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Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin 
Indicatrix For k-Kinematic Surfaces 

Yasemin Yıldırım*1, Erhan Ata2 

ABSTRACT 

In this study, we define the k-kinematic surface gM  which is obtained from a surface M  on Euclidean 3-

space 3E  by applying rigid motion described by quaternions to points of M . Then we investigate and 
calculate for this surface some important concepts such as shape operator, asymptotic vectors, conjugate 
tangent vectors, Euler theorem and Dupin indicatrix which help to understand a surface differential 
geometrically well.  
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1. INTRODUCTION 

Surfaces have had application areas in many areas 
such as mathematics, kinematics, dynamics and 
engineering for many years and they have been in 
center of interest increasingly. Mathematicians 
have written many articles and books by 
investigating surfaces as Euclidean and non-
Euclidean. For these studies, one can read [1-15] . 
Eisenhart defined parallel surfaces and their some 
properties in his book [3]. In [16], Ünlütürk and 
Özüsağlam investigated the parallel surfaces in 
Minkowski 3-space. In [17], Tarakçı and 
Hacısalihoğlu defined surfaces at a constant 
distance from edge of regression on a surface and 
gave some properties of such surfaces and then in  
[18-20] Sağlam and Kalkan investigated the other 
properties of this surface. Again Sağlam and 
Kalkan transported the surfaces at a constant 
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distance from edge of regression on a surface to 
Minkowski 3-space and obtained their properties 
which they have in Euclidean space. 
Quaternions have many application areas in both 
theoretical and applied mathematics. The 
quaternions described firstly by Hamilton applied 
mechanics in 3-dimensional space [21]. The 

quaternions as a set correspond to 4  4-
dimensional vector space on real numbers. The 
unit quaternions which are known as vensors 
provide a convenient mathematical description in 
rotations and directions in 3-dimension. They are 
simpler forming and numerically more stable and 
efficient than Euler angles and rotation matrices. 
The set of dual quaternions, invented by Clifford 
to describe space geometry in mathematics and 
mechanics, is a Clifford algebra which can be used 
for representation of rigid motions [22-24]. 
Motion of a point, line and objects has a great 
attraction in kinematics [25]. E. Study and 
Kotelnikov applied dual numbers and dual vectors 
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to studies which they did in kinematics ([26], 
[27]). Homogeneous transformation is a point 
transformation. However, the line transformations 
in which transformed element is a line instead a 
point can be defined in 3-dimensional Cartesian 
space. Pottmann and Wallner studied on line 
transformations [28]. A screw is a 6-dimensional 
vector which is obtained from vectors such as 
power, torque, linear velocity and angular velocity 
emerged in rigid motion. When two lines are given 
it is easy to obtain one from another by screw 
motion [29]. Rigid motions include rotations, 
translations, reflections and combinations of these. 
Sometimes reflections are excluded in definition 
of rigid motion. The shape and dimension of any 
object remains same after the rigid motion. In 
kinematics, a suitable rigid motion represented by 
SE(3) is used for representing linear and angular 
changes. According to Charles theorem, every 
rigid motion can be expressed as a screw motion. 
A surface formed kinematically is a surface 
defined by a moving object envelope. This object 
can be a point, a line, a plane or any arbitrary 
figure. There are many applications of surfaces 
produced in many areas kinematically [30-35]. 
Selig and Husty took the dual quaternion which 
described a rigid motion and gave its effects on a 
point and a line in their study [36]. In [31-34] a 
computer-aided geometric design (CAGD) and 
surface design were combined. In these studies, 
they focused on the surfaces obtained by using 
point movements (substitution). The techniques 
for generating surfaces kinematically are more 
suitable in CAD/CAM, because these depend 
directly on the kinematic constraints of the bench 
and design requirements. 

In this study, we define the kinematic surface by 
applying rigid motion expressed by dual 
quaternions as in [36] to points of a surface M  in 

3-dimensional Euclidean space 
3E and obtain a k-

kinematic surface gM  by taking the rotation axis 
specially as the unit vector k . The k-kinematic 

surface gM  is a more general case of surfaces at a 
constant distance from edge of regression from a 
point on a surface and the parallel surfaces on 
which many studies have been done by 
mathematicians and differential geometers until 
now. In special cases one can obtain surfaces at a 
constant distance from edge of regression from a 
point on a surface and the parallel surfaces from 
the k-kinematic surfaces. Then, we calculate shape 
operator, asymptotic vectors, conjugate tangent 
vectors, Euler theorem and Dupin indicatrix, 

which are well-known concepts in differential 

geometry, of the k-kinematic surface gM  and 
investigate the changes in these concepts under the 
rigid motion. 

 

2. PRELIMINARIES 

Let M  be a surface of 3E  with the metric tensor 

,  . Let D  be the Riemannian connection on 3E  

and N  be a unit normal C  vector field on M . 
Then, for every p M  and ( )pX T M  we have 

, = 1p pN N   and , = 0pN X  . Let 

: ( ) ( )p pS T M T M  be the shape operator defined 

by ( ) = XS X D N . The Gaussian curvature ( )K p  

and mean curvature ( )H p  of M  at p  are the 

determinant and the trace of S  at p M , 

respectively. The eigenvalues of S  are called the 
principal curvatures of M . If tangent of a curve is 
a principal vector at each of its points then this 
curve is a curvature line in M .  

Definition 1. Let M  and rM  be two surfaces in 

Euclidean space. Let N


 be the unit normal vector 
field of M  and r  be a constant. If there is a 
function  

 : rf M M  

 ( ) = pp f p p rN 


 

 between the surfaces M  and rM  then rM  is 
called parallel surface of M  and the function f  is 

called the parallelization function between the 

surfaces M  and rM   [37].  
Definition 2. Let M  be an Euclidean surface in 

3E  and S  be the shape operator of M . For 
( )p pX T M  if  

( ), = 0p pS X X   

 then pX  is called an asymptotic direction of M  

at p M  [38].  

Definition 3. Let M  be an Euclidean surface in 
3E  and S  be the shape operator of M . For 

, ( )p p pX Y T M  if  

( ), = 0p pS X Y   

 then pX  and pY  are called conjugate tangent 

vectors of M  at p M  [38].   

Definition 4. Let M  be an Euclidean surface in 
3E  and S  be the shape operator of M . For an 

umbilic point p M  the function  
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: ( )n pk T M R  

2

1
( ) = ( ),n p p p

p

k X S X X
X

   

 is called the normal curvature function of M  at 
p  [37].   

Definition 5. Let M  be an Euclidean surface in 
3E  and S  be the shape operator of M . Then the 

Dupin indicatrix of p M  is  

= { | ( ), = 1,p p p pX S X X  D  

 ( )}p pX T M  [37].  

Definition 6. Let M  and fM  be two surfaces in 
3E  and pN  be a unit normal vector of M  at a 

point p M . Let ( )pT M  be the tangent space at 

p M  and { , }p pX Y  be an orthonormal basis of 

( )pT M . Let 1 2 3=p p p pZ d X d Y d N   be a unit 

vector where 1 2 3, ,d d d   are constant numbers 

such that 2 2 2
1 2 3 = 1d d d  . If a function with the 

condition  

: , ( ) =f
pf M M f p p rZ  , r  constant, 

fM  is called as the surface at a constant distance 
from edge of regression on M  [17].   

2.1. Quaternions 

Let us firstly begin with Hamilton’s quaternions 
and their connection with rotations. A rotation of 
angle ¸  about a unit vector = ( , , )T

x y zv v v v  is 

represented by the quaternion,  

= ( ).
2 2

i j kx y zr cos sin v v v
 
    

The conjugation  
=p rpr  

gives the action of such a quaternion on a point 
= i j kp x y z   in space, where  

= ( ).
2 2

i j kx y zr cos sin v v v
 
    

The quaternions representing rotations satisfy 
=1rr  and also r  and r  represent the same 

rotation. The set of unit quaternions, those 
satisfying =1rr , comprise the group Spin(3), 
which is the double cover of the group of rotations 

(3)SO . 

Let   be the dual unit which satisfies the relation 
2 = 0  and commutes with the quaternion units 

,i j  and k . For ordinary quaternions 0q  and 1q ,  

0 1=h q q  

indicates a general dual quaternion. A rigid 
transformation is represented by a dual quaternion  

1
= ,

2
g r tr  

where r  is a quaternion representing a rotation as 
above and = i j kx y zt t t t   is a pure quaternion 

representing the translational part of the 
transformation [36]. 
Points in space are represented by dual quaternions 
of the form,  

ˆ =1 ,p p  

where p  is a pure quaternion as above. The action 

of a rigid transformation on a point is given by,  
1 1

ˆ ˆ' = ( ) ( )
2 2

p r tr p r rt    

             
1 1

= ( )(1 )( )
2 2

r tr p r rt      

                      = 1 ( ).rpr t   

Note that, as with the pure rotations, g  and g

represent the same rigid transformation [36].  

3. KINEMATIC SURFACES AND k-
KINEMATIC SURFACES 

Firstly, let us give the definition of the kinematic 
surface:  

Definition 7. Let M  and gM  be two surfaces in 
3E  and p M . Let 

= cos sin ( )
2 2

x y zr v i v j v k
 
    be a rotation by 

an angle of   radian about the unit vector 

= ( , , )x y zv v v v


 and t


 be the translational vector. If 

there is a function defined as  

 : gf M M  

        ( ) =p f p rpr t   

then the surface gM  is called a kinematic surface 
of the surface M .  
Let the rotation axis be the unit vector k  and the 
translational vector be any unit vector pZ  at a 

point p M . Then, we can obtain a new 

kinematic surface, let us call this surface as " k -
kinematic surface".  

Definition 8. Let M  and gM  be two surfaces in 

3E  and p M . Let = cos sin
2 2

r k
 
  be a 

rotation by an angle of   radian about the unit 

vector k  and pZ


 be the translational vector. If 

there is a function defined as  
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( ) = cos sinf p p k p  


 

         (1 cos ) , pk p k Z     
  

 

then gM  is called a k-kinematic surface of the 
surface M .  
As an example, let us consider the half cylinder  

= { ( , ) | ( , ) = (cos ,sin , ),M u v u v u u v 
0 / 2,0 2}.u v     

Let the rotation angle be / 2  and translational 

vector be 
3 3 3

= , ,
3 3 3

Z
 
 
 


. Rotating every 

point of M  by / 2  angle over the k


 and 

translating 6  unit along Z


 gives the k-kinematic 
surface  

={ ( , ) | ( , ) =( sin 2 3,cos 2 3, 2 3)gM u v u v u u v           

        0 / 2,0 2}.u v     

Image of a point = (0,1,2)P M  will be 

= ( 1 2 3,2 3,2 2 3) gp M     (Figure 1). 

 
    Figure 1. k-kinematic surface of an half cylinder 

 
One can easily see that for p pX T M    

 * = cos sinp p pf X X k X  


 

             (1 cos ) , ,p pk X k Z     
  

 

so the tangent vectors on M  can be transferred to 

the surface gM  by the transformation *f . 

Let ( , )U  be a parametrization of the surface M

. Then, one can write that  
3:U E M    

        ( , ) = ( , ).u v p u v  

It follows that { , }u v p   is a basis of ( )pT M . Let 

pN  be a unit normal vector at p M  and 

1 2 3, ,d d d   be constant real numbers. Then we 

can write that 1 2 3= | |p u p v p pZ d d d N  


. Since  

   = { ( ) | ( ) = cos singM f p f p p k p  


 

        (1 cos ) , },pk p k Z     
  

 

a parametric representation of the surface gM  is  

    ( , ) = cos ( , ) sin ( , )u v u v k u v    


 

                (1 cos ) , ( , ) pk u v k Z      
  

 

and  

= ( , ) | ( , ) = cos ( , ) sin ( , )gM u v u v u v k u v     


   

 1 2 3(1 cos ) , ( , ) ( , ) ,u vk u v k d d d N u v          
 

 

1 2 3 , , ,   are constantsd d d   

or  

= ( , ) | ( , ) = cos ( , ) sin ( , )gM u v u v u v k u v     


   

      1 2 3(1 cos ) , ( , ) ( , ),u vk u v k N u v           
 

 

     1 2 3 , ,   are constants .    

where 1 1= d  , 2 2= d   and 3 3= d  . Let us 

take u  and v  as the principal directions of the 

surface M . Let 1k  and 2k  be the associated 

principal curvatures, respectively. Then, we get 

3 1= (cos ) sin ,u u vk k N          

     1 1( sin , ) (1 cos ) ,v uk k N k k             

 and  

3 2= sin , (cos )v u vk N k           

     2 2( sin , ) (1 cos ) , .u vk k N k k             

Therefore, the unit normal vector field of the 

surface gM  can be calculated as  

=g u vN
A

 
 

 where = u vA   .  

Theorem 1. Let the pair ( , )gM M  be given in 3E

. Let { , }u v   be orthonormal and principle vector 

fields on M  and 1k , 2k  be principle curvatures of 

M . Then the matrix of the shape operator gS  of 
gM  is  

1 2

2
3 4

1
=gS

A

 

 

 
 
 

 

 where  
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1 = , , , , ,g g
uv u v uu v vN N              

2 = , , , , ,g g
uu u v uv u uN N              

3 = , , , , ,g g
vv u v uv v vN N              

4 = , , , , .g g
uv u v uu u uN N                

4. ASYMPTOTIC DIRECTIONS AND 
CONJUGATE TANGENT VECTORS 

FOR k-KINEMATIC SURFACES 

Theorem 2. Let gM  be a k-kinematic surface of a 
surface M  and { , }u v   be orthonormal and 

principle vector fields on M  and 1k , 2k  be 

principle curvatures of M . Let ( )p pX T M . 

Then * ( )( ) ( )g
p f pf X T M  is an asymptotic 

direction of gM  if and only if  

           * 2 * * 2
1 1 2 1 2 3 2 = 0x x x x     (1) 

 where  

1 2= , , = , ,p u p vx X x X      
*
1 1 2= , , ,u u u v            
*
2 1 2 3 4= , , , , ,u v v v u u u v                      
*
3 3 4= , , .u v v v            

Proof. Let ( )p pX T M . Then, we can write that 

1 2=p u vX x x  , where 1 = ,p ux X    and 

2 = ,p vx X   . Besides, one can write that  

    * 1 * 2 *( ) = ( ) ( )p u vf X x f x f   

                1 2= .u vx x   (2) 

On the other hand, calculating *( ( ))g
pS f X  gives  

* 1 * 2 *( ( )) = ( ( )) ( ( ))g g g
p u vS f X x S f x S f   

       1 1 3 2 2 1 4 2= ( ) ( )u vx x x x         (3) 

Calculating inner product of (2) and (3) gives the 
result.  

Theorem 3. Let gM  be a k-kinematic surface of a 
surface M  and { , }u v   be orthonormal basis such 

that u  and v  are principle vector fields on M  

and 1k , 2k  be principle curvatures of M . Let 1  

and 2  be the angles between the unit vector pX  

and u  and v , respectively. Then 

* ( )( ) ( )g
p f pf X T M  is an asymptotic direction of 

gM  if and only if  

  * * *2 2
1 1 2 1 2 3 2cos cos = 0.cos cos         (4) 

Proof. Let 1  be the angle between pX  and u  and 

2  be the angle between pX  and v . Then we have  

1 1cos = , = .p uX x    (5) 

Similarly, we can obtain  

2 2cos = , = .p vX x    (6) 

Substituting (5) and (6) into (1) completes the 
proof.  

Theorem 4. Let gM  be a k-kinematic surface of a 
surface M  and { , }u v   be orthonormal basis such 

that u  and v  are principle vector fields on M . 

Then for , ( )p p pX Y T M , * ( )( ) ( )g
p f pf X T M  

and * ( )( ) ( )g
p f pf Y T M  are conjugate tangent 

vectors if and only if  

  * * * *
1 1 1 2 1 2 3 2 1 4 2 2 = 0,x y x y x y x y       (7) 

where  

1 2= , , = , ,p u p vx X x X      

1 2= , , = , ,p u p vy Y y Y      
*
1 1 2= , , ,u u u v            
*
2 1 2= , , ,u v v v            
*
3 3 4= , , ,u u u v            
*
4 3 4= , , .u v v v            

Proof. Let , ( )p p pX Y T M . Then, since { , }u v   is 

an orthonormal basis on ( )pT M  we have 

1 2=p u vX x x   and 1 2=p u vY y y  , where 

1 = , ,p ux X    2 = , ,p vx X    1 = ,p uy Y    and 

2 = ,p vy Y   . It follows that  

* 1 * 2 *( ) = ( ) ( )p u vf X x f x f   

            1 2= u vx x   

and  

* 1 * 2 *( ) = ( ) ( )p u vf Y y f y f   

           1 2= .u vy y   (8) 

On the other hand, one can obtain that  

* 1 * 2 *( ( )) = ( ( )) ( ( ))g g g
p u vS f X x S f x S f   

       1 1 3 2 2 1 4 2= ( ) ( )u vx x x x         (9) 

 Inner product of (8) and (9) gives  
* *

* * 1 1 1 2 1 2( ( )), ( ) =g
p pS f X f Y x y x y     

                                 * *
3 2 1 4 2 2 ,x y x y    

where  

1 2= , , = , ,p u p vx X x X      

1 2= , , = , ,p u p vy Y y Y      
*
1 1 2= , , ,u u u v            
*
2 1 2= , , ,u v v v            
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*
3 3 4= , , ,u u u v            
*
4 3 4= , , .u v v v            

This completes the proof.  

Theorem 5. Let gM  be a k-kinematic surface of a 
surface M  and { , }u v   be orthonormal basis such 

that u  and v  are principle vector fields on M  

and 1k , 2k  be principle curvatures of M . Let 1 , 

2  be the angles between the unit vector pX  and 

u , v , respectively and 1 , 2  be the angles 

between the unit vector pY  and u , v , 

respectively. Then *( )pf X  and *( )pf Y  are 

conjugate tangent vectors if and only if  
* *
1 1 1 2 1 2cos cos cos cos         

* *
3 2 1 4 2 2cos cos cos cos = 0      

Proof. Let 1  be the angle between pX  and u  and 

2  be the angle between pX  and v . Then we have  

1 1cos = , = .p uX x    (10) 

 and  

2 2cos = , = .p vX x    (11) 

Similarly, let 1  be the angle between pY  and u  

and 2  be the angle between pY  and v . Then we 

get  

1 1cos = , = .p uY y    (12) 

 and  

2 2cos = , = .p vY y    (13) 

Substituting (10), (11), (12) and (13) into (7) 
completes the proof.   

5.  EULER THEOREM AND DUPIN 
INDICATRIX FOR k-KINEMATIC 

SURFACES 

Theorem 6. Let gM  be a k-kinematic surface of a 
surface M  and { , }u v   be orthonormal basis such 

that u  and v  are principle vector fields on M  

and 1k , 2k  be principle curvatures of M . Let 

( )p pX T M  and *( ( ))g
n pk f X  be the normal 

curvature of gM  in the direction *( )pf X . Then  

* 2 * * 2
* 1 1 2 1 2 3 2

* 2 * * 2
1 1 2 1 2 3 2

( ( )) = ,
2

g
n p

x x x x
k f X

x x x x

  

  

 

 
 (14) 

where  
  1 2= , , = , ,p u p vx X x X      

  *
1 1 2= , , ,u u u v            

  *
2 1 2 3 4= , , , , ,u v v v u u u v                        

  *
3 3 4= , , ,u v v v            

  * * *
1 2 3= , , = , , = , .u u u v v v               

Proof. Let ( )p pX T M . Then, we have 

1 2=p u vX x x   ,where 1 = ,p ux X   , 

2 = ,p vx X   . It follows that  

* 1 * 2 *( ) = ( ) ( )p u vf X x f x f   

            1 2= u vx x   

and  

* 1 * 2 *( ( )) = ( ( )) ( ( ))g g g
p u vS f X x S f x S f   

       1 1 3 2 2 1 4 2= ( ) ( ) .u vx x x x         

By an easy calculation we get  
2 2 2

* 1 1 2 2( ) = , 2 , ,p u u u v v vf X x x x x                 

               * 2 * * 2
1 1 2 1 2 3 2= 2x x x x     

and  
2

* * 1 2 1( ( )), ( ) =( , , )g
p p u u u vS f X f X x             

      2
3 4 2( , , )u v v v x            

      1 2( , ,u v v v            

                  3 4 1 2, , )u u u v x x            

      * 2 * * 2
1 1 2 1 2 3 2= .x x x x     

 Therefore we obtain  
* 2 * * 2

* 1 1 2 1 2 3 2
* 2 * * 2
1 1 2 1 2 3 2

( ( )) = .
2

g
n p

x x x x
k f X

x x x x

  

  

 

 
 

Theorem 7. Let gM  be a k-kinematic surface of a 
surface M  and { , }u v   be orthonormal basis such 

that u  and v  are principle vector fields on M  

and 1k , 2k  be principle curvatures of M . Let 

( )p pX T M  and *( ( ))g
n pk f X  be the normal 

curvature of gM  in the direction *( )pf X . If we 

denote the angle between the unit vector pX  and 

u  by 1  and the angle between the unit vector pX  

and v  by 2  then  
* * *2 2

* 1 1 2 1 2 3 2
* * *2 2
1 1 2 1 2 3 2

cos coscos cos( ( )) = ,
2 cos coscos cos

g
n pk f X

      

      

 

 
 

Proof. Substituting (5) and (6) into (14) gives the 
result.   

Theorem 8. Let gM  be a k-kinematic surface of a 
surface M  and { , }u v   be orthonormal basis such 

that u  and v  are principle vector fields on M  

and 1k , 2k  be principle curvatures of M . Then  

   *
( ) ( )= { ( ) ( ) |g g

f p p f pf X T MD  

           * 2 * * 2
1 1 2 1 2 3 2 = 1},c x c x x c x    (15) 
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 where  
*

1 2( ) = ,p u vf X x x   
*
1 1 2= , , ,u u u vc              
*
2 1 2 3 4= , , , , ,u v v v u u u vc                      
*
3 3 4= , , .u v v vc            

 Proof. Let *
( )( ) ( )g

p f pf X T M . Then, since  
* * *

( ) = { ( ) | ( ( )), ( ) = 1},g g
f p p p pf X S f X f X  D

proof is clear.  

Corollary 1. Let gM  be a k-kinematic surface of 

a surface M . Then the Dupin indicatrix of gM  at 

( ) gf p M  is   

1.  an ellipse if 2
2 1 34 < 0c c c , 

2.  a hyperbola if 2
2 1 34 > 0c c c , 

3.  a parabola if 2
2 1 34 = 0c c c . 
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