelling techniques like artificial neural network and machine learning
methods. This study aimed to develop a battery state-of-charge estimation method and proposed a novel
architecture for multiple battery back SOC estimation using an extended learning machine (ELM). The
ELM approach is applied considering battery operating conditions using global vehicle driving profiles,
New European Driving Cycle and Worldwide harmonized Light vehicles Test Procedure. The performance
of the proposed SOC estimation method is evaluated by using statistical criteria (RMSE, R2, MAPE).
Consequently, the obtained results show that a data-driven ELM approach with a less complex structure
can obtain better performance compared with other advanced estimator methods under different operating
conditions.
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Elektrikli Araclarin Coklu Paket"Lityum-iyon Batarya Sarj Durumunu Genisletilmis Bir Makine
Ogrenmesi Kullanarak Tahmini

Oz: Elektrikli veya hibrit araclarda batarya sarj durumunun (SOC) tahmini, batarya yénetim sistemlerinin
tasarim siirecinde hayati 6neme sahiptir. Sarj durumu tahmini, farkli modelleme yaklagimlari, Kalman
filtreleme ve Luenberger gozlemcisi gibi model tabanli tahmin ediciler ve yapay sinir agi ve makine
Ogrenimi yontemleri gibi veri odakli tabanlt modelleme teknikleri kullanilarak gergeklestirilmektedir. Bu
calisma, bir batarya sarj durumu tahmin yontemi gelistirmeyi amaglamig ve genisletilmis makine 6grenmesi
(ELM) kullanarak ¢oklu batarya geri SOC tahmini i¢in yeni bir mimari énermistir. ELM yaklagimu, kiiresel
arag siiriis profilleri, Yeni Avrupa Siiriis Dongiisli ve Diinya Capinda Uyumlastirilmis Hafif Aracglar Test
Prosediirii kullanilarak ve akii calisma kosullar1 dikkate almarak uygulanmistir. Onerilen SOC tahmin
yonteminin performanst istatistiksel kriterler (RMSE, R2, MAPE) kullanilarak degerlendirilmistir. Calisma
sonunda elde edilen sonuglar, daha az karmagik bir yapiya sahip veri giiddiimlii bir ELM yaklagiminin, farklt
calisma kosullar altinda diger geligsmis tahmin yontemlerine kiyasla daha iyi performans elde edebilecegini
gostermektedir.
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1. INTRODUCTION

The past twenty years have seen increasingly rapid advances in the field of rechargeable
lithium-ion battery (LIB) energy storage system technologies of battery management systems
(BMS) such as electric vehicles (EVs) and hybrid electric vehicles (HEVS). In the systems, the
estimation of state-of-charge (SoC) which denotes the battery level is one of the greatest
challenges because the parameter cannot be directly measured by a sensor. The SoC parameter is
estimated using internal resistances and time constants of the battery dynamics and is monitored
by the BMS to provide safe and reliable driving conditions (Baba et al., 2016). Besides safety,
there are two critical operating conditions in a battery, over-charging and over-discharging. The
over-charging state is above the specified upper limit of charging while over-discharging indicates
that below the lower battery limit voltage. In this context, it is very important to precisely estimate
SOC value to avoid mentioned states (Ahmed, El Sayed, Arasaratnam, Tjong, & Habibi, 2014;
Baba & Adachi, 2014)

In practical applications, the SoC estimation process is carried out in different ways such as
the coulomb counting method in which the estimation is calculated by integration of current, data-
driven estimation method, model-based methods. In the first estimation method, the coulomb
counting method is called as open-loop method and this method is sensitive to an initial value of
SoC, will suffer from the cumulative integral error of current measurement (Ng, Moo, Chen, &
Hsieh, 2009; Tong, Lacap, & Park, 2016). Model-based SoC estimation has been applied in many
studies due to advancement in battery technologies (Jiang et al., 2021a). There are many different
types of battery models in the literature each suitable for different structures and with a different
level of complexity, from the electrochemical models to more advanced equivalent circuit models
and electrochemical impedance models. Electrochemical battery models have been preferred for
the modelling of battery chemical dynamics in the literature because these models express the
physical dynamics of the li-on battery under different operating conditions (Ahmed et al., 2014,
2015). Besides, different observer structures have been implemented to these models such as
adaptive square root extended Kalman filter (Plett, 2004), unscented Kalman filter (He, Williard,
Chen, & Pecht, 2013; Zheng et al., 2018), adaptive Luenberger observer (Hu, Sun, & Zou, 2010),
adaptive sliding mode observer (Belhani, M’Sirdi, & Naamane, 2013). However, the created
observer and filter structures using physical models require precise and global mathematical
modelling of the battery.

In contrary to physical modelling techniques, data-driven or machine learning-based
modelling methods use the real-world input/output data of the system to model unknown
dynamics. Since the models obtained using this method do not require a precise model and a
formulation for dynamic and complex battery systems, machine learning algorithms such as
artificial neural networks (Dang et al., 2016; Shen, Chan, Lo, & Chau, 2002), particle swarm
optimization (Hossain Lipu, Hannan, Hussain, & Saad, 2017), support vector machines (Jiang et
al., 2021b) have been applied to estimate the value of battery SOC. Different parameters (battery
cell ageing, variable environmental conditions and other nonlinear states) have been easily
incorporated into these created models (Tong et al., 2016). Although data-driven techniques are
successful in accurately estimating the SOC value of batteries, they require cumbersome and time-
consuming processes like online parameter adaption and computational burden on hardware.

More recently, single hidden layer feedforward neural network-based extreme learning
machines (ELM) have been proposed to predict future actions of a physical system that included
unknown dynamics by effectively analyzing collected big data on the system. This method has
shown good performance in terms of learning speed and generalization compared to another
conventional feedforward neural network (Huang, Chen, & Babri, 2000; Huang, Zhu, & Siew,
2006). For this purpose, the ELM has been used in different areas such as automatically driving
based on camera vision (Zhu, Miao, Hu, & Qing, 2014), pattern classification (Liu & Wang,
2010), image deblurring (L. Wang, Huang, Luo, Wang, & Luo, 2011).
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In this study, a key contribution is that this study the ELM estimator has been designed to
create a Li-ion battery model to develop SOC estimation with 1D AVL Cruise M platform. In the
proposed ELM predictive model, voltage, current, power and motor load of battery and vehicle
speed have been considered as input parameters for SOC parameter prediction. Compared with
the previous works, the main contributions of this paper are summarized as follows: (1) The
created ELM estimator has been realized SOC value estimation of a battery without the need for
a complex mathematical model like electrochemical and advanced equivalent circuit models
under different environmental and driving cycle conditions. (2) Furthermore, fewer battery
parameters according to neural networks and other data-driven based methods have been needed
to estimate the battery SOC value in the training process of the ELM model. (3) The predictive
performance of the ELM model has been evaluated under different both at variable conditions
like both New European Driving Cycle (NEDC) and Worldwide harmonized Light vehicles Test
Procedure (WLTP) driving cycles based on performance indices, including RMSE (Root mean
squared error), R%(Coefficient of determination), MSE (mean squared error), MAE (mean
absolute error).

The paper is organized as follows: In Section I, the advanced equivalent circuit based
mathematical analysis is conducted for the li-ion battery are proposed and presented in detail. In
Section 11, the extended learning machine model is explained. In Section IV, some results and
discussions are expressed. Finally, some conclusions are provided in Section V.

2. METHODOLOGY
2.1. The Battery SOC Definition
The battery SOC is used to defined the remaining capacity of the lithium-ion battery and is

mathematically expressed as the ratio of the remaining battery capacity to the full capacity that
can be delivered as follows.

t
fto Wpaee ()1

Cmax

SOC(t) = SOC((ty) — 1)

In (1), C_max is the maximum charge capacity of battery, in Ah, |_batt depicts the battery
current that is assumed discharging is positive and p is the Coulombic efficiency.

2.2. The Modelling of Lithium-ion Battery Based on Equivalent Circuit Approach

In this subsection, the equivalent circuit model that is commonly used in the literature is
proposed. The simple analytical models are preferred since increasing the complexity of the
model increases the uncertainty in the estimates of the parameters. However, these models can
not accurately characterize the battery under overall different operating conditions. In the
literature, the Thevenin circuit model (Jiang et al., 2021b; Y. Wang, Liu, Pan, & Chen, 2017) and
second-order circuit model (S. Wang, Fernandez, Shang, Li, & Yuan, 2018) are preferred to
define battery dynamics.

In this study, the Thevenin equivalent circuit model has been used as shown in Fig. 1.
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Figure 1:

Thevenin equivalent circuit model used for li-on battery

The dynamic behaviour of circuit can be mathematically defined as in Eg. (2) and Eg. (3).

UTh ILoad
Ury, = + 2
T Rrp+Crp Crp @)
U, =Upc —Urp — IRy (3)

Eq.(3), Ury, Uy and U, are the voltage of across Cry, , open circuit and load, respectively.
Rpypindicates polarization resistance and I;,,4 iS load current.

2.3. Vehicle Modelling by Using AVL Cruise M

The estimation of SOC has been carried out using data obtained from a vehicle battery
management system modelled by AVL Cruise M. The AVL Cruise M software offers both a
graphical user interface, as well as command-line accessibility to create real-time capable
subsystem models of engine, driveline, 1D fluid flow, aftertreatment, electrical and control system
domains (Farag, Fleckenstein, & Habibi, 2014; Taborda, Varella, Farias, & Duarte, 2019; Zhang
& Li, 2018).

During this study, the designed layout of AVL program is shown in Fig. 2. The specification
of electrical motor, battery and vehicle are tabulated in Table 1.
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Figure 2:

The electrical vehicle AVL Cruise M model layout

Table 1. The specification of electrical motor, battery and vehicle used in this study

Type of electric machine Asynchronous machine
Moment of intertia 0.08 kg.m?
Battery minimum voltage 25V
Battery maximum charge 20 Ah
Vehicle curb weight 1700 kg
Vehicle gross wight 1980 kg

2.4. Extreme Learning Machine (ELM) Model Formulation

The ELM algorithms suggested in this paper have been derived from the references (Huang,
Zhou, Ding, & Zhang, 2012; Huang et al., 2006). The ELM algorithm is capable of learning for
the single hidden-layer feedforward neural networks compared with traditional artificial neural
networks and other machine learning algorithms. The output weights of ELM network structure
are analytically defined according to the pseudo-inverse of the hidden-layer output matrix which
is set randomly. To describe the ELM method mathematically, an unknown nonlinear dynamical
system denoted as input () in the following form is considered. Then, the output of the system is
approximated using the ELM model as follows as expressed in (4)

F(.X) = 72’19]’1((1],1')],9()9(,61] E,iRn,.....bj ER (4)
HN: Number of hidden layer
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Where, a; and b; denote determined randomly coefficients of the hidden layer, 6; is weight
vector that connects to j hidden node from output node. h(ay, b, x) activation function of the
network. The sigmoid, sine, triangular basis functions can be used as activation functions. To train
the ELM network, training data and target data are considered as a set of training. So, output
equation is obtained with hidden node output matrix as follows.

HO =Y (5)

h(ay, by,x1) -+ h(an, by, x1)
H = < : - : ) (6)

h(@ybi ) - h(an b )
The used activation functions are Sigmoid.
The ELM algorithm is given as in the following form.
1. aj, bj,0; parameters are determined randomly by using continuous probability distribution
function.

2. The general solution of equation given by (6) is treated as optimization problem by
minimizing the following error in the last squares sense.

1 1
min {E IILe?, ...,e,f]||pz} = min {zu[(yf —x), e, O — xZ;)]IIFZ} (7)
Subject to

Y=HO+E (8)
3. The solution of (7) is archived by
6 =HTY 9)

Where HT denotes the Moore-Penrose generalized inverse of matrix H. So, (9) can be written
as follows and it is solved by singular value decomposition.

6 =H'Y = (HTH)"*HTY (10)
2.5. ELM model evaluation parameters
For evaluation, the root mean squared errors (RMSE), e coefficient of determinant (R) and

mean absolute percentage error (MAPE) are proposed as the performance indexes,
mathematically expressed by (11),(12),(13), respectively.

N —_ 5 3\2
RMSE(ySOClysoc) :\]Zl=1(y50;‘v ySOC) (11)
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Z?Izl(ysoc - ysoc)2

?’:1(3’506 - YSocmean) 2

RZ(Ysocvysoc) =1-

N ~
100 |ysoc - ysocl
N c YVsoc

=1

MAPE(Ysocvysoc) =

(12)

(13)

Where J,. indicates battery SOC valur estimation of measured ys,.. By definition, the
smaller calculated performance index value given in (11),(12),(13), the better estimation

performance is obtained.

3. RESULTS AND DISCUSSION

To confirm the effectiveness of the proposed ELM method, the relationship between selected
inputs and SOC parameters of li-ion battery has been realized. The vehicle battery group voltage,
current, power, electrical motor load and vehicle speed has been used as the input parameters
while SOC has been used as target data for ELM. The ELM structure used for modelling and

estimation has been presented in Fig. 3.

Battery group
output voltage

Battery group
output current

Battery group
output power

E motor load

Vehicle Speed

Figure 3:
Extreme learning machine SOC model for li-ion battery

In the first stage of the modelling process, the variable operating conditions have been carried
out to validate the application and efficiency of the ELM on SOC estimation. For this purpose,
the battery discharging voltage tills the terminal voltage declines to 2.5V, under New European
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Driving Cycle (NEDC) and Worldwide harmonized Light vehicles Test Procedure (WLTP)
driving cycles shown in Fig. 4, respectively.
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Figure 4:
Driving cycles (a) New European Driving Cycle (NEDC); (b) Worldwide harmonized Light
vehicles Test Procedure (WLTC)

The NEDC and WLTC are typical vehicle driving cycles that are widely used to test the
emission levels such as NOx, HC (Hydrocarbon) of automotive engines fuel consumption rate in
vehicles. In this study, SOC values, its prediction errors for each driving cycles are compared,
respectively. For the modelling process of battery, motor current, voltage, power and load
presented in Fig. 5 and Fig. 6 are considered as input parameters for NEDC and WLTC driving
cycles, respectively.
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Input parameters of ELM model under NEDC operating conditions (a) Battery voltage (b)

Battery current (c) Power and (d) Electric motor load
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Input parameters of ELM model under WLTC operating conditions (a) Battery voltage (b)

Battery current (c) Power and (d) Electric motor load



Uludag University Journal of The Faculty of Engineering, Vol. 30, No. 1, 2025

_ a
585 ~—-Q*mﬁm_ﬁm“m
@ e
Actual SoC % Estimated % .
80 1 1 1 1 1 \__,.—- 1
0 200 400 600 800 1000 1200
Time (sec.)
=
S0
T
=
o
%0.2 1 1 1 1 1 1
0 200 400 600 800 1000 1200
Time (sec.)
Figure 7:

Comparison of the estimation results under NEDC conditions; (a) SOC estimation, (b) SOC
estimation error
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Figure 8:

Comparison of the estimation results under WLTC conditions; (a) SOC estimation, (b) SOC
estimation error

As can be seen in these figures, the proposed ELM method presents good tacking performance
under different vehicle transient conditions. From the Fig 7(a) and 8(a) SOC estimation results, it
can be observed that error is within the range of 0.1% and -0.1% values for NEDC conditions
while it variables between 0.4% and -0.4% for WLTC conditions. The SOC value in WLTC
conditions has approximately decreased to 73% since the WLTC driving cycle takes longer than
NEDC cycle. In addition, to analyze the SOC estimation tracking performance statistically, the
detailed statistical analysis of different errors has been presented in Table 2i including the root of
mean square error (RMSE), coefficient of regression (R2) and mean absolute percentage error.
The fitness of the model has been calculated by assessing the coefficient of regression obtained
from the analysis of variance (ANOVA).
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Table 2. The specification of electrical motor, battery and vehicle used in this study

Vehicle Driving Cycles RMSE R? MAPE
NEDC 0.000117 0.999551 0.015373
WLTC 0.002072 0.999755 0.026207

It can be seen from figures and Table 2 including evaluation parameters that the results for
the SOC estimation using ELM model is in excellent agreement with actual values obtained from
li-ion battery under different vehicle driving profiles.

4. CONCLUSIONS

This paper has proposed a novel estimation of lithium-ion battery SOC with an extended
learning machine-based modelling technique. The main conclusions of this study can be presented
in the following form.

The battery SOC estimation model has been developed with different methods in the
literature. However, the proposed ELM algorithm has advantages such as light
calculation, short time-consuming according to complex calculation methods. The ELM
model has been created

In this study, AVL Cruise M and MATLAB software as a combined program has been
used to model the lithium-ion battery. The effectiveness of the developed model using
this software and ELM based estimation strategy have been evaluated model accuracy
and statistical methods in state-of-charge estimation.

The proposed ELM model prediction performance has been evaluated through different
global driving cycles; NEDC and WLTC. The results obtained show that better
performance has been obtained by the developed ELM model.

Unlike previous studies, the proposed ELM method has been utilized for SOC estimation
of multiple li-ion battery package and good prediction performance has been obtained
according to other estimation methods.
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